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Abstract: Transfer entropy (TE) has been used to identify and quantify interactions between phys-
iological systems. Different methods exist to estimate TE, but there is no consensus about which
one performs best in specific applications. In this study, five methods (linear, k-nearest neighbors,
fixed-binning with ranking, kernel density estimation and adaptive partitioning) were compared.
The comparison was made on three simulation models (linear, nonlinear and linear + nonlinear
dynamics). From the simulations, it was found that the best method to quantify the different interac-
tions was adaptive partitioning. This method was then applied on data from a polysomnography
study, specifically on the ECG and the respiratory signals (nasal airflow and respiratory effort around
the thorax). The hypothesis that the linear and nonlinear components of cardio-respiratory interac-
tions during light and deep sleep change with the sleep stage, was tested. Significant differences,
after performing surrogate analysis, indicate an increased TE during deep sleep. However, these
differences were found to be dependent on the type of respiratory signal and sampling frequency.
These results highlight the importance of selecting the appropriate signals, estimation method and
surrogate analysis for the study of linear and nonlinear cardio-respiratory interactions.

Keywords: transfer entropy; surrogate data; cardio-respiratory interactions; polysomnography

1. Introduction

Physiological signals are observations of complex processes resulting from the combi-
nation of their internal dynamics, their interactions with other processes and third party
effects, such as the influence of medication and treatments. These interactions might occur
in a linear and/or a nonlinear fashion. The development of methods to evaluate and
quantify these interactions is currently an active research topic.

Several methods to identify the interactions between complex processes have been
developed across different fields, and many of them have been adapted to the study
of physiological data [1–10]. One of these approaches, widely used for the detection of
information flow between processes, is Transfer Entropy (TE). TE is able to identify linear
and nonlinear interactions, depending on its implementation. It is also able to identify the
directionality of the interactions [11]. TE relies on the past observations of the processes,
and can be considered as a parametric or a non-parametric approach according to the
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assumptions made for its computation. For its numerical estimation, two factors need to
be considered. First, an embedding technique to generate vectors describing the past of the
processes and, second, an entropy estimator [11–14]. There are several entropy estimators
differing in assumptions, advantages and limitations, with no consensus about which one
performs best [15]. For this reason, the selection of the best method to estimate TE for each
specific application is still an open problem.

A first aim of this study is to compare five of the most commonly used methods for
TE computation, in order to provide a framework to support the selection of the best
approach to be applied in short physiological signals to identify and quantify linear and
nonlinear interactions. Each method uses a different entropy estimator (linear [12,16,17],
k-nearest neighbors estimator [12,18], fixed-binning with ranking [13,15], kernel density
estimator [13,19,20], and adaptive partitioning [13,15]). In all the implementations, a
uniform embedding technique is chosen to generate the embedding vectors [11,14].

Each method is hypothesized to perform differently according to the tuning of their
parameters and the characteristics of the interactions between the processes in which they
are applied [21]. Considering this, three simulation models are proposed: linear [16],
nonlinear [13], and linear + nonlinear [22]. Two analyses were conducted for each of these
simulations. The goal of the first analysis was to find the best set of parameters for each
method and to observe their potential to identify the correct lag at which the interactions
occur. The second analysis studied the behavior of the methods when modifying the
strength of the interactions between the processes. The performance was evaluated in the
simulations using Transfer Entropy Excess (TEE), a new index proposed in this study.

A second goal of this study is to use the proposed framework to select the best method
and apply it on clinical data. Specifically, on polysomnography (PSG) recordings, to test the
hypothesis that the linear and nonlinear components of the cardio-respiratory interactions
during light (NREM1) and deep (NREM3) sleep change with the sleep stage.

Previous studies have shown that the linear and nonlinear dynamics in both cardiac and
respiratory signals change with the sleep–wake cycle and between sleep stages [6,7,15,16],
and that these changes affect both signals similarly [23–25]. This fact raised some ques-
tions regarding how these changes affect the cardio-respiratory interactions during sleep,
which led to the identification of three forms of coupling, namely, respiratory sinus ar-
rhythmia (RSA), cardio-respiratory phase synchronization (CRPS), and time delay stability
(TDS) [6]. In this study, TE was used to identify and quantify the cardio-respiratory in-
teractions during sleep stages, using the best method for its computation found with the
simulation models.

To the best of the knowledge of the authors, no study exists that compares all five
methods presented here for the computation of TE. However, previous works have studied
the performance of some of these methods, in particular [12] and [26] comparing LIN and
KNN, [13] comparing FBR, KDE and DVP, and [27] comparing KNN and a KDE with a
different kernel function.

In addition, the way this study quantifies and identifies linear and nonlinear inter-
actions during light and deep sleep has not been found elsewhere in the literature. The
results of this study could serve as a base for the selection of suitable TE methods for the
analysis of linear and nonlinear interactions in physiological systems.

This paper is divided as follows: Section 2 introduces the used methods and datasets.
Section 3 shows the results for the TE computation on the simulation models and the
clinical data. Section 4 discusses the results. Finally, Section 5 concludes this work.

2. Materials and Methods

This section describes the theory behind Transfer Entropy (TE) and the factors to be
considered for its computation. Following these descriptions, the simulation study and the
application to clinical data are explained.
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2.1. Transfer Entropy

Consider the stochastic process Y = {y1, y2, y3, . . . , yN}, with N the total number
of observations of the process. The Shannon Entropy can be defined as the average
information content of the process [11,28]. This can be computed as

H(Y) = − ∑
y∈Y

p(y)log(p(y)), (1)

where p(y) is the probability mass function (PMF) of the observation y. The base of
the logarithm determines the units of H. When using the natural logarithm (log), H is
measured in nats.

Now, consider a second stochastic process X = {x1, x2, x3, . . . , xN}, which has a joint
probability distribution with Y. The joint information provided by both processes is
described by the Joint Entropy, as

H(X, Y) = − ∑
y∈Y

∑
x∈X

p(x, y)log(p(x, y)), (2)

where p(x, y) is the joint PMF of the observations x and y.
The remaining uncertainty for the observations of Y given the information of X is

described by the Conditional Entropy as

H(Y|X) = − ∑
y∈Y

∑
x∈X

p(x)p(y|x)log(p(y|x)), (3)

where p(y|x) is the conditional PMF of the observation y given the observation x.
Transfer Entropy (TE) estimates the reduction of uncertainty of the observations of

Y (target process), accounted by both the past observations of X (driver process) and the
past observations of Y, compared to the reduction of uncertainty of the observations of Y
accounted only by its past [29]. TE can be defined in terms of joint or equivalently in terms
of conditional entropies as

TEX−→Y = H(Y, Y−)− H(Y−)− H(Y, X−, Y−) + H(X−, Y−), (4)

H(Y, X−, Y−) = H(X−, Y−) + H(Y|X−, Y−),

H(Y, Y−) = H(Y−) + H(Y|Y−),

TEX−→Y = H(Y|Y−)− H(Y|X−, Y−), (5)

where H(Y, Y−) is the joint entropy of Y and its past, H(Y, X−, Y−) is the joint entropy of
Y and the past of both processes, and H(X−, Y−) is the joint entropy of the past of both
processes. H(Y|Y−) is the conditional entropy of Y given its own past, and H(Y|X−, Y−)
is the conditional entropy of Y given its own past and the past of X. Given this dependency
on the past observations of both processes, TE is an asymmetric measure, which constitutes
an advantage when quantifying the directionality of the information transfer from one
system to the other [11,30].

Considering the definition of TE, two factors are relevant for its computation: the
definition of the vectors describing the past observations, or so-called embedding vectors,
of the processes; and the estimation of the entropies. Depending on the estimation of
entropies, TE accounts for linear and/or nonlinear interactions [14].

2.2. Definition of Embedding Vectors

From the observations of the driver and target processes, embedding vectors can be
defined to describe their past to estimate the TE [11–14,31].
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The selection of the elements of the embedding vectors is important, given that they
should contain the most relevant past observations of the processes. Sub-optimal selection
might be problematic. Too long embedding vectors will lead to redundancy as well
as increased computational requirements, and too short vectors will lead to insufficient
information. In order to tackle this challenge, several embedding techniques can be used.
The uniform embedding (UE) is the most common technique used in the computation of
TE because of its simplicity. For this reason, in this study, this technique in combination
with different entropy estimators is used.

For UE, the embedding vectors are constructed as Xm
t = {Xt−τ , Xt−2τ , . . . , Xt−(m−1)τ ,

Xt−mτ} and Yn
t = {Yt−τ , Yt−2τ , . . . , Yt−(n−1)τ , Yt−nτ}, where τ is the time lag, and m and n

are the embedding dimensions.

2.3. Estimation of Entropies

The exact estimation of the PMF in an analytical way is an open research problem.
However, there is a wide range of options to estimate the PMFs, depending on the ap-
plication and the characteristics of the processes to analyze [11]. In this study, five en-
tropy estimators that are implemented in the open source tools by Montalto et al. [12] and
Lee et al. [13] were considered: linear (LIN); k-nearest neighbors (KNN); fixed-binning
with ranking (FBR); kernel density estimation (KDE); and adaptive partitioning (DVP).

2.3.1. Linear Estimator

The linear estimator (LIN) assumes that the processes X and Y have a joint Gaussian
PMF. This assumption allows for working with exact expressions already derived for the
entropy measures [12,16]. The entropy of a Gaussian random process Y can be expressed as

H(Y) =
1
2

log
(
2πeΣ(Y)

)
, (6)

where Σ(Y) is the covariance of Y, and e is the Euler’s constant. Now, the conditional
entropy of Y given X is defined as

H(Y|X) =
1
2

log
(
2πeΣ(Y|X)

)
, (7)

where Σ(Y|X) is the partial covariance of Y given X, which corresponds to the variance of
the residuals of a linear regression of Y on X. Considering this, the conditional entropy can
be rewritten as

H(Y|X) =
1
2

log
(
|Σ(ε)|

)
+

1
2

N log
(
2πe

)
, (8)

where ε are the residuals of the linear regression [17]. Finally, the TE is computed by
implementing (8) in (5). More details about this approach can be found in [17].

2.3.2. K-Nearest Neighbors Estimator

The k-nearest neighbors (KNN) estimator approximates the PMF by calculating a local
probability mass in the neighborhood of each of the observations of the process Y. The
probability mass is estimated by considering a sphere whose diameter is equal to twice the
expected distance to the k-th nearest neighbor of each observation.

Following the procedure presented in [18], H(X, Y) can be computed as

H(X, Y) = −ψ(k) + ψ(NX,Y) + log
(
cdX cdY

)
+

dX + dY
NX,Y

NX,Y

∑
i=1

log (p(ζ(i))), (9)

where ψ is the digamma function, NX,Y is the number of observations in the joint space
[X, Y], dX and dY are the dimensions of X and Y, cdX and cdY are the volumes of the dX-
dimensional and dY-dimensional unit spheres, respectively, and ζ(i) is twice the distance
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from a point (xi, yi) to its k-th nearest neighbor. TE is computed applying (9) to estimate
the entropies in (4). More details about this method are given in [12,18].

2.3.3. Fixed-Binning with Ranking Estimator

The fixed-binning estimation is one of the approaches most widely used for PMF
approximations due to its simplicity. This method performs a uniform quantization of the
observations of the processes in Q bins, after normalizing the values to zero mean and unit
variance. With this, the approximation of the probabilities, p, is done based on the relative
frequencies of occurrence of each quantized state,

p(gi) =
ri
N

, (10)

where gi is the event associated with a specific bin i (X, X−, Y− and their combinations)
and ri is the number of observations that lie in the bin i.

The fixed-binning method faces challenges related to robustness, convergence with
high dimensionality, and the selection of the number of bins to be used when quantizing
the time series. To improve the robustness of this method, some modifications have been
proposed [13,15]. One of them consists of an ordinal sampling, also known as ranking. For
the fixed-binning with ranking (FBR) estimator, the time series of the observations of X and
Y are replaced by two new series U and V, respectively. The values in U and V are integers
ranging from 1 to N, representing the rank of the corresponding observations of X and
Y. After the ranking, the PMFs are estimated using (10) in the space defined by U and V.
Using the same number of bins in each dimension for simplicity, H(V|U) is computed as

H(V|U) = − 1
N

Q

∑
i=1

Q

∑
j=1

ri,j log
ri,j

rj
, (11)

where i and j indicate the indices of the bins along V and U, respectively, and ri,j is the
number of observations that lie in the intersection of the bins i and j. TE can be computed
by combining (11) and (5). More details about this method can be found in [13,15].

2.3.4. Kernel Density Estimator

In the kernel density estimator (KDE), the PMF is estimated using a preselected
distribution which is centered at each observation of the processes. All the distributions are
summed to obtain an overall smooth distribution for the processes [13,19]. The shape of
the distribution is defined by a kernel, which in this study corresponds to the widely used
Gaussian kernel. The magnitude of this kernel decreases as the distance from the center
increases. Hence, one of its main parameters is its bandwidth.

The probability mass for one observation xt, using the KDE, is estimated as

p(xt) =
1
N

N

∑
i=1

1
h

K
(

xt − xt,i

h

)
, (12)

where K is the kernel function with bandwidth h. The Gaussian kernel is defined as

K(u) =
1√
2π

e−0.5u2
, (13)

where u = (
xt−xt,i

h ), with the bandwidth of the kernel defined as

h = 1.06ασ̂N−
1
5 , (14)

where α is a scaling multiplier and σ̂ is the sample standard deviation.
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Now, in the case of a given point (xt, yt) in the joint space defined by the target and
driver processes, the joint probability can be estimated as

p(xt, yt) =
1
N

N

∑
i=1

1
hxt hyt

K
(

xt − xt,i

hxt

)
K
(

yt − yt,i

hyt

)
. (15)

Using (15) to compute H(X, Y) with (2), TE can be calculated with (4). More informa-
tion about this method can be found in [13,19].

2.3.5. Adaptive Partitioning Estimator

When working with binning methods for the estimation of PMFs, the fact of having
a fixed number of bins with a defined and equal width can lead to an overestimation
of the PMF. One solution to this issue is to use a non-uniform partition of the space
defined by the observations of the processes [15,19]. This solution is implemented with the
Darbellay–Vajda (DV) algorithm, combined with ordinal sampling [13].

For the adaptive partitioning (DVP) estimator, the ordinal sampling is performed as
described for the FBR, replacing the time series of the observations of X and Y by U and V,
respectively. The DV algorithm recursively partitions the three-dimensional space defined
by V, U− and V− into cubes of different size, in order to obtain an even distribution of the
data across the partitions. At first, the three-dimensional space is partitioned into eight
equal cubes, of which the boundaries are at the mid-points in the three dimensions. The
null hypothesis of an even distribution of the data points across the eight cubes is tested
using a χ2 statistic,

sχ2 =
8

∑
i=1

(Mi − µM)2, (16)

where Mi corresponds to the number of points contained in each of the eight cubes and
µM is the total number of data points divided by the total number of cubes. If sχ2 is greater
than the χ2 statistic at a 5% significance level and 7 degrees of freedom, the null hypothesis
is rejected, and each of the eight cubes is further partitioned into eight smaller cubes. If the
null hypothesis is not rejected, the current cubes are taken as one partition.

The result of the recursion process is a finite number of cubes, L, with nonzero data
points. The approximation of the probabilities for the computation of the entropies is done
by counting the number of data points that are greater than or equal to the lower bounds
and less than the upper bounds of each cube in each dimension, following (10). H(V|U)
is estimated using (11) along all the cubes L. Finally, TE is computed using (5). More
information on this method can be found in [13,15].

2.4. Simulation Study

Given the wide range of dynamics that are present in physiological systems, it is diffi-
cult to account for confounding effects. This makes the understanding and interpretation
of their interactions more complex and the selection of a method for their study more
difficult. Therefore, three simulation models were used to study the previously explained
methods for the computation of TE. These simulation models vary in complexity, from a
simple bivariate autoregresive (AR) linear model, to a bivariate model that includes linear
and nonlinear components in its interactions. However, these models were not defined
to represent a specific physiological phenomenon, but to illustrate different dynamics
present in real data. For this reason, these results could be used in a broader context than
physiological data.

For each simulation model, the performance of the methods was assessed using two
analyses. For the first analysis (A1), the parameters of the methods to compute the TE
were allowed to change. The effect of the selection of the lag (τ) for the generation of
the embedding vectors was also assessed in this analysis. In the second analysis (A2),
the strength of the interactions between the time series of each model was changed. An
overview of the parameters of the methods that were changed in the analyses is presented
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in Table 1. The range in which the parameters change is based on the values used in
previous studies [12,13,16,26,27].

Table 1. Parameters of methods for TE computation.

Method Parameter Range of Change Source

LIN regression model order [1,2,3,4,5,6,7,8,9,10] MuTE Toolbox [12]
KNN number of neighbors (nn) [5,10,15] MuTE Toolbox
FBR quantization levels (Q) [4,6,8,10] PhysioNet [13]
KDE multiplier of kernel bandwidth (α) [0.5,0.75,1,1.25,1.5] PhysioNet
DVP none PhysioNet

2.4.1. Simulation Models

For all simulation models described below, the variations of TE from the driver
process X to the target process Y were analyzed. The TE from Y to X is expected to be
equal to zero, since no influence of Y on X was imposed. A1 and A2 were performed on
50 trials of the models. Each trial corresponded to a new pair of signals X and Y, where the
noise components are allowed to change. The length of the simulated signals was set to
N = 200 samples. This length was selected so that it was comparable to the length of the
clinical data, which ranges from 150 to 330 points.

Linear Model

The first simulation model corresponds to a linear AR bivariate Gaussian process of
order 2 based on the work presented by Faes et al. [16], and defined as

xn = −0.5xn−2 + εxn

yn = −0.5yn−2 + axn−1 + εyn ,
(17)

where εxn and εyn are independent Gaussian white noise processes with zero mean and
unit variance. The effect of X on Y is modulated by the parameter a.

For A1, the parameter a of the model is set to 0.5 and the time delay (τ) for the
generation of the embedding vectors is changed between 1 and 5 (around the value at
which the interaction takes place, τ = 1). For A2, the parameter a is allowed to vary in the
range from 0 to 0.5, while τ = 1.

Nonlinear Model

The second simulation model is a bivariate process of order 2 that includes a nonlinear
interaction. It is based on the work presented by Lee et al. [13], and defined as

xn = sxn + ξxn

yn = (b xn−2)
2 + ξyn

sxn ∼ N (10, 1)

ξxn ∼ L(0, 1), ξyn ∼ L(0, 1),

(18)

where ξxn and ξyn correspond to noise components drawn from a Laplace distribution, and
b is the coupling factor.

The parameter b is fixed at 0.4, while τ changes between 1 and 5 (around the value
at which the interaction takes place, τ = 2), for A1. For A2, the parameter b is allowed to
change between 0 and 0.5, maintaining τ = 2.
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Linear + Nonlinear Model

The third simulation model is a bivariate system including a linear and a nonlinear
term in Y. This model is adapted from the simulation study presented by Khadem and
Hossein-Zadeh [22], and is defined as

xn = 0.3xn−1 + εxn

yn = 0.3yn−1 + cxn−2 + d f (xn−4) + εyn

f (xn−4) =
2.4− 0.9(xn−4)

1 + exp(−4(xn−4))
,

(19)

where εxn and εyn are independent Gaussian white noise processes with zero mean and unit
variance, the function f (xn−4) represents the nonlinear term, and the parameters c and d
regulate the strength of the linear and nonlinear dynamics, respectively. τl = 2 and τnl = 4
correspond to the lags at which the linear and nonlinear interactions occur, respectively.

For A1, c and d were fixed at 0.4 and 0.6, respectively, while τ was changed from 1
to 5 (around the values at which the interactions take place, τl = 2 and τnl = 4). For A2,
there were two set-ups for this model. The first one was for the linear interaction, having c
varying between 0 and 0.6, while d was fixed at 0.4, and τ = 2. The second one was for the
nonlinear interaction, for which c was fixed at 0.6, and d changed from 0 to 0.6 and τ = 4.

2.4.2. Evaluation Quantities

For A1, the TEX−→Y was expected to reach a maximum when using the lag at which
the interaction between the signals occurs, and zero otherwise [32,33].

In order to evaluate the results of the methods in this case, a new index named Transfer
Entropy Excess (TEE) is proposed. This index calculates the ratio between the total sum of
the TE for all the lags and the TE at the lag at which the interaction occurs.

It is worth noting that this index can only be used with simulation studies for which
the interaction lag is known, and it is not intended as a form to assess the validity of the
TE computed on real data. TEE considers the possible over-estimation and intrinsic error
of the methods when computing TE with different lags that would be also present when
analyzing real data. It is defined as

TEE =
∑T

i=1 TEX−→Y(τi)

TEX−→Y(τinteraction)
, (20)

where T is the total number of lags used in the analysis, TEX−→Y(τi) refers to the TE com-
puted with the lag τi, and τinteraction is the τ of the interaction imposed in each simulation
model. TEE can vary between 1 and infinite. The closer TEE is to 1, the better the method
identifies the lag of the interaction. Higher values of TEE indicate that, for other lags, the
TE is higher than zero, implying a possible bias of the method.

In A2, an increment in TEX−→Y with stronger interactions between the signals was
expected. To quantify the increment of TE as a function of the coupling parameter of the
model, the linear regression of the TE on the coupling factor is used:

TEX−→Y = β0 + β1ω, (21)

where β0 is the intercept of the regression, β1 is the slope of the regression, and ω is the
coupling factor of each simulation model. The higher the slope, the higher the sensitivity
of the method to identify changes in the interaction strength.

2.5. Application on Real Data

In this study, 1891 one-minute segments from PSG recordings of 26 subjects referred
to the sleep laboratory of the University Hospitals Leuven, UZ Leuven, Belgium were used.
The study was approved by the ethical committee of UZ Leuven (S53746, S60319) and all
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subjects signed an informed consent. The subjects considered for this study presented an
apnea-hypopnea index (AHI) of less than 5. The median (25th; 75th) age and BMI of the
subjects was 37 (34; 47) years, and 24.98 (23; 32.19) kg/m2. The data used in this study were
collected for the OSA+ project, and have been published before in [34,35], where pulse
photoplethysmography (PPG) and oxygen saturation (SpO2) were used in the detection of
sleep apnea.

From the PSG, the ECG and respiratory signals were extracted ( f s = 500 Hz). Seg-
ments of one minute duration in which the subjects did not present apnea events from
NREM1 and NREM3 were selected. The annotations of the respiratory events and hypno-
grams were done following the AASM2012 rules [36].

The ECG signal was filtered using a zero-phase Butterworth bandpass filter with
cut-off frequencies at 0.03 and 150 Hz to remove baseline and high frequency noise. Then,
it was filtered with a zero-phase Butterworth stopband filter at 50 Hz to remove powerline
interferences. Next, the location of the R-peaks was found using R-DECO [37]. Missed,
false and ectopic beats were corrected using the integral pulse frequency modulation
(IPFM) model [38,39]. The corrected locations were then used to compute the time-series
corresponding to time intervals between consecutive heart beats. This time series was
resampled to 2 and 4 Hz to have an evenly sampled heart rate variability (HRV) repre-
sentation. After that, a zero-phase Butterworth bandpass filter with cut-off frequencies at
0.03 Hz and 1 Hz was applied.

Two respiratory signals (RESP = nasal airflow (NAS) and respiratory effort measured
around the thorax (THO)) were recorded using a pressure sensor and respiratory induc-
tance plethysmography (RIP). These signals were first bandpass filtered using a zero-phase
Butterworth filter with cut-off frequencies at 0.03 and 1 Hz. Then, they were resampled at
2 and 4 Hz. The reason to use two different sampling frequencies was to observe the effect
that this has on the TERESP−→HR estimation. Previous works have found that the sampling
frequency might influence the estimation of cardio-respiratory interactions [40], while other
studies have found an effect of filtering and downsampling electrophysiological data on
the estimation of TE between different brain areas [41].

2.5.1. Significance Analysis

To validate the significance of the computed TERESP−→HR, a surrogate data analysis
was performed. Two approaches were used. The first one, known as iteratively refined
surrogates (IRS), is applied to one signal at a time, and conserves the spectrum and
distribution of the original data. This method guarantees that the generated surrogates of
each signal maintain some of the characteristics of the original data, but that none of the
interactions between them are preserved [42]. In the second approach, known as iterative
multivariate surrogates (IMS), the surrogates are generated taking into account two or more
signals at the same time. In this way, the distribution and spectrum of the original data
and, additionally, the cross-correlation of the signals is preserved. The IMS will preserve
the linear interactions of the original signals, but not the nonlinear interactions [42].

According to [42], to conduct a one-sided surrogate test at a significance level of 5%,
at least 19 surrogate series are needed. Therefore, in the current work, for each segment,
the TERESP−→HRV of the original data was compared against all of the TERESP−→HRV of
20 surrogates, generated with each approach. It is concluded that the TERESP−→HRV of the
segment is significant if it is higher than the values obtained from all the surrogates.

By applying this methodology, it is possible to check whether linear or nonlinear
interactions are present in the data. If the TERESP−→HRV of a segment is significant when
using IMS, it can be concluded that the interaction between the signals includes a nonlinear
component. On the other hand, if the TERESP−→HRV is significant when using IRS, the
interaction between the signals could be either linear or nonlinear. In this case, if the
TERESP−→HRV is also not significant using IMS, it can be concluded that the interaction is
mostly linear. When the TERESP−→HRV is significant for IRS and IMS, it could be concluded
that there is a nonlinear component in the interaction between the signals, but it is not
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possible to conclude anything about the linear component. These possible outcomes are
shown in Table 2.

Table 2. Possible outcomes of the significance tests with each surrogate generation methodology.

Result Significance
Test with IRS a

Result Significance
Test with IMS b Linear Interaction Nonlinear

Interaction

NS 1 NS No No
S 2 NS Yes No
S S I 3 Yes

a IRS = Iteratively Refined Surrogates, b IMS = Iterative Multivariate Surrogates. 1 NS = Not significant,
2 S = Significant, 3 I = Inconclusive.

The explained framework for the analysis of TE on clinical data was applied to
test the hypothesis that the linear and nonlinear interactions between RESP and HRV
change in NREM1 and NREM3. TE estimates per sleep stage per subject were obtained by
computing the median of the TE of the one-minute segments on which linear and nonlinear
interactions were found to be significant.

3. Results
3.1. Simulation Study

For all the simulations, the five methods behaved similarly. However, FBR and
KDE showed a positive bias consistently for all the simulations, due to the numerical
approximations done when estimating the entropies. With KNN, some values of the TE
were found to be negative, also because of the numerical approximations done by this
method. LIN and DVP did not present any bias.

For A1, all the methods identified correctly the lag at which the interaction takes place,
presenting a higher TEX−→Y at this lag compared to the other lags. In the case of the linear
model, additionally to the peak at τ = 1, there were some smaller peaks at τ = 3 and τ = 5
for all methods. This was due to the autoregressive nature of the model, which included
the influence of more past states of the driver process into the target process. In the case
of the nonlinear model, there was only one peak in the TE, at τ = 2, for all the methods.
Finally, in the case of the linear + nonlinear model, there were two peaks present in the
TE, given that, at τ = 2 the linear interaction takes place and, at τ = 4, the nonlinear
interaction occurs.

In Figure 1, the results for this analysis are shown. For the first four methods (LIN,
KNN, FBR, KDE), the results are shown for the best parameters. The complete results of
changing all the parameters of these methods can be found in the Supplementary Material.

The TEE was calculated for all methods, and the parameters for which it was closer to
1 were selected and fixed to continue with A2. The best parameters for each method are
presented in Table 3.

Table 3. Best parameters of methods for TE computation.

Method Parameter Value

LIN regression model order linear model, nonlinear model, and
linear+nonlinear model: 1

KNN number of neighbors (nn) linear model: nn = 15, nonlinear model:
nn = 5, linear+nonlinear model: nn = 15

FBR quantization levels (Q) linear model, nonlinear model, and
linear+nonlinear model: Q = 4

KDE multiplier of kernel
bandwidth (α)

linear model, nonlinear model, and
linear+nonlinear model: α = 1.5

DVP none
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(a)

(b)

(c)

Figure 1. Results of changing the lag for the embedding vectors generation for (a) linear model (interaction at τ = 1);
(b) nonlinear model (interaction at τ = 2); and (c) linear + nonlinear model (interaction at τ = 2 and τ = 4). Each plot
shows the median TE vs. lag (τ) in samples. The error bars indicate the interquartile range. The columns show the methods,
from left to right, LIN, KNN, FBR, KDE and DVP. It can be seen that all methods identify correctly the lag of the interaction.
However, DVP presents the lowest over-estimation (bias) of TE for other lags in all the simulations.

For A2, all methods behaved similarly, with the only difference being the slope of the
TE with respect to the interaction parameter. In Figure 2, the results for A2 are presented,
only for DVP as a representative for all the methods. Only in the case of the linear +
nonlinear model, for the nonlinear interaction, the methods did not show a clear increment
in TE when the interaction parameter d increased, demonstrating a very small slope in
all cases.

A summary of the evaluation of the performance of the methods for all the simulation
models is presented in Table 4. The best method corresponds to the one with the lowest
TEE combined with the highest β1.

Table 4. Scores of TEE and β1 for the assessment of the performance of the methods for each
simulation model.

Linear Model Nonlinear Model Linear + Nonlinear Model
Method TEE β1 TEE β1 TEE β1Linear β1Nonlinear

LIN 2.09 0.35 1.03 0.46 1.37 0.29 0.07
KNN 2.04 0.28 1.06 0.54 1.33 0.22 0.09
FBR 3.39 0.26 2.59 0.24 2.09 0.13 0.04
KDE 2.71 0.24 1.91 0.44 1.81 0.19 0.08
DVP 1.87 0.31 1 0.39 1.05 0.20 0.08

Comparing the TEE values for all the methods, it could be seen that, for DVP, the
TEE was lower and closer to 1 for all the models, indicating that it performed well when
identifying the correct lag of the interactions. It could be noted that FBR had the highest
values of TEE for all simulation models, which is consistent with the higher bias that this
method presents, which is evident in Figure 1. The performance of LIN, KNN and KDE
did not differ significantly from DVP; however, their TEE values are higher given the
over-estimation of TE on other lags. After comparing the methods using the TEE index, it
was found that DVP is the best method to identify the correct interaction lag, presenting
the lowest bias.
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When observing the β1 values, it could be seen that all the methods behaved similarly.
However, the methods that presented a slightly higher sensitivity to the change of the
interaction strength were LIN and KNN. In this case, again FBR had the lowest performance,
evidenced in the lowest values of β1. KDE and DVP behaved comparably to LIN and KNN,
only having slightly lower slopes in general. It could be noted that, for the nonlinear model,
all the slopes were higher than for the other methods. In addition, in the case of the linear +
nonlinear model, the slopes for the nonlinear interaction were the lowest, and the slopes
for the linear interaction also remained lower than for the pure linear model. This could
hint to the fact that, when there are multiple dynamics in a system, the sensitivity of the
methods to identify each interaction is reduced.

In general, considering all the experiments, DVP can be identified as the best perform-
ing method. Hence, it was selected for the analysis in clinical data.

(a)

(b)

(c)

Figure 2. Results of DVP for changing the interaction strength for (a) linear model; (b) nonlinear
model and (c) linear + nonlinear model. Each plot shows the median TE vs. the interaction parameter.
The error bars indicate the interquartile range.

3.2. Application to Real Data

The analysis of the clinical data focused on the linear and nonlinear dynamics of the
interactions between the respiration (RESP) and the heart rate variability (HRV) in two
sleep stages, NREM1 and NREM3. Given that the delay at which the cardio-respiratory
coupling occurs is not known, lags between 1 and 5 seconds were considered.

For each sleep stage, the significance of the TE was assessed using the surrogate
analyses explained in Section 2.5.1. It is worth noting that, if the linear interaction is found
to be significant in a segment, it means that the only component identified by TE was the
linear one. Instead, if the nonlinear interaction is significant in a segment, it means that TE
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was able to identify a nonlinear component, but there could also be a linear component
(see Table 2).

As mentioned in Section 2.5, a TE estimate for each patient and for each sleep stage was
computed. This estimate corresponded to the median of all the segments with a significant
interaction. In Table 5, the number of patients that presented significant interactions for
each lag and sampling frequency are shown, when using each type of respiratory signal.
The median TE values between sleep stages were compared using a Wilcoxon signed rank
test with a significance level of 5%.

Table 5. Number of patients, out of 26, with significant linear and nonlinear interactions for each sampling frequency
and lag.

RESP = N AS RESP = T HO
2 Hz 4 Hz 2 Hz 4 Hz

τ (seconds) Linear Nonlinear Linear Nonlinear Linear Nonlinear Linear Nonlinear

1 13 9 19 14 20 12 19 18
2 16 7 11 10 17 8 14 18
3 10 10 11 11 15 12 13 15
4 11 12 13 12 8 10 13 13
5 13 10 12 12 14 8 15 13

Figure 3 shows the median TENAS−→HRV and TETHO−→HRV for the segments with
significant interactions for both sleep stages using 4 Hz as the sampling frequency. Using
NAS, when comparing the strength of the linear interactions, there was a significant
difference between NREM1 and NREM3 at lags 2 and 4 s, with NREM3 being higher. In
contrast, for the nonlinear interactions, the differences between both sleep stages were
significant for lags 1 and 3 s. In the case of THO, no significant differences were found for
any of the interactions.

(a)

(b)

Figure 3. Median TERESP−→HRV of significant segments for each kind of interaction at 4 Hz vs. lag (τ) in seconds.
(a) RESP = NAS; (b) RESP = THO. Gray lines represent higher interactions in NREM1, while black lines correspond to
higher interactions in NREM3. Linear interactions are on the left, for which significant differences using NAS are found at
τ = 2 and τ = 4 s. Nonlinear interactions are on the right, for which significant differences using NAS are found at τ = 1
and τ = 3 s. No significant differences are found using THO.
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For both of the respiratory signals, the results with 2 Hz (see Supplementary Material)
were similar to the ones depicted in Figure 3. However, in the case of NAS, for the linear
interactions, there was only a significant difference at lag 4 s, while, for the nonlinear
interactions at lags 3, 4 and 5 s NREM3 presented higher TE. In the case of THO, for the
linear interactions, only a significant difference at lag 2 s was found, while for nonlinear
interactions there was a significant difference at lag 4 s.

It is worth noting that, even though NAS and THO represent the respiration of the
subject, their morphologies are different and thus the results obtained are different. How-
ever, some similarities are found. For both sampling frequencies, more patients presented
slightly higher values of TE in NREM3 for lags 2, 3 and 4 s in the linear interactions. For the
nonlinear interactions, the trends are not consistent for both respiratory signals and sam-
pling frequencies. The similarities and significance of these trends could be investigated
further with more patients available for comparison.

4. Discussion

In this work, the application of TE for the analysis of different dynamics of interactions
between time series was studied. For this purpose, five methods were applied to three
simulation models with different types of interactions. It is worth noting that the simulation
models used in this paper were not defined to represent the real physiological data of the
cardiac and respiratory systems but were used to illustrate the different dynamics that
could be present in real physiological data.

To generate the embedding vectors for the computation of TE, UE was used because
of its simplicity. This technique, however, can be redundant and arbitrary in the selection
of the embedding vectors, which could cause problems such as over-fitting and detection
of false influences [31]. A possible approach to prevent these issues is to use a non-
uniform embedding (NUE) technique. This approach was not covered in this study and its
implementation with the entropy estimators is proposed as future work.

With TEE, it was possible to select the best parameters for each method, based on the
knowledge of the exact lag at which the interaction between the signals occur. However, the
best parameters found for this study are not meant to be used arbitrarily, as their selection
can be affected by the length of the signals, as shown in [21] for mutual information. It is
worth noting that TEE was meant to be used only in simulation studies, as for these the
true interaction lag is known, which is a parameter for the computation of this index.

Out of the five methods compared in this work, only LIN was model-based, and
made the assumption that the studied processes had a joint Gaussian distribution. This
assumption, however, did not limit its performance when applied to nonlinear processes.
The results obtained in this study, in which LIN performed similarly to the other methods,
were contrary to the results of [12,26], in which LIN was outperformed by KNN. However,
in [12,26], the signals analyzed were longer than the signals used in the current study.
The limited number of points in the current study could have affected the accuracy of the
estimation of the PMFs, which could explain the comparable performance of KNN and
LIN. It is expected that, with a higher number of points, an increment in the accuracy of
KNN when estimating the PMF could lead to a better performance of this method.

In Ref. [13], it was found that DVP outperformed FBR and KDE for nonlinear interac-
tions, even though KDE was more sensitive to increments in the interaction strength. In
this work, the same behavior was found, considering that DVP was the best method, not
only compared with FBR and KDE, but also with LIN and KNN.

K-nearest neighbors and kernel based estimators were compared in [27], showing
that the kernel estimators outperformed the k-nearest neighbor estimators. However, the
kernel function used in [27] is different from the one used in this study, and the effect of
the selection of the kernel function was not analyzed. In the current study, it was found
that KNN presented a better behavior than KDE with a Gaussian kernel function.

In general, the finding that DVP outperformed all the other methods for the simu-
lation models is consistent with the literature. Nevertheless, many studies use k-nearest
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neighbors or traditional binning estimators when applying TE and other information
based metrics [14,18,43,44], due to their popularity and extensive use as non-parametric
estimators. The current work could constitute a base for the selection of DVP as an alter-
native to the popular estimators, not only because of its performance, but also because
having minimal adjustable parameters can constitute an advantage when working with
real data. However, as future work, it is advised to extend the comparison of the meth-
ods presented in this study, and others that were not mentioned here, with simulation
models that represent real physiological data and with longer signals. In addition, it is
advised to explore the performance of the methods in non-stationary set-ups, relaxing the
stationarity assumptions using a sliding window to obtain a continuous profile of the TE.
This last approach could be useful when dealing with long and continuous measures of
physiological data.

With the best method for the computation of TE identified, the cardio-respiratory
interactions from segments of a PSG study were analyzed. It was decided to compute
TE using lags between 1 and 5 seconds, since, during sleep, different forms of cardio-
respiratory coupling could occur at different times [6], and the selection of the optimal
embedding lag was out of the scope of this work.

For the study of these interactions, two types of respiratory signals were considered.
The first one was the nasal airflow, and the second one was the respiratory effort measured
around the thorax. The analysis included these two signals as their morphology is different,
even though both represent the respiration of the patient and are recorded at the same
time. It was found that the changes in the morphology of the respiratory signal affect
the computation of TE, obtaining inconsistencies when comparing different lags and
sampling frequencies.

In previous works, it has been suggested that the sampling frequency might influence
the estimation of cardio-respiratory interactions [40]; therefore, two sampling frequencies
were included in this analysis (2 Hz and 4 Hz). When observing the results for each type of
respiratory signal, it was found that, even if the general behavior in terms of trends of the
TE values between NREM1 and NREM3 was similar in each interaction, the significant
differences were affected by the sampling frequency.

While the respiration and the HRV signals are highly regular during deep sleep for
healthy subjects, the presence of sleep apneas could increase their variability. The higher
variability could affect the resampling of the cardio-respiratory signals. In this case, it
is possible that the information transferred from one signal to the other could not be
quantified by TE. In Ref. [41], the effects of the downsampling and filtering of the driver
and target signals on the computation of TE were studied, finding that the interactions
were underestimated or not detected. These facts, combined with the difference in length
between the signals, could explain the inconsistency between the results with both sampling
frequencies in terms of significant differences.

It is also worth mentioning that, after selecting only the segments for which the linear
and nonlinear interactions were found to be significant, not all patients were included
in the final comparison. As showed in Table 5, the number of patients included in the
significance analysis of the differences of TE between NREM1 and NREM3 varied from 7
to 20. The small size of these samples could have an effect in the significance test, and it is
advised to explore further the hypothesis showed in the current study, including a larger
pool of patients.

5. Conclusions

In this work, the behavior of five methods to compute TE was compared based on
their performance on simulated data. With this comparison, the limitations and advantages
of the methods when working with different dynamics and short signals were highlighted.

It was found that the DVP method performed best for the simulations. This method
identified correctly the lag at which the interaction occurred for each simulation model,
presenting lower values for different lags. The other methods presented higher TE values
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for different lags and, in the case of FBR and KDE, they had a constant bias for all lags.
The performance regarding the sensitivity to the strength of the interactions showed that
all methods were comparable. The lack of parameters to tune when using DVP was an
advantage influencing its selection to be used with the cardio-respiratory signals from a
PSG study.

For the clinical data, it was found that DVP was a suitable method to quantify the
linear and nonlinear cardio-respiratory interactions during sleep. The results suggest
that, for these signals, there is statistical evidence to hint that the linear and nonlinear
interactions are higher for NREM3 at specific lags, depending on the respiratory signal
used and the sampling frequency. Nevertheless, further research in this topic is proposed
with bigger datasets.

The simulation study combined with the results from the clinical data could be helpful
to select the best method to identify and quantify interactions between physiological
signals, even when no knowledge about the nature of these interactions is available.

Supplementary Materials: The following are available online at https://github.com/AndreaRozo/
Benchmarking-TE-Methods.git, Figures S1–S4: Results of changing the lag for the embedding
vectors generation and the parameters of the LIN, KNN, FBR and KDE methods, Figure S5: Median
TERESP−→HRV of significant segments for each kind of interaction at 2 Hz vs. lag (τ) in seconds,
Tables S1–S4: Scores of TEE for the assessment of the best parameters for LIN, KNN, FRB and KDE
for each simulation model.
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