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Abstract: The setting of the measurement number for each block is very important for a block-
based compressed sensing system. However, in practical applications, we only have the initial
measurement results of the original signal on the sampling side instead of the original signal itself,
therefore, we cannot directly allocate the appropriate measurement number for each block without
the sparsity of the original signal. To solve this problem, we propose an adaptive block-based
compressed video sensing scheme based on saliency detection and side information. According to
the Johnson–Lindenstrauss lemma, we can use the initial measurement results to perform saliency
detection and then obtain the saliency value for each block. Meanwhile, a side information frame
which is an estimate of the current frame is generated on the reconstruction side by the proposed
probability fusion model, and the significant coefficient proportion of each block is estimated through
the side information frame. Both the saliency value and significant coefficient proportion can reflect
the sparsity of the block. Finally, these two estimates of block sparsity are fused, so that we can
simultaneously use intra-frame and inter-frame correlation for block sparsity estimation. Then
the measurement number of each block can be allocated according to the fusion sparsity. Besides,
we propose a global recovery model based on weighting, which can reduce the block effect of
reconstructed frames. The experimental results show that, compared with existing schemes, the
proposed scheme can achieve a significant improvement in peak signal-to-noise ratio (PSNR) at the
same sampling rate.

Keywords: compressed sensing; side information; saliency detection; fusion sparsity

1. Introduction

Image and video information contains a lot of redundant information, which makes
signal compression not only necessary but also feasible. However, this part of the compress-
ible redundant information will be ignored in the traditional video and image acquisition
process. This is because the traditional video and image compression algorithms are based
on the quantized digital signal, which means that we must first sample and digitize the
signal according to the Nyquist sampling theorem, and then compress the digitized signal.
That is to say, we first collect the redundant information, and then remove the redundant
information collected on the sampling side, in this way, this “remedial” process wastes
valuable resources. Compressed sensing (CS) is an innovative signal sampling theory that
goes against the conventional wisdom (Nyquist sampling) in signal acquisition [1]. It can
unify the signal sampling and compression process into a single step, which means that
sampling includes compression. Therefore, it implies that CS is a sub-Nyquist sampling the-
ory. Under the condition where the signal is sparse, CS can directly obtain the compressed
form of the signal. In video or image acquisition devices, CS can help combat the hardware
limitation, where only a few sensors can be used to achieve higher imaging accuracy (e.g., a
single-pixel imaging system) [2,3]. This solves the problem when in practical applications,
engineers need to increase the number of pixels integrated on hardware devices as much as
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possible, while they have to make great efforts to design complex algorithms to compress
the collected pixels. It can be said that CS makes the process of information processing
more concise and efficient [2]. Therefore, one of the advantages of CS is the ability to image
quickly, which is conducive to capture fast moving objects and improve the time resolution
of low frame rate cameras to some extent. Moreover, compared with the traditional video
coding scheme, CS is more robust against errors, because each measurement result contains
all the information of the original signal and is equally important. Therefore, the loss of
only a few measurement results in the process of data transmission will not have a great
impact on the final reconstruction accuracy. In the practical process of image or video
signal processing and communication, especially in the communication process of wireless
devices, the resources of the sampling side or encoding side (i.e., the uplink) are more
limited, while the resources of the downlink are relatively sufficient. Therefore, it makes
CS very suitable for applications, such as wireless sensor networks and wireless video
communication devices.

In the process of video/image communication, rate-distortion performance is a very
important evaluation index of communication quality. In the compressed video sensing
scheme, one of the key factors affecting the rate-distortion performance in video transmis-
sion is the setting of the sampling rate. CS theory points out that the minimum sampling
rate of sparse signals is determined by the sparsity of the signals. However, in the practical
compressed video sensing process, we cannot obtain the original signal instead of the initial
measurement results of the signal. Therefore, how to set the appropriate CS sampling rate is
a challenging task. Liu et al. [4] proposed a framework to classify blocks into different types
depending on their inter-frame correlation, and the sampling and reconstruction strategies
are adjusted according to the type of blocks. The measurement number of the static blocks
can be predicted indirectly from the corresponding position of the previous frame rather
than calculating the measurement number independently, thus improving the efficiency
of data acquisition. However, for large-change blocks, the number of measurements is
not obtained based on the inter-frame correlation, but based on the texture complexity of
the current block itself. A block-based adaptive framework for compressed video sensing
was proposed in [5] in which each block in the current frame is adaptively sampled at a
rate that depends on the texture complexity and visual saliency [6] of the block. Moreover,
for each frame, there will be a different total sampling rate, which is obtained according
to the complexity of the frame. In [7], an adaptive compressed video sensing scheme for
surveillance video was proposed. In this scheme, researchers used cross validation to com-
pute the number of required measurements. Given a reconstructed foreground, researchers
used extra cross-validation measurement results to estimate the area of the true foreground.
Then, assuming that the foreground regions of the two consecutive frames are the same,
the precalculated phase diagram of the sensing matrix gives the number of measurements
for the next frame. The scheme shows good experimental results in the application of
surveillance video sequences. An adaptive video CS method based on spatial–temporal
difference saliency in the compressed domain was raised in [8], which is convenient for
implementation in real-time and holds a higher peak signal-to-noise ratio (PSNR) than
non-adaptive methods. In [9], researchers proposed a method that uses a complementary
sensor to obtain a low-resolution image, and uses the pulsed cosine transform to extract the
saliency information of the image. Then, more CS measurements are allocated to salient
blocks but fewer to non-salient blocks, so as to achieve adaptive CS. However, the existence
of low-resolution imaging before compressive imaging, affects the advantage of the CS
that achieves sub-Nyquist signal sampling. In [10], Zhang et al. proposed an adaptive CS
rate assignment method that is based on the standard deviations of image blocks. The
experimental results show that the proposed method can effectively improve the quality of
reconstructed images. In [11], researchers proposed a saliency-based adaptive CS scheme
that allocates more measurements to salient blocks but fewer to non-salient blocks, which
extracts the information of saliency by using the difference between CS measurement
results. Thus, it avoids the need to obtain the original image in the imaging system.
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Assuming that different frames have different frame complexity, each frame may re-
quire a different total measurement number. Therefore, before allocating the measurement
number of each block in the frame, we first allocate the total measurement number of each
frame according to the complexity of each frame. After obtaining the total measurement
number of each frame, we can use the measurement results to estimate the block saliency
in the measurement domain. The saliency of the frame can reflect the sensitivity degree for
human eyes, but it cannot reflect the sparsity of the frame completely. In other words, there
is still a lot of room for improvement in the scheme of block sparsity estimation based only
on saliency detection. If we have the pixel domain information of the current frame on
the sampling side, we can directly estimate the block sparsity according to the proportion
of the significant coefficients of each block in the frequency domain, unfortunately we
cannot directly obtain the pixel domain information of the current frame. In order to
address this thorny issue, we consider making use of the inter-frame correlation of the
video sequence to generate the approximate version of the current frame to be sampled on
the reconstruction side, namely the side information frame (SIF). Then, the proportion of
the significant coefficients of each block calculated by the SIF is fed back to the sampling
side, and it is combined with the saliency value calculated by the scheme based on saliency
detection to obtain the fusion sparsity for each block. According to the fusion sparsity,
we can adaptively allocate the measurement number for each block. In this way, the
intra-frame correlation in the measurement domain and the inter-frame correlation in the
pixel domain can be used to allocate the measurement number of each block at the same
time. Furthermore, the proposed scheme also solves the problems that the pixel domain
information of the current frame to be sampled cannot be fully utilized on the sampling
side in [4]; and the adaptive sampling in [5] is directly based on pixel domain information,
without considering both pixel domain information and measurement domain information.

On the basis of the above consideration, we propose an adaptive block-based com-
pressed video sensing (ABCVS) scheme to comprehensively estimate the measurement
number of each block by using the saliency detection in the measurement domain and
the side information [12,13] generated on the reconstruction side. Firstly, on the sampling
side, the saliency value of each block of the current frame is estimated in the measurement
domain. Secondly, on the reconstruction side, the SIF of the current frame is obtained by
using previously reconstructed frames to perform the extrapolation based on the proposed
probability fusion method. The frequency domain information of the SIF is obtained by
performing a discrete cosine transform (DCT), and then the proportion of significant coef-
ficients based on the SIF can be estimated. Finally, the saliency value and the proportion
of significant coefficients are weighted and averaged to obtain the fusion sparsity of each
block. Then the measurement number of each block is allocated adaptively according to
the fusion sparsity. The proposed method can not only solve the inaccuracy of measure-
ment number allocation caused by the mere use of saliency detection in the measurement
domain, but also make good use of the inter-frame correlation in video sequences. Consid-
ering that the block-based compressed sensing scheme will lead to the block effect of the
reconstructed frames, we propose a global recovery model based on weighting to reduce
the block effect, so as to further improve the quality of the reconstructed frames.

The rest of this paper is organized as follows. In Section 2, we provide a brief overview
of block-based CS (BCS). The proposed ABCVS scheme is presented in Section 3. Extensive
simulation results are reported in Sections 4 and 5 concludes the paper.

2. Compressed Sensing Overview

Compressed sensing is a new signal sampling theory. Because a small number of ran-
dom measurement results from a sparse signal contain enough information to reconstruct
the signal, CS can replace traditional signal acquisition methods. In this part, we briefly
review the BCS theory. Assume that the current input frame is H, in order to apply BCS,
we first divide the current frame H into L nonoverlapping blocks Bi (i = 1, 2, . . . , L) with a
size of B × B, then each block is sampled separately. Let hi be the vectorized signal of the



Entropy 2021, 23, 1184 4 of 21

i-th block, which is obtained through raster scanning. The corresponding output CS vector,
yi, (of length M) is obtained as follows:

yi = ΦBihi (1)

where ΦBi ∈ RMi×B2
(Mi � B2) is referred to as the measurement matrix (ΦBi =

[ϕ1ϕ2 . . .ϕM]T) for block Bi, which is an orthonormalized i.i.d Gaussian matrix [1]. Assume
that the signal hj is sparse in the Ψi domain (Ψi = [Ψ1Ψ2 . . . ΨB2 ]

T is the transform matrix or
sparse basis), we have hi = Ψixi, where xi is the transform coefficient vector of the signal.
Then, (1) can be further written in terms of xi as:

yi = ΦBiΨixi = ABixi (2)

in which ABi = ΦBiΨi. CS theory puts forward several general conditions under which the
above statement is valid. Firstly, each signal hi to be sampled should be sparse in transform
domain Ψi. Frankly speaking, there are only a few nonzero or large elements in the vector
xi, while many components have zero or much smaller amplitudes, which means that the
signal in the vector is sparse. Secondly, the measurement matrix ΦBi should show the
restricted isometry property (RIP) as follows:

(1− δs) ‖ hi ‖2
2≤ ‖ ΦBihi ‖2

2 ≤ (1 + δs) ‖ hi ‖2
2 (3)

where δs ∈ (0, 1) is a constant, S denotes the sparse order. Specifically speaking, signal
vectors having no more than S nonzero components are said to be S-sparse. Only when
the measurement matrix satisfies RIP, can the necessary information needed to reconstruct
the original signal be obtained from the measurements. Finally, a stable reconstruction
algorithm, with low computational complexity and less requirement for the number of
measurements, is also one of the most important components of a CS system. With the
measurement vector yi of the i-th block, we can build the following recovery model based
on the minimum `2 and `1 norms:

h̃i = argmin
hi

{
||yi −ΦBihi||22 + λ||Ψihi||1

}
(4)

where ||·||2 and ||·||1 are `2 and `1 norms respectively, and λ is a fixed regularization factor.
Considering that the reconstruction model is a convex optimization problem, the Gradient
Projection for Sparse Reconstruction (GPSR) algorithm [14] can be used to solve it.

Combined with the above analysis and the derivations in [1,15–17], for a fixed constant
C, the measurement number Mi satisfies the following equation:

Mi ≥ CS log B2 (5)

According to (5), we see that an appropriate number of measurements can be deter-
mined from the sparse order S, which means the region with higher signal complexity
requires more measurement numbers. Thus, when using the same number of measure-
ments for the whole signal, the adaptive block-based compressed sensing (ABCS) scheme
can better reconstruct the complex regions of the signal than the traditional non-adaptive
BCS.

3. The Proposed Scheme

In the block-based compressed video sensing system, different blocks of each frame
will have different textures, that is, different blocks will have different sparsity, and the
complexity of each frame also varies. Therefore, how to allocate the total measurement
number of each frame and the corresponding measurement number of each block appropri-
ately without the pixel domain information of the original video sequence is a challenging
task.
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In order to solve this problem, we propose an ABCVS scheme based on saliency
detection and side information. The architecture of the proposed scheme is presented
in Figure 1. On the sampling side, the lens projects the scene in the field of view into
the imaging system and divides the projected image into L blocks with a size of B × B.
We first construct an initial measurement matrix Φinit for each block, in which, the fixed
measurement number is M0. Then we can get the initial measurements yinit,i for the i-th
block through (2). Once we have the measurements of each block in each frame, we can
calculate its own `1 norm according to the measurements of each block. Based on the
`1 norm of the measurements of each block, we can calculate the measurement domain
variance of each frame. Variance can represent the degree of data deviation from the
average, which reflects the fluctuation of the data itself, so it can also reflect the complexity
of the frame to a certain extent. Based on the complexity difference of each frame in each
group of pictures (GOP), the total measurement number of each frame can be assigned.
Then, according to the initial measurement results of all the blocks in a frame, we can
perform saliency detection by using these initial measurement results to obtain the block
saliency wi,saliency of the i-th block. Nonetheless, saliency can only reflect that a block is
of interest to human eyes in the video frames, but cannot fully reflect the sparsity of the
block, which is the a priori information that the adaptive compressed video sensing system
needs to obtain. Therefore, we propose to use both saliency and SIF to estimate the sparsity
for each block. Specifically, on the reconstruction side, we use the reconstructed video
frames to perform extrapolation based on the proposed probability fusion model (PFM) to
obtain the SIF of the current frame to be sampled. Then, the sparsity is determined directly
according to the proportion of significant DCT coefficients of the block. It should be noted
that we need to use a feedback channel to transmit the proportion of significant coefficients
to the sampling side, although the amount of data is very small. In order to make more
reasonable and comprehensive use of wi,saliency and SIF, they are fused to get the fusion
sparsity Pi, f usion for the i-th block according to the summation of the absolute difference
(SAD) between frames in the measurement domain on the sampling side. Eventually, we
can obtain the measurement number Mi,Ft of the i-th block in frame Ft according to fusion
sparsity Pi, f usion. Meanwhile, the supplementary measurement number Mi,Ft −M0 can
be obtained. Through the above steps, we can obtain the supplementary measurement
matrix Φsup,i for each block, and then obtain the supplementary measurement ysup,i for
each block.

In the sequel, we will describe the details of each part.
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Figure 1. The architecture of ABCVS.

3.1. Frame Measurement Number Allocation

As mentioned earlier, we need to allocate the total measurement number of each frame
according to the complexity of each frame. Nonetheless, we cannot get the pixel domain
information of the current frame on the sampling side, so it is not easy to calculate the
complexity of the current frame.

In this paper, a frame complexity calculation method based on the measurement
domain variance is proposed. Specifically, after the initial sampling, we can obtain the initial
measurement vector of each block and calculate the `1 norm of each initial measurement
vector. Based on the `1 norms of the initial measurement vectors of the blocks, we can
use them as sample data to calculate the measurement domain variance of each frame.
Variance can measure the deviation of each sample data from the average. That is, the
greater the variance, the greater the volatility of the data, and vice versa. Therefore, it can
also represent the intra-frame complexity to some extent. Besides, RIP implies that the
distance between sparse signals can be well preserved in the measurement domain. From
the analysis of the above two aspects, the difference of the measurement domain variance
of each frame in each GOP can approximately reflect the complexity difference of each
frame in the original pixel domain. Therefore, under a fixed size GOP, the allocation of the
total measurement number for the current frame Ft can be obtained by:

MFt = rnd[
Vart

∑G
j=1 Varj

·(G·(RT ·NT − L·M0)) + L·M0] (6)

in which the function “rnd” rounds its input quantity to the nearest integer. MFt is the
total number of measurements for the current frame Ft, Vart is the measurement domain
variance of the current frame Ft, G is the size of GOP and NT is the total pixel number
of each GOP. RT is the total sampling rate for each GOP, that is, the ratio of the total
measurement number to the total pixel number in a GOP.
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3.2. Saliency Detection

Saliency is a method that can reveal the visual characteristic of human perception.
Visual saliency can be described by the statistical correlation of visual space, that is, a
position with low spatial correlation with the surroundings is salient. In other words,
saliency can reflect the sparsity of the signal to some extent. Therefore, we can allocate the
measurement number of each block in the current frame based on the saliency information
in the ABCVS system. A saliency detection method in [18] is proposed to compute a spatial
saliency map by using the luminance contrast between image pixels. Thus, the saliency
value of pixel p(k) in image p is defined as:

ξk = ξ[p(k)] = ∑N
j=1[p(k)− p(j)]2 (7)

where N is the total number of pixels in image p. According to (7), we can easily deduce
that the saliency of i-th block Bi can be calculated by the following equation:

ξBi = ξB[Bi] = ∑L
j=1

∣∣∣∣Bi − Bj
∣∣∣∣2

2 (8)

This method can be used to perform saliency detection in O (N) time order with a
low cost and complexity, which is consistent with the low computation complexity of the
CS sampling side. However, in a practical CS system, we cannot get the actual digitized
pixel information of the current frame to be sampled, which means we cannot estimate
the saliency in the pixel domain on the sampling side. Consider that the measurement
results in the CS system are obtained by performing dimensional reduction projection
of the original signal, which is similar to the convolution step in neural networks. This
means that although the overall dimensionality of every CS domain signal is reduced,
there is still redundancy between the signals. Therefore, combined with the above and the
Johnson–Lindenstrauss lemma [19], we have the following corollary: For an original input
signal, if the original form of the signal can be directly used for saliency detection, then the
measurement domain signal obtained from the reduced-dimensional projection through
the purely random matrix (e.g., Gaussian random matrix), theoretically, is still equivalent
to the original signal for saliency detection. Therefore, in the CS system, the saliency of
each block can also be calculated by using the initial measurement results on the sampling
side, as follows:

wi,saliency = wsaliency
[
yinit,i

]
= ∑L

j=1

∣∣∣∣∣∣yinit,i − yinit,j

∣∣∣∣∣∣2
2
= ∑L

j=1

∣∣∣∣Φinithi −Φinithj
∣∣∣∣2

2 (9)

where hi is the vectorized original signal of the i-th block, and yinit,i is the correspond-
ing initial measurement result computed by Φinithi. In order to facilitate the follow-up
processing, we normalize wi,saliency to get w∗i,saliency.

3.3. Side Information Generation

If we have the pixel domain information of the frame to be sampled on the sampling
side, then the measurement number allocation will become very direct. Considering
that there is a strong inter-frame correlation between video sequence frames, we can
perform extrapolation according to the previous reconstructed video frames to obtain the
approximate version of the current frame, that is, side information. In order to obtain
an accurate SIF, we propose a SIF generation scheme based on PFM, which can fuse two
different SIF according to the motion intensity.

The SIF is an approximate version of the current frame to be sampled. According to the
proportion of the significant DCT coefficients of the generated SIF, we can directly allocate
the number of measurements Mi,SI for the i-th block in the frame to be sampled. Here,
we use a PFM to generate high-quality SIF. As shown in Figure 2, we use the previously
reconstructed frames to perform motion estimation to obtain the motion vectors (MV) of
current SIF, and then we can use these MV for motion compensation to obtain the SIF [13].
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Specifically, we use the H-S optical flow method [20] and the Phase-based optical flow
method [21] (The code is available at https://github.com/owang/PhaseBasedInterpolation
accessed on 2 September 2021) to generate the side information SIH−S, SIphase, respectively.
In order to further improve the accuracy of the generated SIF, here, we consider fusing the
two generated SIF. The side information SIH−S and SIphase generated by the two methods
are divided into nonoverlapping blocks with a size of 8 × 8, respectively. Assuming τH−S
and τPhase are any pair of blocks of side information SIH−S and SIphase. The fusion result
can be regarded as the weighted average of τH−S and τPhase, which can be represented by
the following equation:

f (τH−S, τPhase) = γH−SτH−S + γPhaseτPhase (10)

where γH−S and γPhase are the weights of τH−S and τPhase, respectively. According to the
Bayesian rule we can get:

γH−S = p(H − S| f (τH−S, τPhase)) (11)

γPhase = p(Phase| f (τH−S, τPhase)) (12)

The a posteriori probability can be calculated as follows:

p(H − S| f (τH−S, τPhase)) =
p( f (τH−S, τPhase)|H − S)p(H − S)

p( f (τH−S, τPhase)|H − S)p(H − S) + p( f (τH−S, τPhase)|Phase)p(Phase)
(13)

p(Phase| f (τH−S, τPhase)) =
p( f (τH−S, τPhase)|Phase)p(Phase)

p( f (τH−S, τPhase)|H − S)p(H − S) + p( f (τH−S, τPhase)|Phase)p(Phase)
(14)

Here, p(H − S) and p(Phase) are the a priori probability of two different results.
Since we treat the two methods equally, p(H − S) = p(Phase) = 1/2. The a posteriori
probability p( f (τH−S, τPhase)|H − S) and p( f (τH−S, τPhase)|Phase) are very important for
the calculation of weights (γH−S and γPhase). Besides, for the current frame Ft, according
to the reconstructed video frames Ft−2 and Ft−1, we can calculate the SAD for the i-th
corresponding block of the SIF as follows:

SADi
t = ∑(x, y)∈Bi

|Ft−2(x, y)− Ft−1(x, y)| (15)

Therefore, we can obtain the average block SAD: SADt,mean of current SIF. Take
SADt,mean as the evaluation index, it is easy to find that the a posteriori probability
p( f (τH−S, τPhase)|H − S) and p( f (τH−S, τPhase)|Phase) are related to the sum of the `2

norms of those MV in the block. According to the central limit theorem, we can assume that
p( f (τH−S, τPhase)|H − S) and p( f (τH−S, τPhase)|Phase) are Gaussian probability func-
tions. When the SAD of the current block is less than SADt,mean, it means that the motion
intensity of the block at this position is small, so the `2 norms of the MV in the block should
also be small. Then, we have the following expressions:

p( f (τH−S, τPhase)
∣∣∣H − S) = p(δH−S) ∝ exp

(
−δH−S

2
)

(16)

p( f (τH−S, τPhase)
∣∣∣Phase) = p(δPhase) ∝ exp

(
−δPhase

2
)

(17)

where, δH−S and δPhase are the sum of `2-norms of block MV generated by the H-S optical
flow method and Phase-based optical flow method. Let us substitute (13) and (14) with
(16) and (17), considering (11) and (12), then we can get the following:

γH−S = p(H − S| f (τH−S, τPhase)) =
exp

(
−δH−S

2

2σw2

)
exp

(
−δH−S

2

2σw2

)
+ exp

(
−δPhase

2

2σw2

) (18)

https://github.com/owang/PhaseBasedInterpolation


Entropy 2021, 23, 1184 9 of 21

γPhase = p(Phase| f (τH−S, τPhase)) =
exp

(
−δPhase

2

2σw2

)
exp

(
−δH−S

2

2σw2

)
+ exp

(
−δPhase

2

2σw2

) (19)

where σw
2 can adjust the shape of the Gaussian probability function, we empirically set

it to 60. When the current block SAD is greater than SADt,mean, it means that the motion
intensity of the block at this position is large, so the MV of the block should also be large.
According to the above derivation process, we can get the following:

γH−S = p(H − S| f (τH−S, τPhase)) = 1−
exp

(
−δH−S

2

2σw2

)
exp

(
−δH−S

2

2σw2

)
+ exp

(
−δPhase

2

2σw2

) (20)

γPhase = p(Phase| f (τH−S, τPhase)) = 1−
exp

(
−δPhase

2

2σw2

)
exp

(
−δH−S

2

2σw2

)
+ exp

(
−δPhase

2

2σw2

) (21)

By performing the above fusion algorithm for each block of the SIF we can eventually
get the final side information SIt, f inal .

Figure 2. The architecture of side information generation.

3.4. Adaptive Block Measurement Number Estimation

When the motion intensity of the block in the current frame is small, the accuracy of the
corresponding block in the SIF generated by the proposed PFM model is high. Conversely,
when the motion intensity of the block in the current frame is large, the accuracy of the
corresponding block in the SIF is low. From the above analysis, it is necessary to determine
the weighted average of the saliency value and the proportion of the significant coefficients
in the SIF according to the motion intensity.

When the final side information SIt, f inal is generated, the frequency domain infor-
mation of SIt, f inal can be obtained by performing DCT. The proportion of significant
coefficients in the DCT domain can directly reflect the sparsity of blocks. More specifically,
textured blocks usually have many significant coefficients, while smooth blocks usually
have relatively few significant coefficients. We generally define the coefficient with an
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absolute amplitude greater than the threshold value as the significant coefficient, and the
threshold value can be obtained as follows:

Ti =
∑B2

j=1
∣∣cj
∣∣

B2 (22)

where cj represents the DCT coefficient of the i-th block. Then, we can get the proportion
Θi,SI of the significant coefficients for the i-th block:

Θi,SI =
numi,DCT

∑L
j=1 numj,DCT

(23)

where numi,DCT represents the number of significant coefficients of the i-th block. The
above Θi,SI is calculated on the reconstruction side, but in the CS system, the sampling rate
is set on the sampling side. Therefore, the feedback channel is needed to feed back the
Θi,SI to the sampling side. However, for the blocks with large motion intensity between
video frames, the quality of the generated SIF will be seriously affected by noise. Therefore,
the obtained Θi,SI will also be affected to a certain extent. In order to comprehensively use
the information both in the measurement domain and frequency domain to estimate the
fusion sparsity Pi, f usion, we propose the following weighting method, specifically, the SAD
calculation in the measurement domain is performed by using the initial measurements of
the adjacent frames on the sampling side, which can be defined as follows:

SADBt
i ,Mea = ∑M0

j=1|Bi,t(j)− Bi,t−1(j)| (24)

where Bi,t represents the vector of measurement results of the i-th block in the frame Ft and
SADBt

i ,Mea is the measurement domain SAD of the i-th block in the frame Ft. Then, we can
get the average measurement domain SAD: TSAD,Mea of the current frame Ft through the
following equation:

TSAD,Mea =
∑L

j=1 SADBt
i ,Mea

L
(25)

When SADBt
i ,Mea ≤ TSAD,Mea, we can get the weight ρi,SI of Θi,SI through the follow-

ing equation:

ρi,SI =
TSAD,Mea − SADBt

i ,Mea

TSAD,Mea
(26)

Therefore, the weight ρi,Saliency of w∗i,saliency can be obtained through the following
equation:

ρi,Saliency = 1− ρi,SI (27)

Eventually, the fusion sparsity Pi, f usion of the i-th block can be obtained as follows:

Pi, f usion =
(ρi,Saliency· w∗i,saliency + ρi,SI ·Θi,SI)

∑L
j=1(ρj,Saliency· w∗j,saliency + ρj,SI ·Θj,SI)

(28)

When SADBt
i ,Mea ≥ TSAD,Mea, the motion intensity between the video frames is large

in the i-th block, which means a low similarity between the generated SIF and the original
frame. Therefore, the reference value of Θi,SI is low. In this case, we set the weight of Θi,SI
to zero, which means w∗i,saliency will be completely retained, i.e., the weight of w∗i,saliency is
one. Then, the fusion sparsity Pi, f usion of the i-th block can be obtained as follows:

Pi, f usion =
w∗i,saliency

∑L
j=1(ρj,Saliency· w∗j,saliency + ρj,SI ·Θj,SI)

(29)
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Then, the measurement number Mi,Ft for the i-th block Bi in frame Ft can be calculated
using the fusion sparsity Pi, f usion as follows:

Mi,Ft = rnd
[

Pi, f usion·(MFt − L·M0) + M0

]
(30)

3.5. Global Recovery Model Based on Weighting

When the measurement vector yi is received on the reconstruction side, we can
reconstruct each block independently through (4). To solve the above convex optimization
problem, many techniques have been proposed in the literature. The gradient projection
for sparse reconstruction (GPSR) [14] is one of the most efficient algorithms. However,
because the spectrum information is leaked in the process of block-based reconstruction,
and the convergence of the recovery algorithm varies rapidly according to the number of
measurements of each block, the block recovery model will lead to a serious block effect.
Especially for the adaptive rate sampling scheme, the uneven distribution of sampling
resources will aggravate the block effect in reconstructed video frames. However, this can
be improved by reconstructing the frame using the CS measurement results of all blocks.
Specifically, the CS measurement results of all blocks are arranged in columns as follows:

y =



y1
...

yi
...

yL

 =



ΦB1
. . .

ΦBi
. . .

ΦBL





h1
...

hi
...

hL

 (31)

in which ΦBi =

[
Φinit
Φsup,i

]
assume

Φ =



ΦB1
. . .

ΦBi
. . .

ΦBL

 (32)

and then introduce the elementary matrix E to rearrange the column vectors block by block
into the raster-scanning column vector of the frame as follows:

h1
...

hi
...

hL

= E·h (33)

Let us substitute (31) with (32) and (33), and then we can get:

y = Φ·E·h = Θ·h (34)

where Θ = Φ·E. Further, the global recovery model can be constructed as follows:

h̃ = argmin
h

{
||y−Θ·h||22 + λ||Ψh||1

}
(35)

where Ψ is the transform matrix. The above global recovery model can be solved by the
GPSR algorithm. Besides, the above model can find the sparse coefficients of h directly in
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Ψ space, so it effectively solves the problem that the global sparsity of the frame cannot
be fully utilized by performing the block reconstruction model (4), thereby effectively
suppressing the block effect. However, the global recovery model cannot adjust the re-
construction quality of each block according to the complexity of each block, which leads
to the low reconstruction accuracy of some blocks with high complexity. Therefore, we
propose a global recovery model based on weighting, which can improve the reconstruc-
tion quality of high complexity areas in video frames. Considering that the number of
measurements received on the reconstruction side can indirectly reflect the complexity of
blocks to a certain degree, and in the natural video sequence, the complexity of the block is
determined by many factors. Therefore, according to the central limit theorem, we assume(

B2 −Mi,Ft + M0
)

is the random variable with the Gaussian distribution. Then, we can
have the following weights calculation method:

ηi =

exp
(
−(B2−Mi,Ft+M0)

2

2σm2

)
∑L

j=1 exp
(
−(B2−Mj,Ft+M0)

2

2σm2

) (36)

where ηi is the weight of the proposed global recovery model based on weighting. The
parameter σm

2 can be used to adjust the shape of the Gaussian distribution function. Then,
we can construct the global recovery model based on weighting as follows:

h̃ = argmin
h

{
L

∑
i=1

η2
i ||yi −ΦBihi||22 + λ||Ψh||1

}
(37)

From the proposed model (37), it is easy to find that the larger ηi is, the closer ΦBihi is
to yi. Therefore, the proposed model (37) makes the reconstruction results of the blocks with
high complexity closer to the original blocks. Next, we construct the following diagonal
matrix W:

W = diag

 M1︷ ︸︸ ︷
η1 · · · η1, · · · ,

Mi︷ ︸︸ ︷
ηi · · · ηi, · · · ,

ML︷ ︸︸ ︷
ηL · · · ηL

 (38)

By using the diagonal matrix W, (37) can be represented as follows:

h̃ = argmin
h

{
||W(y−Θ·h)||22 + λ||Ψh||1

}
(39)

To further simplify the expression of (39) above, we can obtain the following:

h̃ = argmin
h

{∣∣∣∣∣∣ỹ− Γ·h)
∣∣∣|22 + λ||Ψh||1

}
(40)

among which ỹ = Wy, Γ = WΘ, and λ is the adjustable parameter. It is easy to find that
the above model (40) is still the minimum `1 − `2 norm model, so it can still be solved by
the GPSR algorithm.

4. Simulation Results

We tested the performance of the proposed scheme under different experimental
conditions. We applied the proposed scheme which is described in the previous section to
eight standard video sequences: Foreman, Stephan, football, Bus, Crew, Highway, Table-
Tennis, Australia, which were assumed to be the real raster scan videos in our experiments.
(Considering that the number of frames of the original standard video sequences were
not the same, we took the first 80 frames of each sequence for all experiments.) To be-
gin with, the performances of several submodules were evaluated respectively. Then,
we compared the overall performance of the proposed scheme with that of the existing
scheme. The schemes that are compared in this paper are: non-adaptive scheme (each



Entropy 2021, 23, 1184 13 of 21

block has the same number of measurements), adaptive scheme based on block classi-
fication [4] and adaptive scheme based on texture complexity and visual saliency [5].
(We compared the proposed sampling scheme with the adaptive sampling scheme in [4]
and [5], and all the reconstruction schemes were solved by GPSR.) For memory reasons,
we downsampled each frame of the CIF@30 Hz format video sequences to 256 × 256. (The
standard video sequences are available at http://trace.eas.asu.edu/yuv/index.html and
http://amalia.img.lx.it.pt/~tgsb/H264_test/ accessed on 2 September 2021) In each part
of the experiment, the block size B was set to 16 and the total sampling rate RT was set
between 0.3 and 0.5 in the overall performance comparison experiment. The sparse basis Ψ
was a Daubechies orthogonal wavelet of length 4 and the initial measurement number M0
of each block was set to be rnd[0.3·RT ·B2].

4.1. Evaluation of Different GOP Sizes

In our ABCVS architecture, we divide the video sequence by GOP size. The total
number of measurements of each GOP is allocated to each frame of the current group
according to the complexity of the frame, and then the total number of measurements
of each frame is adaptively allocated to each block. It can be seen that the setting of the
GOP size will affect the allocation of the measurement number to a certain extent, thereby
affecting the quality of reconstructed frames. In this section, we evaluate the influence of
the GOP size setting on the overall performance of the proposed scheme. We evaluate the
performance of the Bus sequence at different GOP sizes when the sampling rate is 0.3. The
average PSNR of the reconstructed video frames versus the GOP size is plotted in Figure 3.

Figure 3. Influence of GOP size on the performance of the proposed scheme (Bus sequence, sampling
rate = 0.3).

It can be seen from Figure 3 that with the increase of the GOP size, the average PSNR
of reconstructed video frames will increase accordingly. But the increasing trend will slow
down as the size of the GOP increases. Especially when the GOP is greater than 5, the
increase of the average PSNR of the reconstructed video frames is very limited. This may
be because, when the size of the GOP is greater than 5, the difference of frame complexity
in each GOP will no longer increase significantly with the increase of the GOP size, i.e., the
allocation of the measurement number of each frame will not change much. As a result,
the quality of the reconstructed frames is not obviously improved. Therefore, in order to

http://trace.eas.asu.edu/yuv/index.html
http://amalia.img.lx.it.pt/~tgsb/H264_test/
http://amalia.img.lx.it.pt/~tgsb/H264_test/


Entropy 2021, 23, 1184 14 of 21

minimize the storage burden on the sampling side and maintain the fluency of the video
sequence, the size of the GOP is set to 5 in our proposed scheme.

4.2. Evaluation of Side Information Generation

In this section, the results of the side information generation module are reported,
and the test sequences are as follows: Foreman, Stephan, football, Bus, Crew, Highway,
Table-Tennis, Australia. In order to objectively compare the proposed scheme with other
schemes, all the extrapolation processes are performed on the original video frames. In the
experiment, the pixel accuracy of extrapolation is 1/4 pixel. We use peak-signal-to-noise
ratio (PSNR) to evaluate the quality of the SIF generated by various schemes. Figure 4
shows the performance comparison results of various schemes, and the average PSNR
results of each scheme are given in Table 1.

Table 1. The average PSNR of SIF generated by different schemes.

Sequence H-S [20] Phase [21] PFM

Foreman 28.24 dB 28.47 dB 28.55 dB
Stephan 21.95 dB 21.68 dB 22.17 dB
Football 18.62 dB 18.25 dB 18.75 dB

Bus 19.16 dB 18.76 dB 19.30 dB
Crew 29.72 dB 29.69 dB 29.88 dB

Highway 33.60 dB 33.74 dB 33.87 dB
Table-tennis 23.25 dB 23.20 dB 23.56 dB

Australia 35.71 dB 36.01 dB 36.11 dB

Figure 4. Cont.
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Figure 4. Cont.
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Figure 4. PSNR comparison of SIF generated by different schemes.

According to Figure 4, we can see that the quality of SIF generated by the proposed
scheme based on PFM is better than that of the comparison scheme as a whole. Table 1
reports the average PSNR of SIF. For instance, for the Foreman sequence, the average
quality of SIF generated by the proposed PFM is slightly better than that generated by the
H-S scheme and the Phase scheme. For the Stephan sequence, the average PSNR of SIF
generated by the PFM scheme is 0.23 dB and 0.49 dB higher than that of the H-S scheme
and the Phase scheme, respectively. For the Football sequence and the Bus sequence, the
proposed PFM scheme shows good performance. Compared with the H-S and Phase
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schemes, the average PSNR of the generated SIF increases by more than 0.5 dB. This may
be due to the large difference between the MV generated by the H-S scheme and the Phase
scheme in the Football sequence and the Bus sequence, that is, the MV generated by the
H-S scheme are closer to the real situation for some blocks, and the MV generated by the
Phase scheme are quite different from the real motion. In turn, the MV generated by the
Phase scheme are more accurate for other blocks, while the MV generated by the H-S
scheme have large errors. According to the description of the previous section, we know
that the proposed PFM is very suitable for SIF improvement in these kinds of situations.
For the Crew sequence, the average PSNR of the SIF generated by the proposed PFM
scheme is about 0.2 dB higher than that of the H-S scheme and the Phase scheme. For
the Highway sequence and the Australia sequence, due to the low motion intensity of
the video sequence itself, the accuracy of the MV generated by the H-S scheme and the
Phase scheme is high enough. In other words, the difference between the MV generated
by the two methods is small and very close to the real MV. Therefore, the improvement
effect of the proposed PFM is very limited. For the Table-tennis sequence, the average
PSNR of the SIF generated by the proposed PFM scheme is about 0.3 dB higher than that
generated by the H-S scheme and the Phase scheme. However, due to the large overall
motion intensity of the Table-tennis sequence, the average PSNR of the SIF is not high.
Figure 5 shows a comparison of the subjective quality of the generated SIF. It can be found
that the subjective quality of the side information generated by the proposed PFM scheme
is better than that of the Phase scheme and the H-S scheme. For example, by comparing
the parts marked in the red box in Figure 5, it can be found that the clarity of the hand
in the SIF generated by the proposed PFM scheme is closest to the original frame. With
the SIF, we can use them to calculate the proportion of the significant coefficients of each
block. Considering that the SIF are generated on the reconstruction side, we need to use the
feedback channel to transmit the obtained proportion of the significant coefficients to the
sampling side, in which the feedback channel is a very common channel in the distributed
video coding system [12,13]. In this paper, the feedback channel is used to feed back the
obtained proportion of each block to the sampling side, that is, each block only needs to
feed back a proportion value to the sampling side.

Figure 5. Comparison of subjective quality of the SIF generated by different schemes (The 12th frame
of the Crew sequence).
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4.3. Evaluation of the Global Recovery Model Based on Weighting

In this section, we verify the performance of the proposed global recovery model
based on weighting, in which the parameter σm

2 is set to 40 empirically. Figure 6 shows
the comparison of the recovery performance of different recovery models for the Foreman
sequence. It is easy to find from Figure 6 that the average PSNR of the reconstructed frames
recovered by the global recovery model is increased by more than 1 dB compared with the
block recovery model. Moreover, compared with the global recovery model, the global
recovery model based on weighting improves the average PSNR of the reconstructed
frames by about 2 dB. Figure 7 shows the comparison of the subjective quality of the
reconstructed frames recovered by different recovery models. It can be seen from Figure 7
that the video frames restored by the block recovery model have an obvious block effect,
while in the video frames reconstructed by the global recovery model, the problem of
block effect is completely solved. On the basis of the global recovery model, the global
recovery model based on weighting proposed in this paper not only weakens the block
effect, but also improves the overall quality of the reconstructed frames, especially the
reconstruction quality of some detailed information in the video frame, which has been
significantly improved. For example, in Figure 7c, although the global recovery model
solves the problem of block effect in the reconstructed frames caused by the block recovery
model, using only the global recovery model cannot recover some of the details in the
frames. The proposed global recovery model based on weighting is more advantageous in
the reconstruction of detailed information. Comparing (a), (b), and (c) in Figure 7, we can
see that the texture, the edge of the building, the ping-pong ball and the details of the face
in (b) reconstructed using the global recovery model based on weighting, are clearer than
those of (c).

Figure 6. Performance comparison of different recovery models.
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Figure 7. Subjective quality comparison of reconstructed frames recovered by different recovery
models. The 10th frame of the Foreman sequence, Bus sequence and Table-tennis sequence, sampling
rate = 0.3. (a) Original frame, (b) Global recovery model based on weighting, (c) Global recovery
model, (d) Block recovery model.

4.4. Overall Performance Comparison

This section presents the comparison of the simulation results between the proposed
compressed video sensing scheme and the other schemes: non-adaptive scheme, [4,5]. (The
allocation of the measurement number in [4] mainly depends on the measurement domain
information, and the pixel domain information of the current frame to be sampled is not
used. The adaptive sampling in [5] is directly based on pixel domain information, but is
not combined with measurement domain information to perform a better measurement
number allocation.) All the schemes are solved by the GPSR algorithm, in which the
regularization factor λ is set to 0.3. Since we need to use the reconstructed frames to
perform extrapolation on the reconstruction side to generate SIF, we use a compressed
sensing scheme based only on the saliency detection described in Section 3.2 to sample and
reconstruct the first and second frames of the scene at the beginning (the sampling rate is
set to 0.8 for higher quality). The outperformance of the proposed scheme over the other
four, for the Foreman, Stephan, football, Bus, Crew, Highway, Table-Tennis, and Australia
sequences, is exhibited in Table 2. It can be found from Table 2 that the proposed scheme
is better than the comparison schemes as a whole, because the proposed scheme makes
comprehensive use of the intra-frame correlation in the measurement domain and the
inter-frame correlation in the pixel domain to allocate the number of measurements. For
the Foreman sequences, because the volatility of the video itself is small, i.e., the motion
intensity of the video is small, the quality of the generated SIF is higher, which means the
reference value of the generated SIF is greater. The allocation of the measurement number
for each block is more reasonable. Therefore, the average PSNR of the reconstructed frames
of the proposed scheme is better than that of the comparison schemes. In other words,
the proposed scheme can feed back the pixel domain information of the current frame
to the sampling side through the feedback channel, and can fuse the information of the
measurement domain and the pixel domain to perform a more accurate measurement
number allocation. When the sampling rate is 0.5, the average PSNR of the reconstructed
frames of the proposed scheme is about 1.4 dB higher than that of the non-adaptive,
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and 0.41 dB, and 0.89 dB higher than that of [4], and [5], respectively. For sports video
sequences, such as the Stephan sequence, Football sequence, and Table-tennis sequence, the
improvement of the proposed scheme is not obvious. This is because the motion intensity
of these video sequences is high, so the accuracy of the SIF generated by extrapolation is
low. The low accuracy of the SIF means that the accurate sparsity information that the
SIF can provide is limited. In particular, for the Bus sequence, because the background of
the whole video is changing and the texture complexity of different regions of the video
frames varies greatly, i.e., the sparsity of different regions is very different. In this case, the
proposed scheme can give full play to its advantages. When the sampling rate is 0.4, the
average PSNR of the reconstructed video frames generated by the proposed scheme is 2.57 dB,
2.01 dB, and 2.29 dB higher than that of non-adaptive scheme, [4], and [5], respectively.

Table 2. Average PSNR Comparison of Various Schemes with Different Sampling Rates.

Sequence Method
Sampling Rate

0.3 0.4 0.5

Foreman Non-adaptive 28.74 dB 30.94 dB 33.12 dB
[4] 29.66 dB 32.00 dB 34.20 dB
[5] 30.35 dB 32.12 dB 33.72 dB

Proposed 31.37 dB 33.19 dB 34.61 dB
Stephan Non-adaptive 22.88 dB 24.50 dB 26.28 dB

[4] 23.64 dB 25.63 dB 27.78 dB
[5] 23.55 dB 24.86 dB 26.58 dB

Proposed 25.99 dB 27.76 dB 29.51 dB
Football Non-adaptive 26.42 dB 28.42 dB 30.48 dB

[4] 27.57 dB 28.73 dB 31.12 dB
[5] 29.45 dB 31.52 dB 33.73 dB

Proposed 30.08 dB 32.24 dB 34.26 dB
Bus Non-adaptive 23.43 dB 25.09 dB 26.14 dB

[4] 23.71 dB 25.65 dB 27.86 dB
[5] 23.84 dB 25.37 dB 26.43 dB

Proposed 25.79 dB 27.66 dB 29.24 dB
Crew Non-adaptive 31.37 dB 33.03 dB 35.49 dB

[4] 31.49 dB 33.23 dB 35.56 dB
[5] 31.63 dB 33.26 dB 35.78 dB

Proposed 33.44 dB 35.47 dB 37.06 dB
Highway Non-adaptive 33.66 dB 35.55 dB 37.38 dB

[4] 35.12 dB 37.30 dB 38.87 dB
[5] 34.12 dB 36.29 dB 37.89 dB

Proposed 35.21 dB 37.58 dB 39.40 dB
Table-tennis Non-adaptive 28.38 dB 30.29 dB 32.24 dB

[4] 30.86 dB 32.80 dB 34.54 dB
[5] 29.05 dB 30.88 dB 32.76 dB

Proposed 31.16 dB 33.25 dB 34.93 dB
Australia Non-adaptive 33.46 dB 34.98 dB 36.24 dB

[4] 34.28 dB 36.72 dB 37.25 dB
[5] 33.76 dB 35.78 dB 36.55 dB

Proposed 34.42 dB 36.92 dB 37.85 dB

5. Conclusions

In this paper, an adaptive block-based compressed video sensing scheme based on
saliency detection and side information is proposed. The saliency detection is performed
in the measurement domain which can obtain the preliminary sparsity according to the
saliency value of each block. The side information frame is generated by the proposed
probability fusion method which can fully use the inter-frame correlation to perform
a sparsity estimation for each block. Based on the saliency value of each block in the
measurement domain and the significant coefficients proportion of each block in the
generated side information frame, we can use both intra-frame correlation and inter-frame
correlation to estimate the block sparsity, and then adaptively allocate the measurement
number for each block to be sampled. On the reconstruction side, we use the global recovery
model based on weighting to reconstruct each frame, which can suppress the block effect
caused by the block recovery model. The simulation results show that the proposed
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adaptive block-based video compressed sensing scheme can effectively solve the problem
of inaccurate estimation of the measurement number of each block on the sampling side.
In other words, the proposed scheme can effectively improve the reconstruction quality of
video frames while the total sampling rate is constant.
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