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Abstract: An electroencephalogram (EEG) is an electrophysiological signal reflecting the functional
state of the brain. As the control signal of the brain–computer interface (BCI), EEG may build a bridge
between humans and computers to improve the life quality for patients with movement disorders.
The collected EEG signals are extremely susceptible to the contamination of electromyography
(EMG) artifacts, affecting their original characteristics. Therefore, EEG denoising is an essential
preprocessing step in any BCI system. Previous studies have confirmed that the combination of
ensemble empirical mode decomposition (EEMD) and canonical correlation analysis (CCA) can
effectively suppress EMG artifacts. However, the time-consuming iterative process of EEMD may
limit the application of the EEMD-CCA method in real-time monitoring of BCI. Compared with the
existing EEMD, the recently proposed signal serialization based EEMD (sEEMD) is a good choice
to provide effective signal analysis and fast mode decomposition. In this study, an EMG denoising
method based on sEEMD and CCA is discussed. All of the analyses are carried out on semi-simulated
data. The results show that, in terms of frequency and amplitude, the intrinsic mode functions (IMFs)
decomposed by sEEMD are consistent with the IMFs obtained by EEMD. There is no significant
difference in the ability to separate EMG artifacts from EEG signals between the sEEMD-CCA method
and the EEMD-CCA method (p > 0.05). Even in the case of heavy contamination (signal-to-noise
ratio is less than 2 dB), the relative root mean squared error is about 0.3, and the average correlation
coefficient remains above 0.9. The running speed of the sEEMD-CCA method to remove EMG
artifacts is significantly improved in comparison with that of EEMD-CCA method (p < 0.05). The
running time of the sEEMD-CCA method for three lengths of semi-simulated data is shortened by
more than 50%. This indicates that sEEMD-CCA is a promising tool for EMG artifact removal in
real-time BCI systems.

Keywords: EEG; EMG artifact rejection; signal serialization; EEMD; CCA

1. Introduction

Brain–computer interface (BCI) is a type of human–computer interaction, which can
provide a possible way to improve the quality of life for the disabled [1,2]. Through the
non-muscle information channel, BCI converts the electrophysiological signals collected
in the brain into the control commands of external devices to achieve communication
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between the brain and the external environment [3]. In recent years, as the core of human–
machine hybrid intelligence, the research progress of BCI has attracted great attention from
academia and industry. The signal acquisition method of non-invasive BCI is safe and
simple with the advantage of avoiding surgery. With its highly accurate time resolution
and excellent clinical environment applicability, the electroencephalogram (EEG) has
become the main non-invasive neurophysiological recording technology used by BCI
control systems to monitor brain consciousness activities [4].The EEG signal has low
amplitude and high time-varying characteristics. During the acquisition process, EEG
is often mixed with various artifacts generated by non-cerebral nerve tissues, such as
electrooculograms, electromyograms (EMGs), electrocardiograms, and power frequency
interference [5]. These interference signals and EEG signals are overlapped with each other,
submerging the original waveform characteristics of EEG signals. Therefore, EEG denoising
is indispensable [6–8]. The effect of noise rejection directly affects the performance of the
BCI system. Among the common artifacts, EMG is usually the most difficult to eliminate
due to its high amplitude, wide frequency domain, and variable spatial distribution [9]. In
consideration of the complex physiological process and the insufficient prior knowledge
for EMG, blind source separation (BSS) technology is often recommended to separate the
EMG noise from EEG signals [10].

Independent component analysis (ICA) is a BSS algorithm widely used in EEG signal
denoising [11]. ICA separates statistically independent signals from multi-channel data
with unknown sources exploiting high-order statistics. Then, the components identified as
artifacts are removed. The clean EEG data are reconstructed from the retained components.
Generally, ICA can eliminate the artifacts with fixed spatial distribution. The amplitude
and shape of EMG artifacts depend on the contraction degree, the type, and the quantity
of muscle. More importantly, the spatial distribution of EMG artifacts is variable. Related
studies indicate that the EMG artifacts in EEG signals are not effectively identified by
means of ICA [12,13]. Subsequently, canonical component analysis (CCA) is proposed as
an alternative method [14]. The original EEG data and their temporally delayed version
are designated as the first and second datasets, respectively. Using second-order statistics,
CCA extracts the sources from the signals. These sources have the largest autocorrelation
coefficients and are not correlated with each other. Compared with EEG, the temporal
characteristic of EMG is more similar to that of white noise. In other words, EMG has a
relatively low autocorrelation coefficient. Owing to this unique feature, the sources with
an autocorrelation coefficient lower than a reasonable threshold are considered as EMG
artifacts and successfully isolated from EEG. Nevertheless, BSS algorithms such as ICA or
CCA may still be unable to completely distinguish non-brain sources from brain sources.
For example, a low signal-to-noise ratio (SNR), complex contamination, and the number of
available channels (less than the number of sources) will increase the processing difficulty
of traditional BSS technology.

The combination of single-channel decomposition and BSS technology is confirmed
to have a significant effect on the suppression of artifacts. Zeng et al. [15] explored the
ability of ensemble empirical mode decomposition (EEMD) and ICA (EEMD-ICA) to
recover noisy multi-dimensional EEG data. In their work, the EEG signal of each channel
is decomposed into a finite number of intrinsic mode functions (IMFs) employing EEMD.
Then, the artifact-like IMFs of all channels are screened out. The artifacts scattered on
these IMFs are concentrated on a few components adopting ICA. Finally, these artifacts are
removed, and the clean multidimensional EEG data are reconstructed. The results show
that in terms of the normalized mean square error and the structural similarity, EEMD-ICA
is superior to the two main noise rejection methods (ICA and wavelet ICA [16]), especially
in the case of low SNR. Chen et al. [17] adequately considered the temporal structural
characteristics of EMG. Based on the work of Zeng et al., they proposed a new method that
combines EEMD with CCA (EEMD-CCA) to remove EMG artifacts in EEG data. The test
results on simulated, semi-simulated, and real data showed that, compared with the current
state-of-the-art technology (ICA, CCA and EEMD-ICA), the EEMD-CCA method has more
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outstanding reliability. Even if the SNR is less than 2 dB, the EEMD-CCA method can
also maintain good performance. With the popularization of home health care monitoring,
EEG equipment has shifted to installing a small number of electrodes for ease of use [18].
Through setting the different number of channels, the effectiveness of EEMD-CCA under
few-channel settings was also verified. In addition, Mucarquer et al. [19] proposed an
extended EEMD-CCA method to help eliminate EMG artifacts by using an EMG array
as information.

In practical applications, the final IMFs obtained by EEMD need a large number of
iterations. In each iteration, the upper and lower envelopes are found by searching for
the extreme points and the coefficients in each spline curve equation. This process is time-
consuming, which makes it difficult for the EEMD-CCA method to meet the monitoring
requirements of BCI in real time. On the premise of maintaining the existing algorithm,
Zhang et al. [20] proposed a feasible optimization scheme by changing the structure of the
input signal. With a simple signal serialization, multi-channel signals are concatenated
in series into a single one-dimensional signal. Under this cascade mode, EEMD realizes
synchronous decomposition of multi-channel signals. Furthermore, the signal serialization
based EEMD (sEEMD) can improve the speed of signal decomposition.

In this paper, a method combining sEEMD and CCA is proposed to remove EMG
artifacts from EEG signals, namely sEEMD-CCA. The rest of this article is arranged as
follows. In the Section 2, the principles of sEEMD-CCA and the two state-of-the-art
technologies used to remove EMG artifacts are introduced. The Section 3 describes the
datasets used and the corresponding evaluation measures for denoising performance in
detail. In the Section 4, the denoising performance and running time of the sEEMD-CCA
method are mainly discussed. Section 5 is an in-depth summary of this research.

2. Materials and Methods
2.1. EEMD

Empirical mode decomposition (EMD) is an adaptive data processing or mining
method [21]. The algorithm can decompose the complex signal into a series of IMFs
containing local feature information at different time scales to represent the original signal.
The IMFs have the following two characteristics: (1) in the entire data range, the number of
extreme values and the number of zero crossings differ by one at maximum, and (2) the
mean value of envelopes defined by local maxima and local minima is zero at any time.
Due to the intermittent phenomenon, the IMFs obtained based on EMD have the problem
of modal aliasing. EEMD [22] is an improved method of EMD for modal aliasing. The
basic idea is as follows.

The white noise ni(t) with a mean value of 0 and a constant variance is added to the
original signal x(t) to obtain m new time series,

xi(t) = x(t) + ni(t), i = 1, 2, · · · , m. (1)

The m signals are decomposed into IMFs utilizing EMD,

xi(t) =
k

∑
j=1

im fij(t) + ri(t), i = 1, 2, · · · , m, j = 1, 2, · · · , k, (2)

where im fij(t) represents the j-th IMF of the i-th signal, and ri(t) is the residual amount of
the i-th signal.

According to the zero-mean characteristic of white noise, the mean values of the IMFs
and the residual amount obtained by m-time decomposition are calculated to eliminate the
influence of adding white noise to the true IMFs. The final result of EEMD is as follows,

im f j =
1
m

m

∑
i=1

im fij(t), r(t) =
1
m

m

∑
i=1

ri(t), i = 1, 2, · · · , m, j = 1, 2, · · · , k. (3)
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Prior to executing the EEMD algorithm, it is necessary to preset the ensemble number
and the standard deviation of the added white noise amplitude. The ensemble number
is the number of times that white noise is added. A big ensemble number seriously
increases the computational cost of EEMD, while a small ensemble number will make
the decomposition effect of EEMD worse. Previous studies have pointed out that if the
ensemble number exceeds 10, the decomposition effect has little difference from the increase
of the ensemble number [17,23]. Therefore, in consideration of the decomposition effect
and computational cost, the ensemble number was set to 25 in this study. The amplitude
of white noise also closely affects the decomposition effect of the EEMD algorithm. Based
on experience, the recommended standard deviation of the white noise amplitude was set
to 0.2 times the signal standard deviation [22]. For different application scenarios, please
refer to the relevant references for more details on the parameter selection of the ensemble
number and the amplitude of white noise.

2.2. Serial EEMD
2.2.1. The Serialization of Two-Channel Signals

Here, we first introduce two-channel signal serialization, based on the procedure
described in [20]. The schematic diagram is shown in Figure 1. As can be seen, a transition
signal is embedded between the two signals in order to avoid discontinuity at the joint.
In detail, at the tail of one signal and the head of the other signal, a small segment of the
signal with equal length is respectively intercepted and flipped upside down. Then, a
transition signal is constructed based on the two flipped signals to concatenate the two
original signals. The specific mathematical expression is as follows.

f (t), g(t) represent two signals of length T. Generally, f (T) 6= g(0) . h(t) represents a
transition signal of length D (D < T). h(t) is simply defined as,

h(t) =
(

1− t
D

)
f (T − t) +

t
D

g(D− t), t ∈ [0, D], (4)

where f (T− t) and g(D− t) are two flipped signals of length D. Particularly, h(0) = f (T),
h(D) = g(0).

Thus, the serialized signal is,

s(t) =


f (t) , t ∈ [0, T]

h(t− T) , t ∈ [T, T + D]
g(t− T − D) , t ∈ [T + D, 2T + D]

. (5)

It is easy to verify that s(t) is continuous and relatively smooth at the joint.

0 T T+D 2T+D

Figure 1. Schematic diagram of two-channel signal serialization.

2.2.2. The Serialization of Multi-Channel Signals

The serialization process of multi-channel signals is adequately explained in Figure 2.
First, it is necessary to define the transition signals of length D embedded between multi-
channel signals. For convenience, the mathematical descriptions of the serialization pro-
cess are expressed in the form of the matrices or vectors. N signals of length M are
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denoted as XM×N = (x1, x2, · · · , xN), where xi (i = 1, 2, · · · , N) is an M-dimensional
vector. The submatrix XA = X1:D,2:N is the head of some signals, while the submatrix
XB = XM−D+1:M,1:N−1 corresponds to the tail of some signals. The transition signal can be
expressed as follows,

ED×(N−1) = XA
f �

(
auT

)
+ XB

f �
(

a f uT
)

, (6)

where E is the matrix manifestation of the transition signals, a is a D-dimensional vector,
ai = i

/
(D + 1) , i = 1, 2, · · · , D , u is an N − 1 dimensional vector of all ones, the symbol

� is the Hadamard product operator, the superscript T indicates transposition, and the
superscript f represents flipping the vector upside down.

By filling a D-dimensional all zero vector z, a matrix containing the original signals
and the transition signals can be generated,

T(M+D)×N =

[
XM×N

ED×(N−1) zD×1

]
. (7)

Subsequently, the matrix T is vectorized,

t(MN+DN)×1 = vec(T). (8)

Finally, the D zeros in the vector t are eliminated. The serialized signal obtained is,

x(MD+DN−D)×1 = t1:(MN+DN−D). (9)

D

XA

XB

XX= M

N

E 0

X

T=

N

D

M

Figure 2. Descriptions of the serialization algorithm applied to multi-channel signals.

2.2.3. The IMFs Reconstruction for the Original Signals

The mathematical model of signal decomposition is,

R(MN+DN−D)×K = F(x(MN+DN−D)×1), (10)

where F(·) represents the operator that performs EEMD. K represents the number of IMFs.
In this process, the transition signals embedded in the original signals are also decomposed.
The corresponding decomposition results are stored.

In order to obtain the IMFs of each channel, the matrix R is expanded using an all-zero
matrix ZD×K,

S(MN+DN−D)×K =

[
R(MN+DN−D)×K
ZD×K

]
. (11)

Then, the matrix S is reshaped into Sreshaped with the size of (M + D)× N × K, as
shown in Figure 3. By removing the decomposition results of the transition parts, the final
IMFs can be obtained,

IMFM×N×K = Sreshaped
1:M,1::N,1:K

. (12)
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DZ

R

S=

MN+DN-D

K

0TransitionsD

Sreshaped=

IMF
M

N

Figure 3. IMFs reconstruction algorithm for multi-channel signals.

2.3. CCA

X = (x1, x2, · · · , xN) ∈ RP×N and Y = (y1, y2, · · · , yN) ∈ RQ×N are two zero-
centered datasets. The aim of CCA is to seek the vectors wx ∈ RP and wy ∈ RQ employing
the optimal correlation criterion so that the correlation coefficient between the synthetic
variables u = wT

x X and v = wT
y Y is maximal [14]. The concrete optimization problem can

be expressed as follows,

max
wx ,wy

ρ = max
wx ,wy

wT
x cxywy√

wT
x cxxwxwT

x cyywy

, (13)

where Cxx = XXT and Cyy = YYT are the autocovariance matrices of X and Y, respectively.
Cxy = XYT is the covariance matrix of X and Y.

In the actual solution, the correlation coefficient ρ depends on the direction of wx and
wy, independent of their length. Let wT

x Cxxwx = 1, wT
x Cyywy = 1. Then, the objective

function is equivalently represented as,
max
wx ,wy

ρ = max
wx ,wy

wT
x cxywy

s.t.
{

wT
x Cxxwx = 1

wT
x Cyywy = 1

. (14)

To solve this problem, a function is defined by the Lagrange multiplier method,

L
(
λ1, λ2, wx, wy

)
= wT

x Cxywy −
λ1

2

(
wT

x Cxxwx − 1
)
− λ2

2

(
wT

y Cyywy − 1
)

. (15)

The derivatives of function L
(
λ1, λ2, wx, wy

)
with respect to wx and wy are calculated

and set to 0, separately, {
∂L

∂wx
= Cxywy − λ1Cxxwx = 0

∂L
∂wy

= Cyxwx − λ2Cyywy = 0
. (16)

From Formula (16), it is easy to know that λ1 = λ2 = λ. Based on the assumption that
λ 6= 0, Cxx and Cyy are non-singular matrices, Formula (17) can also be obtained,{

CxyC−1
yy Cyxwx = λ2Cxxwx

CyxC−1
xx Cxywy = λ2Cyywy

. (17)

Formula (17) transforms the problem of seeking the maximum value into a problem
of solving the generalized eigenvalues and eigenvectors. In general, the eigenvectors
corresponding to the largest r = min(P, Q) eigenvalues are taken as wxi and wyi (i =
1, 2, · · · , r) in turn. Consequently, ui = wT

xi
X, vi = wT

yi
Y (i = 1, 2, · · · , r). ui and vi are

called canonical variates of X and Y. U and V include all of the canonical variates of
each dataset. The relationship between the original datasets and the canonical variates
can be indicated as follows, U = WT

x X, V = WT
y Y, with Wx = (wx1 , wx2 , · · · , wxr ) and

Wy = (wy1 , wy2 , · · · , wyr ). If Cxx and Cyy are singular matrices, first regularize Cxx and Cyy,
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and then invert them. That is, Cxx + αI and Cyy + βI are used to replace Cxx and Cyy. α
and β are regularization parameters.

2.4. ICA

ICA is a data-driven method based on high-order statistical characteristics of signals,
which separate independent sources from the mixed observation signals without any
prior knowledge [24]. The classic description is as follows, X(t) = AS(t), where X(t) =
[x1(t), x2(t), · · · , xm(t)]T is m random observation signals. S(t) = [s1(t), s2(t), · · · , sn(t)]T

represents n independent sources. A is a mixed matrix with the size of m × n. Both the
mixed matrix and the sources are unknown. The goal of ICA is to find an unmixed matrix
W such that the following relationship holds, Y = WX(t) = WAS(t). The components of
Y are independent of each other and are as close as possible to the sources.

2.5. sEEMD-CCA Method for EMG Artefact Rejection

The process of the sEEMD-CCA method to remove EMG artifacts is described in detail
in Figure 4. This method is mainly divided into three steps.

In the first step, EEG signals XM×N = (x1, x2, · · · , xN) contaminated by EMG artifacts
are decomposed into a series of IMFs employing sEEMD, where M is the length of a signal.
N is the number of channels. At this stage, N-channel signals are concatenated into a
one-dimensional signal using signal serialization. Then, EEMD decomposes the serialized
signal into several IMFs. After reshaping signal, the IMFs of all channels represented by
IMForiginal can be separated. Part of these extracted IMFs are a mixture of EEG activity and
EMG artifacts. Therefore, before the next step, it is important to determine the appropriate
predefined purification rule. EMG has a relatively lower autocorrelation coefficient, behav-
ing more like the temporal structure characteristic of white noise than EEG. We calculate
the autocorrelation coefficients of all IMFs. According to the unique property of EMG, an
IMF with an autocorrelation coefficient lower than the reasonable threshold is identified
as an artifact component. In this study, the threshold was empirically set to 0.9. More
information about threshold selection can be found in the work [17]. The selected IMFs are
reorganized together, denoted as IMFarti f act.

In the second step, the EMG artifacts scattered on IMFs are concentrated on a few
components based on CCA. IMFarti f act and its version with a time delay of 1 unit are
respectively designated as the first and second datasets. CCA solves the sources of the
mixed signal by maximizing the correlation coefficient between the linear combinations
of two datasets. U and V are the sources of IMFarti f act and its delayed versions. They
respectively contain all linear combinations of each dataset, and their own components are
mutually uncorrelated. Similarly, with the knowledge of the low autocorrelation coefficient,
the EMG artifact component in U is set to zero.

In the third step, clean EEG data are reconstructed by summing up all of the artifact-
free IMFs of each channel. Inverse CCA is applied to U to obtain cleaned IMFs, which
are stored in the matrix IMFclean. Subsequently, the artifact component in IMForiginal is
replaced by the cleaned IMF at the corresponding position in IMFclean. The clean EEG data
of each channel are recovered from the IMFs of IMForiginal .

2.6. EEMD-BSS Methods for EMG Artifact Rejection

EEMD is an adaptive data-driven method to effectively explore the structure of neural
data. EEMD decomposes complex data into a series of IMFs that accurately reflect the
characteristics of the original data. It has been proven that the combination of EEMD and
BSS has better denoising performance in comparison to the traditional BSS technology.
EEMD-ICA and EEMD-CCA are two popular EEMD-BSS methods. In the EEMD-ICA
method, the multi-channel noisy EEG data are first decomposed into several IMFs by
EEMD. The EMG artifact-like components are screened out from the IMFs. Then, ICA is
performed on these components, and the EMG artifacts hidden in the selected IMFs are
concentrated on a small part of the components. Finally, these artifacts are eliminated
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to reconstruct the artifact-free IMFs. Clean EEG data are obtained by summing up all of
the clean IMFs of each channel. The specific details can be found in the work [15]. The
EEMD-CCA method to remove EMG artifacts is basically consistent with the EEMD-ICA
method. More details are explained in the work [17].

Figure 4. Technological process of the sEEMD-CCA method to remove EMG artifacts.

3. Data Description and Evaluation Measures
3.1. Clean EEG

In order to further verify the effectiveness of the sEEMD-CCA method, semi-simulated
data were artificially generated; they are a superimposition of clean EEG and EMG signals.
In this study, the Dataset 2a of BCI Competition IV was employed [25]. Twenty-two
Ag/AgCl electrodes (Fz, FC3, FC1, FCz, FC2, FC4, C5, C3, C1, Cz, C2, C4, C6, CP3, CP1,
CPz, CP2, CP4, P1, Pz, P2, and POz) and three EOGs were used to record the EEG data of
four different motor imagery tasks (left hand, right hand, both feet, and tongue) from nine
subjects. All signals were collected monopolarly. The left mastoid and the right mastoid
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served as reference and ground, respectively. The sensitivity of the amplifier was 100 µV.
The sampling frequency was 250 Hz. All signals were band-pass filtered between 0.5 and
30 Hz.

The EEG data of each subject contain a total of 288 trials, 6 s for each trial. A visual
inspection for all trials was carried out by an experienced neurophysiologist. The artifact
label information for each trial can be acquired from h.ArtifactSelection. h.ArtifactSelection
is provided by the BCI Competition, which contains a list of zeros and ones. Zero corre-
sponds to a clean trial, whereas one corresponds to a trial with artifacts. We eliminated
trials containing artifacts and three EOG electrodes. Two trials of each motor imagery task
from each subject were randomly selected to form 12 s EEG data.

3.2. Clean EMG

Nine healthy subjects (seven males and two females, aged 22 to 25 years old) partici-
pated in the EMG acquisition experiment. Each of them was not familiar with the specific
content of the whole process and was required to complete five movements (namely hand
closing, hand opening, wrist extension, wrist flexion, and forefinger pointing) successively.
Each movement lasted for 6 s, followed by a 4 s rest. The clean EMG signals were gathered
from both sides of the right forearm with the surface EMG system Telemyo DTS (Noraxon,
USA). To match with the EEG data, the sampling frequency of the EMG recordings was set
to 250 Hz. Then, the next EMG collection started after one minute of rest. All operations
were repeated until 10 sets of data were obtained for each subject.

For the same movement of each subject, 10 signals collected by the same electrode
were stored together. Therefore, there were a total of 45 such pieces of data for each
acquisition position. We randomly selected 22 pieces of data from a channel. From each
of them, two recordings were randomly screened out to generate 12 s EMG data. Thus,
22-channel EMG signals were obtained. This process was completed 10 times.

3.3. The Semi-Simulated Data

The semi-simulated data were constructed in accordance with the following method,

X = XEEG + λ · XEMG, (18)

where XEEG and XEMG are 22-channel EEG and 22-channel EMG data, respectively, and λ
is the parameter that controls the SNR.

The relationship between λ and SNR is,

SNR =
RMS(XEEG)

RMS(λ · XEMG)
, (19)

where RMS(·) is the operator used to calculate the root mean squared (RMS). RMS is
expressed as,

RMS(X) =

√√√√ 1
M · N

M

∑
m=1

N

∑
n=1

X2(m, n), (20)

where M represents the number of channels and N denotes the number of sampling points.
In this study, the SNR was taken from 0.5 to 5.5 dB at the step of 0.5 dB. Examples of

clean EEG, clean EMG, and semi-simulated data are shown in Figure 5.
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Figure 5. Examples of data with 2 s length. (a) The clean EEG. (b) The clean EMG. (c) The semi-
simulated data with an SNR of 0.5 dB.

3.4. The Evaluation Measures

We used the relative root mean squared error (RRMSE) and the average correlation
coefficient (average CC) to verify the EMG artifact removal effect of each method. RRMSE
is an indicator employed to measure the difference between the clean EEG data and the
denoised EEG data. The RRMSE is given by,

RRMSE =
RMS(XEEG − X̃EEG)

RMS(XEEG)
, (21)

where X̃EEG is the denoised EEG data.
The correlation coefficient reflects the ability of the EEG data with EMG artifacts

removed to retain the information of the original EEG data. The correlation coefficients
between each channel of the original EEG data and their counterparts were calculated.
Average CC is the mean value of these correlation coefficients, regarded as a criterion to
judge the similarity between the clean data and the denoised EEG data.

4. Results and Discussion

EEMD is a classical single-channel decomposition algorithm. In practical applications,
the multi-channel EEG signals are used as the control signals of the BCI system. In this case,
EEMD decomposes the signal of each channel one by one to realize the decomposition of
multi-channel signals. The sEEMD algorithm provides a method for synchronous cascading
analysis of multi-channel data, breaking the limitation that a single channel decomposition
algorithm can only process a one-dimensional signal at a time. However, whether IMFs
decomposed by sEEMD are consistent with those generated by EEMD requires further
verification. For this purpose, the first six IMFs of the same channel EEG signal obtained by
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EEMD and sEEMD are given in Figure 6. Taking frequency and amplitude as the evaluation
criteria, the IMFs obtained by the two methods are similar from the high-frequency to the
low-frequency ranges. This confirms that sEEMD has an analogous ability to decompose
signals to that of EEMD.

Using EEMD and sEEMD to decompose EEG signals, the number of IMFs for the same
channel may be different. To be exact, the input signals of EEMD and the input signals of
sEEMD are different in the decomposition process of multi-channel signals. This may be
the cause for the phenomenon. In each iteration of EMD, the maximum and minimum
envelopes of the signal are calculated employing cubic spline interpolation. If a signal
generated by subtracting the mean value of the maximum and minimum envelopes from
one signal meets the two characteristics of the IMF, it means that this signal is an IMF. The
input signal of sEEMD is constructed by embedding transition signals between multiple
signals to smoothly concatenate these signals in series. This may have a certain influence
on the calculation of the envelopes. Eventually, the number of IMFs obtained by sEEMD
may be different from the number of IMFs generated by EEMD when the same signal is
decomposed. The concrete mathematical deduction and proof will be discussed in the
future. In addition, due to the random nature of EEG signals, there are some differences in
the number of the IMFs obtained by EEMD for the different channels. sEEMD decomposes
a one-dimensional signal, which is generated by the serialization of multi-channel signals.
In the process of IMF reconstruction, the same number of IMFs is allocated to each channel.

(a) (b)

Figure 6. IMFs obtained by EEMD and sEEMD. (a) EEMD. (b) sEEMD.

We conducted a comparative analysis for the denoising performance of the sEEMD-
CCA and the two EEMD-BSS methods based on the semi-simulated data. At each SNR
value, the 36 clean EEG data from 9 subjects were superimposed on the 10 independent
EMG data. Thus, the 360 independent realizations were implemented to evaluate the
average performance with the standard deviation of each method. A t-test was performed
to investigate whether the performance of the methods we compared was statistically
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significant under various SNR values. The real denoising performance of each method as
SNR changes is shown in Figure 7. The specific values of RRMSE and Average CC at each
SNR are listed in Tables 1 and 2. Compared with the EEMD-ICA method, the combination
of EEMD and CCA had a better effect in removing EMG artifacts in terms of RRMSE and
average CC as evaluation indicators (p < 0.05). Even in the case of heavy contamination
(SNR < 2 dB), the RRMSE was about 0.3, and the average CC remained above 0.9. These
findings are consistent with existing research results [17]. The denoising performance of
the sEEMD-CCA method and EEMD-CCA method almost coincided at all SNR values.
There was no significant difference in performance between the two methods (p > 0.05).
This confirms the effectiveness of our proposed method. Furthermore, it should be pointed
out that the previous research results showed that the RRMSE between EEG data removing
EMG artifacts with EEMD-ICA or EEMD-CCA and the original clean EEG data was almost
0 when the SNR was approximately 4.5 dB. In this study, the minimum RRMSE at an SNR
of 5.5 dB was about 0.2. We speculate that this may be related to the EEG or EMG signal
used to construct the semi-simulated data.
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Figure 7. Comparative analysis of denoising performance at an SNR of 0.5 to 5.5 dB. (a) RRMSE.
(b) Average CC.

In order to confirm that sEEMD-CCA significantly improves the running speed, the
computational cost of sEEMD-CCA and EEMD-CCA was analyzed. The test was carried
out in MATLAB R2019a (MathWorks Inc., Novi, MI, USA) under Microsoft Windows
10 × 64 OS on a computer with Intel(R) Core (TM) i7-5500U 2.40 GHz CPU and 8.00 GB
RAM. There was no parallel computing setting. Prior to this, all analyses were based on
22-channel EEG data with a duration of 12 s, which contain two trials. Here, we provide
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two additional types of EEG data, with lengths of 6 and 3 s. The former intercepts a
complete trial, while the latter only records the mental activities of the subject when he or
she performs a motor imagination task. There are 36 segments for each type of EEG data.
They are superimposed on 10 EMG data of the same length to construct the semi-simulated
data according to an SNR of 0.5 to 5.5 dB. The three types of semi-simulated data were
used to examine the dependence of the decomposition speed on the signal length. The 3960
independent realizations were executed to calculate the average decomposition time with
standard deviation for each type of data, as shown in Figure 8. The average decomposition
times of sEEMD-CCA for the three types of semi-simulated data were 4.5565 s, 2.9133
s, and 2.0828 s with standard deviations of 0.1349 s, 0.2639 s, and 0.0753 s, respectively,
which is shorter than that of EEMD-CCA (9.2715 s, 7.1194 s, and 5.5688 s with standard
deviations of 0.2391 s, 0.3030 s, and 0.2280 s, respectively). Whether using the EEMD-CCA
or sEEMD-CCA method, as the signal length decreased, the signal decomposition speed
increased. For each length of data, the decomposition speed of sEEMD-CCA was faster
than that of EEMD-CCA. Compared with the EEMD-CCA method, the running time of
the sEEMD-CCA method was reduced by more than 50%. The investigations based on a
one-sided t-test showed that the difference in signal decomposition speed between sEEMD-
CCA and EEMD-CCA was significant (p < 0.05). This means that the sEEMD-CCA method
significantly improves the running time. Compared with the EEMD-CCA method, the
sEEMD-CCA method is well acceptable for separating EMG artifacts from EEG signals in
real time.

Table 1. RRMSE between EEG data denoised by each algorithm and clean EEG data under different
pollution conditions.

EEMD-ICA EEMD-CCA sEEMD-CCA

SNR = 0.5 dB 0.4945± 0.0401 0.4721± 0.0387 0.4890± 0.0370
SNR = 1 dB 0.4016± 0.0491 0.3477± 0.0496 0.3568± 0.0474

SNR = 1.5 dB 0.3660± 0.0587 0.3033± 0.0557 0.3020± 0.0495
SNR = 2 dB 0.3432± 0.0654 0.2782± 0.0592 0.2730± 0.0514

SNR = 2.5 dB 0.3252± 0.0717 0.2615± 0.0608 0.2532± 0.0515
SNR = 3 dB 0.3088± 0.0785 0.2460± 0.0658 0.2404± 0.0568

SNR = 3.5 dB 0.2952± 0.0839 0.2356± 0.0709 0.2386± 0.0611
SNR = 4 dB 0.2845± 0.0864 0.2244± 0.0717 0.2325± 0.0657

SNR = 4.5 dB 0.2757± 0.0875 0.2168± 0.0730 0.2300± 0.0682
SNR = 5 dB 0.2682± 0.0899 0.2122± 0.0754 0.2267± 0.0689

SNR = 5.5 dB 0.2604± 0.0921 0.2071± 0.0751 0.2205± 0.0700

Table 2. Average CC between EEG data denoised by each algorithm and clean EEG data under
different pollution conditions.

EEMD-ICA EEMD-CCA sEEMD-CCA

SNR = 0.5 dB 0.8806± 0.0241 0.8916± 0.0222 0.8902± 0.0213
SNR = 1 dB 0.9150± 0.0231 0.9359± 0.0196 0.9347± 0.0197

SNR = 1.5 dB 0.9283± 0.0240 0.9502± 0.0194 0.9527± 0.0175
SNR = 2 dB 0.9362± 0.0244 0.9576± 0.0184 0.9615± 0.0161

SNR = 2.5 dB 0.9421± 0.0248 0.9622± 0.0178 0.9672± 0.0151
SNR = 3 dB 0.9470± 0.0253 0.9661± 0.0178 0.9700± 0.0161

SNR = 3.5 dB 0.9509± 0.0257 0.9687± 0.0182 0.9702± 0.0169
SNR = 4 dB 0.9540± 0.0252 0.9716± 0.0174 0.9718± 0.0174

SNR = 4.5 dB 0.9566± 0.0250 0.9733± 0.0173 0.9725± 0.0174
SNR = 5 dB 0.9587± 0.0251 0.9745± 0.0172 0.9733± 0.0171

SNR = 5.5 dB 0.9608± 0.0251 0.9759± 0.0166 0.9747± 0.0169
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Figure 8. Average decomposition times of sEEMD and EEMD.

EMD is an important breakthrough in the field of signal processing, which is widely
used in the decomposition of one-dimensional real signals. The algorithm itself has some
limitations. For this reason, the derivative algorithms of EMD have been proposed one
after another. For example, EEMD is an improvement to the modal aliasing phenomenon of
EMD. The complex EMD algorithm realizes the decomposition of complex signal. With the
advancement of physics and engineering, the algorithms for synchronous decomposition
of multi-dimensional signals are also developed based on EMD.

Multivariate EMD (MEMD) is an extended algorithm of EMD for multi-dimensional
data [26]. The algorithm first projects the multi-dimensional signal onto the direction
vector of a hypersphere. Then, the envelope in each direction vector is calculated sepa-
rately. Finally, the mean value of the envelopes is regarded as the local mean value of the
multi-dimensional data to successfully realize decomposition of the multi-dimensional
data. Compared with EMD and its variants for one-dimensional data, MEMD can more
accurately estimate the envelope of the signal by analyzing the inherent modes across mul-
tiple channels at the same time instead of channel by channel, so that it can more robustly
identify the common activities between multiple channels. Moreover, the IMFs obtained
from different EEG channels using EMD and its variants applied to one-dimensional data
may differ in order or frequency. MEMD extracts the IMFs with the same order or frequency
for the different channels, solving the pattern calibration of multi-channel data. However,
it is very difficult to extract the local extrema of multi-dimensional signals to estimate
the envelopes in comparison to one-dimensional signals. Therefore, MEMD adopts more
complex projection technique and interpolation method to capture the envelopes. The
computational cost of these morphological operations is prohibitive. This directly leads to
the time-consuming process of envelope identification in each iteration.

In recent years, MEMD has also been introduced to remove artifacts from EEG. Soler
et al. [27] used MEMD to separate noise components so as to reconstruct EEG data as-
sociated with neural activity. Chen et al. [28] proved that the MEMD-CCA method is a
promising tool for removing EMG artifacts from few-channel EEG data. Although the
MEMD-CCA method can effectively remove EMG artifacts and preserve EEG information
completely, the application of this method is limited by the heavy computational cost of
MEMD-CCA (which is much larger than the computational cost of EEMD-CCA). Chen
et al. hope that a faster version of MEMD will be released as soon as possible to improve
the corresponding situation. Our proposed sEEMD-CCA method not only has a remark-
able ability to remove EMG artifacts, but also significantly improved the running speed.
Usually, the derivative methods of EMD are improved by optimizing projection techniques
and interpolation methods. The sEEMD method provides a new optimization perspective
for signal decomposition algorithms, which is based upon changing the structure of the
input signal instead of optimizing the projection technique or interpolation method.
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This study has some limitations. For example, as there is still a lot of work to be
completed to build a real-time BCI system, the effectiveness of the proposed algorithm,
the difference in accuracy at the different information transfer rates, and the relationship
between the data length, execution time, and accuracy metrics in a real-time BCI system
are not discussed in this study. Furthermore, our analyses were only performed on semi-
simulated data. The effect of the sEEMD-CCA method on EMG artifact removal from real
data was not explored. In future work, we hope that these limitations will be improved.

5. Conclusions

EEG is the external manifestation of neural activity inside the brain, which contains
rich information reflecting physiology, psychology, and pathology. BCI often uses the
information contained in EEG to convert the thoughts of people into real actions. Due to
the existence of EMG artifacts, the performance of BCI declines sharply. Therefore, it is
necessary to eliminate EMG artifacts in EEG. Existing studies have confirmed that it is
effective to remove EMG artifacts employing the EEMD-CCA method. However, the time-
consuming iterative process of EEMD may make EEMD-CCA method difficult to match the
monitoring requirement of BCI in real time. In order to improve the efficiency of the EEMD-
CCA method, a fast method to eliminate EMG artifacts based on sEEMD and CCA was
proposed in this study. The results show that the IMFs generated by sEEMD are essentially
similar to the IMFs decomposed by EEMD. There was no significant difference in removing
EMG artifacts between the sEEMD-CCA method and the EEMD-CCA method (p > 0.05).
Compared with the EEMD-CCA method, the running speed of sEEMD-CCA to remove
EMG artifacts was significantly accelerated (p < 0.05). In summary, the sEEMD-CCA
method is well-suited to remove EMG artifacts from EEG signals in real time.
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