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Abstract: A large amount of semantic content is generated during designer collaboration in open-
source projects (OSPs). Based on the characteristics of knowledge collaboration behavior in OSPs,
we constructed a directed, weighted, semantic-based knowledge collaborative network. Four social
network analysis indexes were created to identify the key opinion leader nodes in the network using
the entropy weight and TOPSIS method. Further, three degradation modes were designed for (1)
the collaborative behavior of opinion leaders, (2) main knowledge dissemination behavior, and
(3) main knowledge contribution behavior. Regarding the degradation model of the collaborative
behavior of opinion leaders, we considered the propagation characteristics of opinion leaders to other
nodes, and we created a susceptible–infected–removed (SIR) propagation model of the influence
of opinion leaders’ behaviors. Finally, based on empirical data from the Local Motors open-source
vehicle design community, a dynamic robustness analysis experiment was carried out. The results
showed that the robustness of our constructed network varied for different degradation modes:
the degradation of the opinion leaders’ collaborative behavior had the lowest robustness; this was
followed by the main knowledge dissemination behavior and the main knowledge contribution
behavior; the degradation of random behavior had the highest robustness. Our method revealed the
influence of the degradation of collaborative behavior of different types of nodes on the robustness
of the network. This could be used to formulate the management strategy of the open-source design
community, thus promoting the stable development of OSPs.

Keywords: open-source project; identification of opinion leaders; SIR model; behavior degradation;
robustness

1. Introduction

In contrast to a traditional product design process, the open-source design (OSD)
community is spontaneously organized by diverse community members according to their
interests and needs. To achieve common work goals for specific open projects, designers
use collective wisdom, analyze knowledge, and carry out distributed task collaboration [1].
These designers often form a knowledge collaborative network (KCN) of a certain scale.
This mass production mode is a bottom-up organization form, with low cost, strong
flexibility, a high degree of innovation, and fast response; it has been successfully applied
in software, encyclopedia, manufacturing, and commercial fields [2,3].

Similar to other forms of networks (e.g., social network, software network, business
network, etc.), important nodes in the OSD community network—known as “opinion
leaders”—dominate knowledge sharing, information dissemination, public opinion ori-
entation, behavior, and decision-making guidance [4,5]. These opinion leaders transmit
their views, ideas, models, and other information to other designers via their online com-
munity’s information communication channels, and this information is then radiated to
the whole network. In this process, a single individual stimulated by endogenous reasons
will imitate the behavior of some groups. The transmission phenomenon of this behavior
is usually called the “following effect”. This complex propagation phenomenon exists in
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many areas, such as business and marketing [6], politics [7], public health [8], education [9],
and social [10], among others. Owing to social influence and homogeneity [11], the opinion
leaders’ characteristics of novelty, activity, and professional knowledge influence both
the behavior of the other members of the community and decision making [12]. Opinion
leaders play a key role in community management, public opinion guidance, and other
decisions. Academics have studied the opinion leader identification model and the follow-
ing effect in various online communities [13,14]. Most research perspectives only explore
opinion leaders’ positive behaviors. However, when opinion leaders exhibit negative
behaviors, such as a reduced willingness to collaborate, or even leaving the community,
this also leads to the following effect of other nodes, and this has unexpected consequences
on the network. There are many cases where the open-source community (OSC) has
declined or failed due to the loss of a large number of members or the degradation of
behavior [15,16]. Therefore, it is of great practical significance for the stable development
of OSCs and open-source projects (OSPs) to conduct research on the robustness of KCNs in
the face of the negative impacts caused by the negative behaviors of OSC opinion leaders.

2. Related Work
2.1. Opinion Leader Identification

Though the definition of opinion leaders differs between network types, all defini-
tions reflect that opinion leaders have an influence on people’s attitudes, opinions, and
behaviors [17,18]. In the OSC, the role of opinion leaders is not limited to information
dissemination, public opinion guidance, and supervision; importantly, it also includes
information processing, the effective dissemination of knowledge, and the promotion of
collaboration [4]. Therefore, the identification of opinion leaders is one of the cores of
community network research. The two common identification methods are the network
structure analysis method and the information interaction analysis method [19]. The net-
work structure analysis method (which is based on social network analysis) establishes an
evaluation index system of opinion leaders that comprehensively considers the attributes,
interactive behaviors, and topological information of users; it can comprehensively mea-
sure the importance and influence of users in the network. For example, Bonacich et al. [20]
proposed to use degree value to show the importance of nodes. This index supposes that
the greater the degree of nodes, the greater the importance of the nodes in the network.
Freeman et al. [21] proposed a clustering analysis of users within the community based
on betweenness, closeness, and flow betweenness as indicators. Ren et al. [22] proposed
a network node importance measurement method based on the degree and clustering
coefficient to effectively analyze the node importance of large-scale networks. Zhu Zhiguo
et al. [23] combined the two aspects of “network centrality” and “user activity” to construct
an index system of opinion leaders, and they ranked the opinion leaders with the grey
correlation model. Ain et al. [24] used four different centrality metrics—closeness, be-
tweenness, eigenvector, and PageRank—to sort the nodes in the network, then used Firefly
algorithm to find local and global opinion leaders. Chen [25] built a social network using
the attention relationship between individuals. They proposed a similarity evaluation
method to identify opinion leaders by analyzing the behavior of users in the social network.
The aforementioned evaluation indexes mainly consider the structure of the collaboration
network but ignore the semantic content of the interaction and collaboration between users.

The information interaction analysis method identifies opinion leaders in the network
using the semantic analysis of user comments or the sentiment analysis published by
users. This method is more suitable and prevalent in social networks because it is mainly
based on comment data. For example, Chen et al. [26] proposed a detection method of
opinion leaders with positive and negative opinions, which built a signature network based
on online comments. A new model based on negative trust was also designed to detect
opinion leaders in communities. Jiang et al. [27] used MapReduce to design an opinion
leader detection algorithm based on the improved PageRank algorithm. In this algorithm,
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the improved PageRank algorithm uses sentiment analysis to define the connection weight
between users in a bulletin board system.

Some scholars have created opinion leader identification models that combine the
above two methods. For example, Clat [28] established a user influence model by com-
bining content similarity and network topology. This method detects opinion leaders
based on user influence and sentiment analysis. Li et al. [29] studied the microblogging
community detection method based on semantic analysis and user relationship, applying
a hierarchical clustering algorithm to search for opinion leaders. Wang [30] designed an
opinion leader detection algorithm based on network structure and topic similarity; making
use of user attributes, text characteristics, and topic similarity, this algorithm constructs a
directed weighted network for social networks and uses the PageRank algorithm to mine
opinion leaders. Ye and Du [31] proposed an opinion leader detection method based on
network topology, user attributes, and sentiment analysis. The hierarchical structure is
used for sentiment analysis to identify malicious users in the opinion leader set who pose a
threat to national security. Atienza-Barthelemy et al. [32] established the directed weighted
retweet network to study the relationship between ideology and language in the Catalan
independence context. They carried out the selection of the users (opinion leaders) in two
steps. The first step searched for the most influential, active, and engaged (continuous
participation) users, and the second step was based on a hierarchical community analysis.
Presently, research combining the two methods is also focused on social networks and
content publishing communities such as Facebook, Twitter, and Weibo [33–35].

Since the combination of these two identification methods can identify opinion leaders
from a more comprehensive index, we consider both the network structure and semantic
content when identifying opinion leaders in the OSD community. However, compared
with the content publishing community, the OSD community places more emphasis on
knowledge collaboration. As such, there are many differences in the selection of identifica-
tion indexes and the identification methods of opinion leaders. Therefore, this paper first
proposes a semantic-based KCN construction method, to allow semantic information to be
embodied in the KCN. Based on the constructed network, the opinion leader identifica-
tion index considers the degree of interaction between nodes, that is, the ability of nodes
themselves to influence other nodes. The communication location of nodes is considered
from the perspective of the overall macrostructure of the network (i.e., the advantages of
nodes in the KCN). For these indexes, an entropy weight and TOPSIS algorithm are used
to evaluate the users in the community one by one to identify the opinion leaders.

2.2. The Propagation of Opinion Leader Behavior

As information and viruses spread in the network, the propagation of users’ behavior
in the network follows certain rules. The traditional propagation model has great reference
significance for the study of behavioral propagation in the network [36]. For example,
Xu Bingcun et al. [4] set the opinion leaders (who were identified by the multi-attribute
comprehensive evaluation method and the grey correlation method) as the initial source
of infection and applied the susceptible–infected–removed (SIR) model to simulate the
following behavior of users in the OSC. Zhang Weidong et al. [37] built a complete infor-
mation game model to control the spread of false information by guiding users’ following
behavior. Xiong et al. [38] divided Weibo users into three types based on the SIR model
to simulate users’ “following” behavior. The above studies adopted the classical prop-
agation model to study the propagation process of behaviors in the network, but they
did not consider the influence of the propagation process on the overall performance of
the network. Therefore, this paper adopts the classical SIR epidemic model to conduct a
simulation experiment of propagation behavior dynamics on the changes in the overall
network collaboration state caused by the following behavior of other nodes after opinion
leader nodes reduce their willingness to collaborate. This verifies whether the key nodes
identified above have a stronger influence on resource control, information propagation,
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and network stability. It also analyzes the change of network performance during the
process of behavior propagation.

2.3. Complex Network Robustness

Robustness refers to the ability of the system to maintain its functions or characteristics
when it is subjected to external interference or destruction [39]. Research on the robustness
of complex networks originated from Albert et al. [40] in 2000, who mainly focused on
the influence of topological structure on the destruction resistance of complex networks.
Subsequently, many scholars have studied the robustness of different complex network
structures (e.g., regular networks, random networks, small-world networks, and scale-free
networks). Research content includes network structure, model parameters, degradation
mode, robust decision making, and other aspects [41,42]. With the wide application of
OSD in various industries, researchers are devoting increasing attention to the robustness
and stability of OSC networks. For example, in their empirical study, Fuge et al. [43]
took the online collaboration community OpenIdeo through a method of node attack and
found that communities with cored-edge structures have strong robustness. Donadelli
et al. [44] studied the impact of knowledge loss on OSC projects, finding that the departure
of major contributors reduces the dissemination of knowledge and brings about disastrous
effects on community projects. Zhou et al. [45] studied the impact of the intentional loss
of knowledge contribution nodes and dissemination nodes on the robustness of OSC
networks at different stages of development. Gamalielsson et al. [46] found that successful
retention and further recruitment of contributors can improve the robustness of the open-
source software community. Frank et al. [47] measured the departure and entry of nodes
according to the cost–benefit relationship between active nodes in the community (i.e.,
when the cost exceeds the benefit, the node leaves the network). They studied the dynamic
robustness of online social networks with the life cycle of core-periphery structure as the
index. Lei et al. [48] analyzed the degree of network performance loss of OSD communities
under different degradation modes of knowledge collaboration behavior from both a static
and dynamic perspective.

We found that most current studies on the robustness of OSCs adopt the nodal-based
degradation approach. When the nodes are deleted, the edges directly connected to the
nodes are also deleted, resulting in the ineffective use of edge strength information. In OSCs,
designer nodes will not withdraw directly from the project or community after negative
interference; they will first be reflected in the decrease of collaboration intensity with other
designer nodes. Additionally, due to the existence of social influence and homogeneity,
the degradation of opinion leaders’ behavior in OSCs leads to the degradation of other
nodes or edges. The influence of this behavior propagation phenomenon on network
performance—where the degradation of individual nodes or edges causes the degradation
of further nodes or edges—is rarely paid attention to.

In view of these problems, this paper first constructs a semantic-based OSC KCN by
combining two key factors among designers: comment content and comment frequency.
Four network features are selected and the entropy weight and TOPSIS evaluation method
is adopted to identify the opinion leader nodes in the network. Then, based on the identified
opinion leaders, the SIR epidemic model is applied to design the propagation mode of
the degradation of opinion leaders’ collaborative behavior. Finally, robustness analysis is
carried out using empirical data from the Local Motors open car design community. This
includes analysis on the degradation of (a) opinion leaders’ collaborative behavior, (b) main
knowledge contribution behavior, and (c) main knowledge dissemination behavior. Based
on research results, we present suggestions for robustness protection.
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3. Construction of Directed, Weighted, Semantic-Based Knowledge Collaborative
Network
3.1. Semantic-Based Weight Calculation

In the OSD community, the large-scale collaborative behavior of designers (e.g., shar-
ing, suggesting, evaluating, improving, etc.) is the key process to complete product design.
To construct a directed, weighted, semantic-based KCN: (1) the knowledge collaboration
behaviors of designers in the large-scale collaboration process are screened out, including
semantic content at the knowledge production level and social behavior at the knowledge
circulation level; (2) the semantic content at the knowledge production level is represented
by collaborative content intensity gi and the social behavior at the knowledge circulation
level is represented by collaborative frequency intensity ki,j; and (3) the designers are taken
as nodes, the collaborative behaviors between nodes are taken as edges, and the network
edge weight Wi,j is obtained by weighting the collaborative content intensity gi and the
collaborative frequency intensity ki,j between designers. The calculation of the edge weight
of the network is: {

Wi,j = αgi + βki,j ki,j > 0
0 ki,j = 0

(1)

where α and β are the influence coefficients of the content intensity and frequency intensity,
respectively, satisfying α + β = 1. The collaboration frequency strength ki,j is obtained by
normalizing the one-way collaboration times k′i,j from designers i to j. The collaborative
content strength gi of designers i is calculated by (1) using the RAKE algorithm [49]
to extract keywords from the overall review text of the project and (2) calculating and
normalizing the matching degree between designers’ collaboration content and project
keywords. The calculation process of the collaborative content intensity gi is as follows.

1. Calculate the keyword candidate set T′: Take all collaborative content contained
in the community project as the target text, then take punctuation marks and stop
words as word segmentation intervals to obtain a candidate set of text keywords,
T′ = {t1, t2, t3, . . . , tz } .

2. Construct the co-occurrence matrix Dzz: the frequency of occurrences of the candidate
tm in the text is am,m and the frequency of co-occurrences of tm and tn in the same
phrase is am,n. The co-occurrence matrix Dzz is:

Dzz =

 a1,1 · · · a1,z
...

. . .
...

az,1 · · · az,z

 (2)

3. Calculate the candidate word weight Wtm : according to the co-occurrence matrix,

obtain the degree of candidate word tm: Degm =
z
∑

n=1
am,n, the frequency of candidate

word tm: Fegm = am,m, then use their ratio to represent the weight Wtm of candidate
word tm:

Wtm =
Degm

Fegm
=

∑z
n=1 am,n

Fegm
(3)

Arrange in descending order according to the calculated weight Wtm . Take the candi-
date words in the top 1/3 of the ranking as the keywords of the text and output the
keyword set T =

{
t1, t2, t3, . . . , t z

3

}
and the weight value Wtm of each keyword.

4. Calculate the content intensity of each designer: follow step (1) to segment the overall
comment content of each designer in the project to obtain a set of keyword candidates
for each designer Ti = {t1, t2, t3, . . .}, then calculate gi

′ as the sum of the weights of
the keywords contained in the designer comment text:

gi
′ = ∑

tm∈T∩Ti
Wtm (4)
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where: T is the keyword set, Ti is the candidate word set of designer i , and tm is the
keyword contained in designer i.

5. Obtain gi by normalizing gi
′.

3.2. KCN Structure Characteristics

In this paper, we used Local Motors, an OSC for car design, as the research object. The
Local Motors community has an avant-garde design concept of “production for customers”,
where designers can freely choose design projects of interest, exchange creative models,
and propose design solutions. In this mode, the design scheme can be tested, retested, and
perfected in this collaboration cycle. After finalization, it can be co-manufactured with the
customers who buy the products.

We chose project LF-01, which has the largest number of participants and can best
reflect the characteristics of this community, for our research. This project was established
in January 2014, and as of 16 November 2016, the project contained 673 designers and
7757 instances of communication. The network features of LF-01 are consistent with most
projects; therefore, it can suitably represent the situation of most OSPs.

To better simulate two-way dissemination and two-way collaboration behaviors
among community members, this paper uses a directed weighted network graph to model.
Community designers are represented by node set V and the comment relationship between
designers is represented by edge set E. The direction of the edge is consistent with the
direction of the comment, that is, if designer i comments on j, then the edge direction
between them is i to j. According to the method introduced in Section 3.1, the edge weight
is represented by the edge weight set W. In the calculation of the edge weight of the
constructed network, the collaborative content intensity α and collaborative frequency β
were considered equally important; they were each given a value of 0.5. After filtering out
information that is unrelated to knowledge collaboration in the original data, it remains
a total of 463 nodes, 3129 edges. Therefore, the semantic-based KCN model is G =
(V, E, W), where the larger the vertex strength in the network, the larger its area. Table 1
shows the topological parameters of the constructed network.

Table 1. Network topology parameters and network characteristics of the semantic-based KCN.

Topological Parameter Network Characteristic

Number
of nodes

Average
out-degree

Average
path length

Clustering
coefficient

Network
efficiency

Small
world

parameter

Small
world

characteristic

Scale free
property Assortativity

463 7.984 2.6403 0.535 0.2718 23.2537 Yes Yes No

Note: According to Davis, Yoo and Baker [50], the small-world parameters can be expressed as: SW =
[Cactual/Lactual] ∗[Lrandom/Crandom], where: Cactual is the average clustering coefficient of the network, Lactual is the aver-
age path length, Lrandom = ln(n)/ln(< k >), Crandom = < k >/n, n is the number of nodes and ‹k› is the average degree. The network
efficiencyis: E = 1

n(n−1) ∑
i 6=j

1
dij

, where : dij is length of the weighted shortest path from node i to j [51].

Table 1 shows that there are 463 nodes participating in knowledge collaboration
in the network. The average out-degree and average path length of the network are
relatively small, which indicates that the overall network structure is relatively sparse, the
information mobility is not strong, and the information dissemination is insufficient.

The small-world characteristic shows that the network has some “shortcut” connec-
tions to connect different subgroups, that is, there are some key collaborations in the
knowledge collaborative relationship of many participants, and they play a key role in
reducing the network distance. Therefore, it is necessary to study the opinion leaders
in the network. The scale-free characteristic indicates that during the evolution of the
project network, new participants tend to connect to larger nodes in the original network.
The disassortative characteristic reflects that nodes with lower degree values are more
inclined to establish connections with nodes with higher degree values. Therefore, it is also
necessary to study the influence of the following effect on network performance.
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4. Opinion Leader Identification Based on Entropy Weight and TOPSIS

Identifying opinion leaders in OSP can be seen as finding the most important nodes in
the KCN. Generally, the importance of nodes can be measured by the centrality index [52].
The importance of a node is related to the overall structure of the network. It is necessary
to make a comprehensive evaluation by using multiple important indicators of the node
from different angles. Consequently, we propose a multi-attribute decision-making method
based on the entropy weight and TOPSIS [53]. The multiple indexes of a single node (e.g.,
degree centrality, closeness centrality, betweenness centrality, structural hole, etc.) are
taken as the attributes of the decision evaluation scheme for a comprehensive calculation
to determine its importance in KCN. Considering multiple importance indicators, the
comprehensive evaluation of nodes can cover a variety of factors affecting the importance
of nodes, so we can obtain more accurate node importance evaluation results than using a
single index [54].

4.1. Analysis of Identification Index

During the communication and collaboration of design projects, designers in the OSD
community can influence other designers’ views and behaviors, and can even stimulate
creativity through comments, so as to finally complete the product design process. This
can be regarded as the ability of a network node to influence other nodes. In social network
analysis, centrality is the most important index with which to evaluate node attributes. It
is used to measure a node’s importance and collaboration ability with other nodes. There
are three centralities to note: (1) strength centrality, that is, the sum of the edge weights of
the node pointing to other nodes, which reflects the node’s active knowledge collaboration
ability; (2) closeness centrality, that is, the reciprocal of the shortest path average value
between nodes, which shows the ability of one node to get rid of the control of others; and
(3) betweenness centrality, that is, the number of times a node acts as an “Intermediary“,
which measures the ability of a node to control the collaboration with others.

Further, opinion leaders are often in the structural hole position in the overall
macrostructure of the network. They have more information resources and cross various
groupuscule through knowledge collaboration. In this position, opinion leaders occupy the
best communication location, which can filter information, disseminate information, and
control the direction of public opinion [24]. Therefore, this paper presents four evaluation
indexes: strength centrality, closeness centrality, betweenness centrality, and structural hole.
We take the Local Motors OSD community as an example to illustrate the selection process
of the four indexes.

1. Strength centrality.

The simplest measure of the centrality of a vertex in a network is just the degree of
the vertex. In directed weighted networks, vertex strength is divided into in-strength and
out-strength. The out-strength of node i is the sum of the edge weights of node i pointing
to other nodes; in-strength refers to the sum of edge weights of other nodes pointing to
node i [52]. Table 2 lists the respective out- and in-strengths of the top ten designer nodes of
Local Motors’ OSP. The top ten designers have a high repetition rate and a small numerical
difference, indicating that designers who prefer to collaborate with others usually have
larger communication networks. In addition, even in the top ten, the increase in in-strength
from minimum to maximum reached 67.07%, and the out-strength was as high as 76.95%.
To integrate the in- and out-strengths of nodes, this paper will take the value after the
symmetry of the network as the input data of the opinion leader identification model. This
shows that the number of designers who occupy the leading position is very small; most
designers are concerned about and follow the few influential designers.
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Table 2. Top ten node list for strength centrality, closeness centrality, and betweenness centrality.

Strength Centrality Closeness Centrality Betweenness
Centrality

Node Out Node In Node In Node Out Node Betweenness

1 324 269.69 324 157.44 206 0.592 38 0.258 324 55712.934
2 345 204.84 345 113.09 436 0.535 87 0.241 345 24626.021
3 307 155.43 307 95.768 369 0.478 233 0.238 307 13746.778
4 208 144.83 14 79.208 45 0.476 262 0.236 14 8258.913
5 14 142.88 350 71.493 403 0.474 393 0.230 350 7317.06
6 321 110.1 321 68.513 72 0.439 143 0.220 47 7098.686
7 313 74.93 206 68.367 152 0.411 180 0.217 208 4458.465
8 90 70.83 313 63.012 441 0.401 361 0.216 321 4360.754
9 109 67.46 269 58.6 134 0.394 444 0.187 82 3249.533
10 127 62.14 420 51.842 363 0.393 266 0.168 313 3088.124

The cumulative distribution and fitting function of in- and out-strength are plotted in
a logarithmic coordinate system, as shown in Figure 1. The cumulative distribution power
exponent of in-strength is 2.62991 and the goodness of fit is R2 = 0.90327; the cumulative
distribution power exponent of out-strength is 4.86417 and goodness of fit is R2 = 0.94534.
The fitting effect of the power-law distribution of the strength of nodes is very good, which
indicates that the connection between nodes in the network is irregular, and there is no
accurate distance relationship, so it belongs to a scale-free network. Only a small number
of designers participate in the main production element of the Local Motors OSC. It is,
therefore, meaningful to identify the opinion leaders in the KCN.

Figure 1. Cumulative distribution of out- and in-strength. Figure (a) shows the cumulative distribu-
tion of out-strength. Figure (b) shows the cumulative distribution of in-strength.

2. Closeness centrality.

Closeness centrality is the reciprocal of the sum of the length of the shortest paths
between the node and all other nodes in the network [55], and it measures the difficulty
level of the node arriving at other nodes and the communication efficiency in the network.
In-closeness is the shortest path from other nodes to this node, and out-closeness is the
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shortest path from this node to other nodes. Table 2 lists the respective closeness centralities
of the top ten nodes of the Local Motors OSP. The in-closeness of the top ten nodes is around
0.4, which means they can easily communicate and collaborate with other designers in the
network. The maximum value of 0.592 indicates that the network has a low concentration.
Nodes with a closeness centrality near to 0 account for 47.2% of the total, indicating that
nearly half of the designers are at an absolute disadvantage in the network’s information
circulation. The general low out-closeness indicates that the efficiency of communication
and collaboration of community designers is low, and the initiative needs to be improved.
Therefore, we choose in-closeness as the input of the opinion leader identification model.

The top 10 nodes of in-closeness and out-closeness centrality are completely different,
indicating that there are different types of designers in the network. For example, designers
who have professional knowledge and are well known by others will choose more mean-
ingful collaboration and have low initiative. Designers who actively seek collaboration
cannot get an effective response. Therefore, it is necessary to identify the important nodes
in the network.

3. Betweenness centrality.

Betweenness centrality is the number of short paths between nodes in the network that
pass through a given node [56]. “Intermediary” means that nodes occupy a key position in
the network dissemination path and play the role of disseminator. As shown in Table 2, of
the top ten designer nodes in the Local Motors OSP, node 324 has the largest betweenness
value, which is a very important bridge. The betweenness of other nodes in the top ten is
also very high. Despite there being a large difference between them, they are still far higher
than the 55.6% of nodes with 0 betweenness. Due to the following effect of most designers
in the network, nodes with a large betweenness value are very important to maintaining
the stability of the network.

Further observing Table 2, it can be found that the top five nodes with betweenness
centrality are exactly the same as with the top five nodes with in-strength, and the coin-
cidence degree with out-strength nodes has also reached 80%, indicating that users with
strong collaboration ability also play an important “intermediary” role in the network.

4. Structural hole.

Structure hole mainly refers to the fact that there is no direct connection between the
two nodes in the network, and they must be connected through a third party. The third
party occupies the structural hole position in the relationship network and plays the role of
“network bridge”. The existence of structural holes means the existence of opinion leaders.

In this paper, four structural hole indexes as proposed by Burt [57] are selected for
analysis, which are effective size, efficiency, constraint, and hierarchy. Among them, the
hierarchy and constraint are cost indexes, and effective size and efficiency are benefit
indexes. (1) Effective size is the non-redundant information in the network. The larger
the effective size, the lower the redundancy of network information and the greater the
possibility of structural holes. (2) The node efficiency is equal to the ratio of the effective size
of the node to the actual size. The higher the node efficiency, the higher the node activity
efficiency in the network, and the faster the dissemination of information. (3) Constraint is
the direct or indirect closeness between a node and other nodes in the network. The higher
the constraint coefficient, the closer the node’s own-network (the node’s own-network
refers to the network composed of the node and all nodes directly connected to it), and
the less the number of structural holes. (4) Hierarchy indicates the degree to which all
restrictions are concentrated on one node. The lower the hierarchy value, the more central
the node’s position is and the greater the control power for the network is. For the Local
Motors OSP, Table 3 lists the top ten nodes by the hierarchy value. We think that the
hierarchy shows the degree of control of network information dissemination from the
overall situation, and can better reflect its position in the overall network, so choose to
input it into the opinion leader identification model.
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Table 3. Top ten node list of structural hole hierarchy.

Node Hierarchy Effective Size Efficiency Constraint

112 0.001 2 1 0.5
120 0.001 2 1 0.5
320 0.001 2 1 0.5
84 0.001 1.506 0.502 0.928

357 0.001 1.156 0.578 1.062
57 0.001 1 0.5 1.364

260 0.001 1 0.5 1.367
191 0.001 1 0.5 1.412
158 0.001 1 0.5 1.422
140 0.002 1 0.5 1.371

4.2. Opinion Leader Identification Method
4.2.1. Entropy Weight TOPSIS

In this paper, a node-importance synthesis method for multi-attribute decision making
based on entropy weight and TOPSIS [54] is selected to identify opinion leaders. Each node
is regarded as a decision scheme. The final evaluation is made by calculating the distance
between each scheme and the optimal scheme. The specific steps for this are as follows.

1. The decision scheme set: Q = {Q1, Q2, . . . Qm} consists of M nodes in the network.
The set of N evaluation indexes: U = {U1, U2, . . . Un};The jth index evaluation result
of scheme i is Qi

(
Uj
)
(i = 1, 2, · · · , m; j = 1, 2, · · · , n).

2. Of the evaluation indexes selected in this paper, only the hierarchy in the structural
hole is used as the cost index, and the others are used as the gain index. To eliminate
the impact of different index dimensions, the evaluation results are normalized to xij,
and then the original decision matrix is X =

(
xij
)

m×n.

xij =
Qi
(
Uj
)
−Qi

(
Uj
)

min
Qi
(
Uj
)

max −Qi
(
Uj
)

min

(5)

where: i = 1, 2, · · · , m; j = 1, 2, · · · , n, Qi
(
Uj
)

max and Qi
(
Uj
)

min are the maximum
and minimum values of the evaluation results respectively.

3. The entropy weight method is selected to determine the index weight. The weight of
the jth evaluation index is expressed as wj(j = 1, 2, · · · , n, ∑ wj = 1). The weighted
standard decision matrix Y is obtained as follows:

Y = yij = wjxij =

 w1x11 · · · wnx1n
...

. . .
...

w1xm1 · · · wnxnn

 (6)

The set of maximum value of each evaluation index is positive ideal scheme A+ and
the set of minimum value is negative ideal scheme A−. The distances from each
decision scheme Qi to A+and A− are respectively calculated as follows:

D+
i =

[
∑n

j=1

(
yij − ymax

j

)2
]1/2

(7)

D−i =

[
∑n

j=1

(
yij − ymin

j

)2
]1/2

(8)

4. According to the above results, the nearness Zi of each decision scheme can be further
calculated:

Zi = D−i /D+
i + D−i (9)



Entropy 2021, 23, 1235 11 of 21

5. Finally, the final evaluation index of each decision scheme is calculated, which repre-
sents the importance of nodes in the network. This paper considers the top five nodes
to be the opinion leaders in the community.

4.2.2. Opinion Leader Identification Example

Here, we use an OSP of Local Motors as an example to illustrate the opinion leader
identification method. First, a directed, weighted, semantic-based KCN is constructed.
Four indexes are calculated using UCINET analysis software and SPSSAU software: node-
strength centrality (SC), closeness centrality (CC), betweenness centrality (BC), and struc-
tural hole (SH). Then, after the evaluation results of all nodes under the four different
indexes are standardized, the original decision matrix is obtained, as shown in Table 4.

Table 4. Four index standardization matrix.

Surface

Support SC CC BC SH

1 0.0029 0.12819 0 0.001
2 0.0138 0.68665 0.001 0000529
3 0.0134 0.68427 0.006 0.00406
4 0.0222 0.68783 0.0092 0.01190
5 0.0425 0.68902 0.0049 0.00806

The respective information entropies of the four indexes are 0.8855, 0.9465, 0.8745
and 0.9334, the respective weights of these indexes are wSC = 0.318, wCC = 0.1485,
wBC = 0.3485 and wSH = 0.185, and the weighted standard decision matrix, Y, is:

Y =



0.0009 0.0190
0.0043 0.1019
0.0042 0.1016

0 0.00018
0.00038 0.00100
0.00021 0.00080

0.0071 0.1021
0.0135 0.1023
0.0089 0.1021

0.00320 0.00220
0.00160 0.00150
0.00170 0.00190

0.0104 0.1014
0.0119 0.1016
· · · · · ·

0.00210 0.00190
0.00240 0.00420
· · · · · ·


(10)

Next, the positive and negative ideal scheme is generated:

A+ = (0.321, 0.352 , 0.15 , 0.187) (11)

A− = (0.003, 0.003, 0.001, 0.002) (12)

The distance D and closeness Z from each decision scheme to the ideal scheme are
calculated. Sorted according to closeness Z, the specific results are shown in Table 5. The
top five nodes in the final evaluation are nodes 324, 345, 307, 14, and 321 nodes; these are
the opinion leaders of the OSP. Where the first four (324, 345, 307, 14) correspond to the
nodes with top five degree centrality and top five betweenness centrality, and the fifth (321)
is also included in the top ten nodes of degree and betweenness centrality. This shows that
in OPS, designers who have professional knowledge, like to cooperate with others and are
in the “intermediary” position have greater influence; most designers are concerned about
and follow them.
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Table 5. Opinion leader identification results from the Local Motors example.

Node D+
i D−i Zi

324 0.132 0.486 0.786
345 0.232 0.316 0.576
307 0.307 0.254 0.453
14 0.342 0.237 0.409

321 0.376 0.225 0.374

4.2.3. SIR Propagation Model of Opinion Leaders’ Behavior Influence

Having identified the opinion leaders of the KCN, this section now further describes
the influence of the opinion leaders on other nodes, that is, the propagation effect of opinion
leaders’ collaborative behavior.

The classical SIR epidemic model [58] considers that the total population is a constant
N and there are three different groups: the susceptibles (S), those who have not yet been
infected but have a possibility of being infected; the infectives (I), those who have been
infected and may infect other individuals; and the removal (R), those who are no longer
infected and will not be reinfected. In the KCN of an OSC, the infectives (I) are set as the
opinion leader node and the susceptibles (S) are all other individuals who participate in the
collaboration. When the opinion leader reduces the intensity of knowledge collaboration,
they have a certain chance of being infected. Owing to homogeneity, information default
and other reasons, they also reduce the collaboration intensity, that is, behavior degradation.
At the same time, there is a certain probability that the infectives (I) will take the initiative to
restore the willingness to collaborate and become the removals (R) under the environment
of community ecological optimization and altruism.

At time t, the numbers of the three groups are S(t), I(t), R(t). The infection probability
of susceptibles (S) is λ, and the recovery probability after infection is γ. In KCNs, the
infection probability is usually dynamic and tends to decline due to the extension of the
infection path and the decrease of time effectiveness. Therefore, the negative exponential
model is used to describe the change of infection probability:

f (t) = e−µ(t−t0) (13)

where: µ is the characteristic scaling factor, which is used to describe the reduction charac-
teristics of the infection probability. The standard deviation coefficient is a relative index
reflecting the degree of dispersion of vertex strength, so we use its reciprocal to express µ.
In the directed weighted network, 〈w〉 is the average weight of the network and σw is the
standard deviation of the weight. Therefore, µ is:

µ =
〈w〉
σw

(14)

From the semantic-based KCN model G = ( V, E, W), we can get: 〈w〉 = 7.984 and
σw = 22.481,so µ = 0.36, f (t) = e−0.36(t−t0) . Finally, all nodes except for the opinion leader
node have recovery behavior. The recovery probability depends on the degree of network
information flow, the collaboration needs of nodes, and the community’s investment
in node recovery resources. Therefore, to facilitate the calculation, the overall recovery
probability is set as γ = 0.1. In summary, the SIR model equations of opinion leaders are:

dI(t)
dt = e−0.36(t−t0) I(t)S(t)− 0.1I(t)

dS(t)
dt = −e−0.36(t−t0) I(t)S(t)

dR(t)
dt = 0.1I(t)

(15)
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5. Dynamic Robustness Analysis of Knowledge Collaborative Network
5.1. Robustness Evaluation Index

Network robustness can be defined as the degree of retention of network performance
when network nodes or edges fail [59]. The impact of such node or edge failure for the
KCN of an OSC includes (1) the destruction of network connectivity, which reduces knowl-
edge collaborative intensity, and (2) a decrease in network efficiency, which increases the
difficulty of knowledge collaboration. As such, the robustness evaluation index proposed
in this paper includes both network connectivity and weighted efficiency.

5.1.1. Relative Size of Network Connectivity S

To reflect the degree of network connectivity retention after the network is attacked, the
relative network connectivity size S is defined as the relative size of the largest connected
subgraph node intensity of the network:

S =
S′lc
Slc

(16)

where: S′lc is the sum of the node intensity of the maximum connected subgraph of the
network after being attacked and Slc is the sum of the node intensity of the original network.
The calculation formula for the sum of node intensity is

Slc =
N

∑
i

N

∑
j

wij (17)

where: N is the total number of nodes in the network and wij is the edge weight of
nodes i and j. In the weighted KCN of the OSC, node intensity represents the knowledge
collaborative intensity. Therefore, the smaller the value of S, the greater the decrease
in knowledge collaborative intensity after the network is attacked (i.e., the lower the
robustness of connectivity), and vice versa.

5.1.2. Relative Size of Weighted Efficiency H

Network efficiency describes the difficulty of information dissemination. Network
efficiency is expressed as the sum of the efficiency of all nodes in the network, where node
efficiency is the reciprocal of the shortest path length between two nodes [60]:

E =
1

n(n− 1) ∑
i 6=j

1
dij

(18)

where dij is the distance between nodes i and j, and n is the number of nodes. Weighted
efficiency is based on the weighted shortest paths notion. For weighted networks, a path
between two nodes is the sum of the weight associated to the links necessary to travel
between the nodes [61]; consequently, the directed weighted shortest path, expressed
as (dw)ij, is the minimum sum of the weights necessary to travel form nodes i to j. When
the wij of edge eij is defined as dissimilarity weight, such as “costs”, the WSP is the
minimum sum of the weight of the links to travel between the nodes, that is, (dw)i,j = wij;
when the wij of edge eij is defined as similarity weight, such as “flows”, the WSP is the
minimum value of the reciprocal sum of edge weight on the links, that is, (dw)i,j =

1
wij

.
From the above analysis, the weighted efficiency Ew of the directed weighted network

can be obtained:
EG =

1
n(n− 1) ∑

i 6=j

1
(dw)ij

(19)

It can be seen from part 3.1 that the weight of KCN is similarity weight, which is "flows",
therefore, where(dw)ij =

1
wij

.
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To reflect the degree of knowledge collaborative efficiency retention after the network
is attacked, the relative knowledge collaborative efficiency size H is defined as follows:

H =
E′w
Ew

(20)

where E′G is the weighted efficiency of the attacked network and EG is the weighted
efficiency of the original network. The value range of H is[0, 1]. When H = 0, the network
efficiency drops to its lowest after the attack, that is, designers in the network do not have
any form of collaboration. When H = 1, the efficiency of the whole network remains at
the original level, without any impact on the network efficiency due to the failure of edge
weights.

5.2. Degradation Mode Design of Knowledge Collaboration Behavior

Degradation mode design is the key to robustness analysis. For the open-source
design community, the KCN will not be subject to external attacks. The main risks and
disadvantages of the network come from (1) designers voluntarily leaving the community,
which is called node degradation, and (2) designers’ willingness to collaborate is reduced,
which is called the degradation of knowledge collaboration behavior. Most existing research
is based on the degradation of the nodes themselves, and little research exists on the
degradation of knowledge collaboration behavior or the propagation mode of opinion
leaders’ behavior degradation in the community. In OSCs, high-strength nodes are very
important for maintaining network connectivity, and they represent the main knowledge
contribution nodes. The high betweenness node plays an important role in maintaining
the information dissemination speed of the network, and it represents the main knowledge
dissemination node in the network. By ranking nodes according to their point strength
and betweenness, and reducing the weights of the directed edges in turn, we can describe
the collective degradation of the main knowledge contribution behavior and the main
knowledge dissemination behavior.

In addition, opinion leaders are the most influential nodes in the network. Under
the influence of the external environment, dissatisfaction with the community ecology
and their own factors, their knowledge collaborative intensity may decrease; if so, their
propagation characteristics lead to the degradation of other nodes’ collaborative behavior.
Therefore, this should be reflected in the design of the degradation mode of opinion leaders’
collaborative behavior. In this paper, an SIR model is used to simulate the propagation
mode of the opinion leaders’ degradation behavior and calculate the change of network
performance. The simulation process is shown in Figure 2.

Considering the characteristics of the above three kinds of nodes and their roles in
the network, we design three degradation modes for collaborative behavior, as shown in
Table 6. Here, ε represents the degradation degree of the collaborative behavior, known as
the “degradation coefficient”.

5.3. Simulation Analysis on Dynamic Robustness of KCN

Based on the construction of a semantic-based KCN, the identification of opinion
leaders, and the design of a knowledge collaboration behavior degradation mode, the
index changes of network robustness under random degradation, and the three degradation
patterns are simulated using Python 3.7 software. Originpro 9.0 software is used to create
the contrast chart of the experimental results.
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Figure 2. The simulation process of opinion leaders’ collaborative behavior degradation.

This paper starts from T = 0 to simulate the change of network robustness index
during the continuous decline of collaborative behavior. To observe the influence of
knowledge collaboration behavior degradation on network robustness more clearly, the
degradation coefficient is taken as ε = 0.8. In the propagation process of the degradation of
opinion leaders’ collaborative behavior, the initial time is set at t0 = 0. Figure 3 shows the
change trend of the relative size of network connectivity under the behavior degradation
mode, and Figure 4 shows the change trend of the relative size of weighted efficiency. Note
that the index value rises slightly with the continuous evolution; this is because of the
continuous recovery of nodes under the propagation mode of the degradation of opinion
leaders’ collaborative behavior. In addition, the curve trend of the other three behavior
degradation modes is basically the same. The marginal nodes with a strength of 1 account
for the largest proportion in the network. As such, these nodes are more likely to be
selected in the random degradation mode. These kinds of nodes have a weak collaboration
tendency and a single information exchange channel; as such, the degree of change of the
two indexes is the lowest. In contrast, the degree of change of the index value is stronger
under the three modes of main knowledge dissemination behavior (BS), main knowledge
contribution behavior (VS), and opinion leaders’ collaborative behavior (CN).
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Table 6. Degradation mode design of knowledge collaboration behavior.

Degradation Mode Description Degradation Simulation Calculation Process

Degradation mode of knowledge
Collaboration behavior

The degradation
of opinion leaders’ collaborative

behavior (CN)

(1) The directed edge weight of the five identified
opinion leaders in the network is reduced to the

original weight ε times. (2) Taking the opinion leader
node as the initial infection source into the SIR

model, the weight of the infected node is reduced to
the original value ε times. At the end of evolution,
the robustness index value is calculated. Take the
network at this time as the current network, then
identify the opinion leader node and repeat the
above two steps. Repeat n times to simulate the

most influential node and its degradation behavior
propagation mode. The simulation process is shown

in Figure 2.

The degradation
of main knowledge contribution

behavior (VS)

Sort the nodes generated by the network according
to out-strength. Based on the sorting result, select

the top five nodes to reduce the weight of the
directed edge to the original value ε times. Take the

network at this time as the current network, then
calculate the out-strength of nodes and sort to

reduce the directed edge weights of the first five
nodes. Repeat n times to simulate the degradation of

main knowledge collaboration behavior.

The degradation of
main knowledge dissemination

behavior (BS)

Sort the nodes generated by the network according
to node betweenness. Based on the sorting result,

select the top five nodes to reduce the weight of the
directed edge to the original value ε times. Take the

network at this time as the current network, then
calculate the node betweenness of nodes and sort to

reduce the directed edge weights of the first five
nodes. Repeat n times to simulate the degradation of

main knowledge dissemination behavior.

Random
degradation

Random degradation of
collaborative behavior (R)

Randomly select five nodes to reduce the weight of
the directed edge to the original value ε times.

Repeat n times to simulate the random degradation
of collaborative behavior.

Figure 3. The change trend of the relative size of network connectivity S.
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Figure 4. The change trend of the relative size of weighted efficiency H.

The paired T-test is conducted on the change trend data of the index values under the
four behavioral degradation modes collected from the simulation experiment, as shown in
Table 7. These test results show that the index values under different degradation modes
are significantly different. Based on the above analysis, it can be concluded that the random
degradation mode has the highest robustness, followed by the degradation mode of main
knowledge dissemination behavior, main knowledge contribution behavior, and opinion
leaders’ collaborative behavior, namely R > BS > VS > CN.

Table 7. Paired sample T-test under different behavioral degradation modes.

Paired Degradation
Mode

M SD
95% Confidence

t df Sig
Lower Limits Upper Limits

R-BS 0.448954 0.012223 0.424437 0.473481 36.745 52 0.000
H BS-VS 0.033671 0.001818 0.030032 0.037324 18.544 52 0.000

VS-CN 0.087575 0.014925 0.057614 0.117548 5.868 52 0.000
R-BS 0.392329 0.014702 0.362827 0.421832 26.685 52 0.000

S BS-VS 0.025411 0.002538 0.020317 0.030041 10.012 52 0.000
VS-CN 0.063971 0.027419 0.008948 0.118992 2.333 52 0.024

Through further observation of the change of the index value we find that when t = 5,
the relative size of network connectivity and weighted efficiency under the degradation
mode of opinion leaders’ collaborative behavior (CN) decreased by 80%, while the index
value under the degradation modes of main knowledge dissemination behavior (BS) and
main knowledge contribution decreased by only 40%. On the one hand, this result confirms
that the opinion leaders identified by the method in Section 3 do have a strong influence.
On the other hand, it shows that protecting the opinion leader nodes to avoid their behavior
degradation is the key to keeping network performance and improving the robustness of
the KCN.

Due to the following effect of opinion leaders on other designers, the index value of the
network under the degradation mode of opinion leaders’ collaborative behavior drops to
50% of the original network at time T = 2 and reaches its lowest value at time T = 5. Then,
for a long time, the network performance remains at its lowest state. With the evolution
of the network, knowledge collaboration behavior constantly recovers, which makes the
network performance continuously improve. The relative size of network connectivity can
recover 17% on the basis of the lowest value, while the relative size of weighted efficiency
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is only about 5%, which indicates that the majority of immune nodes are marginal nodes
and the heterogeneity is not obvious.

When comparing the degradation patterns of main knowledge contribution behav-
ior (VS) and main knowledge dissemination behavior (BS), we find that the top five
nodes in the original network partially overlap and the decline degree of the initial index
value is basically the same. With the continuous evolution of the network, the index
value is more sensitive to the degradation of the main knowledge contribution behavior;
therefore, protecting the main knowledge contribution nodes should also be the focus of
robust management.

6. Conclusions

Based on the characteristics of knowledge collaboration in OSCs, we analyzed the
network robustness under the degeneration model of knowledge collaboration behavior.
Our research contributions are as follows:

1. A semantic-based KCN was established by taking the weighted processing of collabo-
ration content and collaboration frequency among designers in the OSD community
as edge weights.

2. The index system of strength centrality, closeness centrality, betweenness centrality,
and structure hole was constructed. The multi-attribute comprehensive evaluation
method of entropy weight and TOPSIS was used to identify the opinion leaders, and
the SIR model of opinion leader’s behavior influence was proposed to describe the
propagation of opinion leader’s behavior.

3. Based on the behavior characteristics of designers in the OSD community, we de-
signed three degradation modes based on opinion leaders’ collaborative behavior,
main knowledge dissemination behavior and main knowledge contribution behavior.
Robustness analysis experiments were conducted based on empirical data from the
Local Motors OSD community. The analysis results showed that network robustness
was the lowest under the degradation mode of opinion leaders’ collaborative behavior,
followed by the degradation modes of main knowledge contribution behavior and
main knowledge dissemination behavior. The degradation mode of random behavior
had the highest robustness. Under the degradation mode of opinion leaders’ collab-
orative behavior and the propagation mode of their degraded behaviors, network
performance can quickly drop to its lowest point. The continuous restoration of
collaborative behaviors by nodes can cause the network performance to rise after a
sustained period at its lowest state, but this increase is limited.

Based on the analysis results, the following management implications were
also obtained:

1. The community should effectively identify the nodes of opinion leaders and encour-
age the knowledge collaboration behavior of such nodes with core influence. Research
shows that a harmonious community environment, perfect incentive mechanism, and
competitive coordination mechanism can effectively improve the collaboration behav-
ior of nodes [62,63]. The community can establish designer privacy protection, clear
intellectual property rights, and other systems. Opinion leaders could be given more
incentive measures, such as resource authority, identity authentication, and privilege
level. Further, increased opportunities could be given for online meetings, offline
development, and other activities. At the same time, community managers should
ensure timely information guidance to avoid behavior propagation caused by infor-
mation deficit. For example, the setting of mechanisms such as timely information
release, status updates and intelligent Q and As.

2. Community managers should also pay attention to the protection of main knowledge
contribution designers and main knowledge dissemination designers to avoid the
degradation of their collaborative behavior. For example, the star sign should be
set for the high-quality knowledge contributed by designers, and the case databases
should be set up for the active users to consult and so on; this should increase the
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sense of worth of the main knowledge contributors. Further, the main knowledge
dissemination designers should be encouraged to join in with the community man-
agement work, and attention should be paid to their opinions on the development of
the community to increase their sense of belonging and achievement.

3. A talent introduction mechanism should be set to attract more designers to join the
community to collaborate knowledge. Further, after the degradation of designers’
behaviors, resources should be first concentrated to restore the collaborative behaviors
of core influential nodes to reduce the rapid decline of network performance.

This paper constructed a semantic-based KCN to effectively identify opinion leaders
and studied the network robustness under different behavior degradation modes. This
method is particularly suited to organizations that prioritize large-scale knowledge col-
laboration, such as OSP or OSD communities. One limitation is that our work is aimed
at the single project network. In the OSC, the same designer can participate in multiple
projects, and the degradation of designers’ collaborative behavior may have an impact on
multiple projects. Therefore, we will carry out further research on the robustness of the
OSC’s multi-project KCN in the future.
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