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Abstract: Accurate land cover mapping is important for urban planning and management. Remote
sensing data have been widely applied for urban land cover mapping. However, obtaining land cover
classification via optical remote sensing data alone is difficult due to spectral confusion. To reduce
the confusion between dark impervious surface and water, the Sentinel-1A Synthetic Aperture Rader
(SAR) data are synergistically combined with the Sentinel-2B Multispectral Instrument (MSI) data.
The novel support vector machine with composite kernels (SVM-CK) approach, which can exploit
the spatial information, is proposed to process the combination of Sentinel-2B MSI and Sentinel-1A
SAR data. The classification based on the fusion of Sentinel-2B and Sentinel-1A data yields an overall
accuracy (OA) of 92.12% with a kappa coefficient (KA) of 0.89, superior to the classification results
using Sentinel-2B MSI imagery and Sentinel-1A SAR imagery separately. The results indicate that the
inclusion of Sentinel-1A SAR data to Sentinel-2B MSI data can improve the classification performance
by reducing the confusion between built-up area and water. This study shows that the land cover
classification can be improved by fusing Sentinel-2B and Sentinel-1A imagery.

Keywords: Sentinel-2B; Sentinel-1A; land cover classification; support vector machine; data fusion

1. Introduction

Rapid urbanization has several negative effects, such as heavy haze, the urban heat
island effect, and the degradation of urban ecosystem services. Accurate land cover maps
can contribute to land use management, urban management, and sustainable development.
Remote sensing technology has become a useful tool for monitoring land cover and urban
expansion. In particular, remote sensing images with a medium spatial resolution (10 m
to 100 m) have been widely adopted to classify land cover types. For instance, Landsat
7 ETM+ and Landsat 8 OLI data have been widely applied for land cover mapping [1–3].
Sentinel-1 and Sentinel-2, as two new-generation platforms, also provide free satellite
imagery [4–6]. The 30 m and 10 m global land cover maps are produced using Landsat TM,
ETM+, and Sentinel-2 Multispectral Instrument (MSI) satellite images [7,8]. Given its fine
resolution, Sentinel-2 MSI data are able to provide fine-scale land cover classification at
global and regional scales. However, optical sensors are usually hampered by atmospheric
conditions [9–11]. The geometric and dielectric properties of the Earth’s surface can be
observed by Synthetic Aperture Rader (SAR) data. Additionally, microwaves can penetrate
clouds, haze, and smoke. As a result, SAR data are not affected by weather conditions.
SAR data are found to discriminate land cover types in clouded regions. Studies have
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proved that information of reflectance and backscatter coefficient can be obtained from
the integration of optical data and SAR data [12–14]. Thus, land cover classification using
multi-source images has shown great potential [15].

The Sentinel-2 and Sentinel-1 data have been used in many scientific fields. The
applications of Sentinel-2 MSI data involve burned area discrimination, hydrothermally
altered mineral mapping, landslide susceptibility assessment, and mangrove extent map-
ping [16–20]. It has been shown that Sentinel-2 MSI data can be used for land cover
mapping in urban areas. The differences between dark impervious surface and water are
not conspicuous, which poses a major problem for accurate classification using Sentinel-2
MSI data alone. Dark impervious surfaces tend to be confused with water when using
optical images alone [21]. Sentinel-1 SAR imagery has been used for land cover mapping,
flood monitoring, soil moisture retrieval, and rice production estimation [22–25]. Sentinel-1
SAR data can replace Sentinel-2 MSI data when the image quality of Sentinel-2 MSI is
impacted by cloud and fog. Timely land cover maps derived from Sentinel-1 SAR images
are of great importance to urban management. Considering the complex distributions
of materials in urban areas, land cover classification generated from Sentinel-1 SAR data
remains a challenge. Sentinel-2 MSI data can be combined with Sentinel-1 SAR data for
vegetation type classification, biomass estimation of mangrove forests, and burned area
mapping [26–28]. Several studies have shown that land cover classifications can be im-
proved when SAR data are combined with optical data [29,30]. To improve the accuracy
of land cover classification, Sentinel-1 SAR data should be synergistically combined with
Sentinel-2 MSI data. However, few studies have focused on the fusion of Sentinel-2 MSI
and Sentinel-1 SAR data for urban land cover classification. Therefore, the effectiveness of
fusing Sentinel-2 MSI and Sentinel-1 SAR images deserves further assessment.

Machine learning algorithms that include support vector machine (SVM), extreme
learning machine (ELM), and kernel extreme learning machine (KELM) have been widely
used for image classification [31–33]. Traditionally, these machine learning algorithms only
utilize spectral information. The classification accuracy can be improved by combining
spatial information with spectral information [34–37]. Textures of bands can enhance
classification by reducing heterogeneity and preserving boundaries of the same land cover
type. The spatial information of remote sensing data has proven useful in urban land cover
classification. Deep learning techniques have shown a great capability in extracting spatial
information from raw images. However, these methods are limited by their inefficiencies
in the processing time and difficulties in collecting training samples. The support vector
machine with composite kernels (SVM-CK), which was proposed in 2015, can achieve a
better performance compared with traditional methods [38]. To produce accurate land
cover maps, the SVM-CK algorithm is applied to the combination of Sentinel-2B MSI and
Sentinel-1A SAR data. The objectives of this research are: (1) to assess the effectiveness
of Sentinel-1 SAR data in classifying land cover types, (2) to evaluate the effectiveness of
fusing Sentinel-2 MSI and Sentinel-1 SAR images, and (3) to evaluate the effectiveness of
SVM-CK in terms of land cover classification.

2. Study Area and Materials
2.1. Study Area

The Wuhan metropolis, which is the capital of Hubei Province, is a representative
city in central China [39]. Over the past four decades, Wuhan has experienced rapid
urbanization because of the opening up and reform policy. The city of Wuhan has a great
influence on the Yangtze River Economic Belt. The land cover types of Wuhan mainly
include built-up area, water, forest, cropland, and bare soil [40–42]. To avoid the uncertainty
introduced by image mosaicking, only one scene of a Sentinel-2B MSI image and one scene
of a Sentinel-1A SAR image are used [43]. The study area (2223 km2) covers the core regions
of Wuhan (Figure 1).
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Figure 1. (a) The geographic location of Hubei Province; (b) the geographic location of Wuhan.

2.2. Remote Sensing Data

The Landsat 8 satellite that carries the Operational Land Imager (OLI) sensor was
launched on 11 February 2013. OLI has five bands in the visible and near-infrared (VNIR)
region and three bands in the shortwave infrared (SWIR) region [44]. These eight bands
have a 30 m spatial resolution over a 185 km swath. The Sentinel-2B satellite that carries an
innovative MSI was launched on 7 March 2017. The MSI has ten bands in the VNIR region
and three bands in the SWIR region. The four bands (B02, B03, B04, and B08) have a 10 m
spatial resolution over a 100 km swath. In addition, the six bands (B05, B06, B07, B8a, B11,
and B12) have a 20 m spatial resolution over a 100 km swath [45].

The Sentinel-1A images acquired in the Interferometric Wide Swath (IW) mode are
available. The Sentinel-1A IW level-1 Ground Range Detected (GRD) image acquired on
16 October 2018 is analyzed in this research. This Sentinel-1A scene is captured at 5 m by
20 m spatial resolution, in dual-polarization (VV + VH) [46,47].

3. Methods
3.1. Preprocessing of Sentinel-2B MSI and Sentinel-1A SAR Data

The Sentinel-2B MSI image acquired on 12 October 2018, Landsat 8 OLI image ac-
quired on 15 September 2018, and Sentinel-1A SAR image acquired on 16 October 2018 are
analyzed in this study. The Sentinel-2B image (bands 2–7,8a, 11–12) and Landsat 8 OLI
image (bands 1–7) are radiometrically corrected in ENVI 5.5.1 (the Environment for Visu-
alizing Images). A combination of the Sentinel-1A image and corresponding orbit file is
imported into SARscape 5.2.1 [21]. A Frost filter with a 9×9 window is applied to reduce
the noise. The intensity values of the Sentinel-1A image are converted into sigma naught
(dB) by performing radiometric calibration. The Sentinel-2B MSI image and Sentinel-1A
SAR image are resampled to a 20 m resolution and coregistered to the Landsat 8 OLI image.
Both Sentinel-2B MSI and Sentinel-1A SAR data are spatially subset in ENVI 5.5.1 to the
study area (Figure 2). The procedure for land cover classification is illustrated in Figure 3.
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3.2. Reference Data Acquisition and Accuracy Assessment

A total of 435 regions of interest (ROIs) are selected for training and validation
(Table 1) [48]. Pixels representing water, forest, cropland, and bare soil are selected from
the false-color composite Sentinel-2B MSI image (Figure 2a). The built-up area consists
of asphalt, concrete, red-tiled roofs, and metal. In urban areas, asphalt roads and old
concrete roofs can be easily confused with water. It is also difficult to distinguish water
from shaded areas caused by high buildings. Shaded areas caused by high buildings are
common in urban areas due to the spatial resolution of the Sentinel-2B MSI image. Assisted
by Google Earth imagery (available online: https://google-earth.gosur.com/ (accessed

https://google-earth.gosur.com/
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on 1 July 2021)), it is observed that shaded areas are predominantly covered by concrete.
Therefore, the shaded area is not regarded as a land cover type. Google Earth is useful for
selecting suitable ROIs. Therefore, pixels representing built-up area are collected from the
Sentinel-2B MSI image and Google Earth images. The classifications are assessed by the
overall accuracy (OA) and kappa coefficient (KA). Each land cover type is evaluated by the
producer’s accuracy (PA), user’s accuracy (UA), and F-score.

Table 1. Description of five land cover categories.

Class Name Training ROIs Validation ROIs Training Pixels Validation Pixels Class Description

Built-up 80 40 1510 737 Buildings, roads, and
industrial areas

Water 90 45 991 243 Lakes, rivers, and ponds

Forest 40 20 1064 292 Shrub, broadleaf, and
coniferous

Cropland 40 20 1038 199 Farmland and grass
Bare soil 40 20 743 242 Exposed rock and soils

3.3. SVM-CK Algorithm

The SVM-CK algorithm is employed to process the remote sensing data because of
its great performance. The SVM-CK algorithm has shown good performance because this
classifier can use spatial information. The method requires three adjustable parameters:
the penalty parameter (C), the kernel parameter (σ1) for the remote sensing data, and the
kernel parameter (σ2) for the mean texture of remote sensing data. The ranges of these
three parameters correspond to: C = (10, 102, 103, 104, 105, 106), σ1 = (2 −5, 2 −4, . . . , 25),
and σ2 = (2 −5, 2 −4, . . . , 25). A 5-fold cross-validation with a grid search method is used for
tuning these parameters [49]. The training pixels are used to select the optimal parameters
in MATLAB 2017a software. The validation pixels are used for accuracy assessments and
statistical comparisons.

4. Results
4.1. Classification with Sentinel-2B MSI Data

The SVM-CK algorithm is used to process the Sentinel-2B MSI data. The classification
using the SVM-CK algorithm achieves an OA of 91.54% with a KA of 0.88 (Table 2). The
highest PA is acquired for the built-up area (97.29%), followed by water (93.42%), bare soil
(90.91%), forest (82.53%), and cropland (81.91%). The producer’s accuracies for the built-up
area, water, and bare soil are considerably high. The PA for the built-up area is 97.29%
(18 pixels of the built-up area are misclassified as water, and 2 pixels of the built-up area
are misclassified as forest) (Table 2). The UA is highest for bare soil (100%), followed by
built-up area (95.22%), water (92.65%), forest (85.77%), and cropland (76.17%). The user’s
accuracies for bare soil, built-up area, and water are considerably high. The UA for water is
92.65% because 18 pixels of the built-up area are wrongly classified as water (Table 2). The
F-score is highest for built-up area (96.24%), followed by bare soil (95.24%), water (93.03%),
forest (84.12%), and cropland (78.93%). The confusion between the built-up area and water
is apparent when only the Sentinel-2B MSI data are used. A majority filter is applied to
process the land cover classification (Figure 4).
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Table 2. Confusion matrix of the classification results using only the Sentinel-2B MSI data.

Reference Data

Built-Up Water Forest Cropland Bare Soil Total PA(%) UA(%) F(%)

Built-up 717 13 0 1 22 753 97.29 95.22 96.24
Water 18 227 0 0 0 245 93.42 92.65 93.03
Forest 2 3 241 35 0 281 82.53 85.77 84.12

Cropland 0 0 51 163 0 214 81.91 76.17 78.93
Bare soil 0 0 0 0 220 220 90.91 100 95.24

Total 737 243 292 199 242
OA = 91.54% KA = 0.88
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4.2. Classification with Sentinel-1A SAR Data

The SVM-CK algorithm is also used to process the Sentinel-1A SAR data. The clas-
sification using the Sentinel-1A SAR image achieves an OA of 73.09% with a KA of 0.64
(Table 3). Among the five land cover types, the largest area is covered by built-up area
(29.19%), followed by forest (29.18%), cropland (22.17%), water (14.08%), and bare soil
(5.38%). A noticeable underestimation of the built-up area, water, and bare soil is observed
when using the Sentinel-1A SAR image alone. The above results indicate that Sentinel-1A
SAR data distinguish land cover types with lower accuracy than Sentinel-2B MSI data
with the same spatial resolution. The highest PA is acquired for water (91.77%), followed
by forest (89.73%), bare soil (76.45%), built-up area (74.36%), and cropland (17.09%). The
producer’s accuracies for water, forest, and bare soil are relatively high. The PA for the
built-up area is 74.36% because 4 pixels of the built-up area are classified as water, 92 pixels
of the built-up area are classified as forest, 62 pixels of the built-up area are classified as
cropland, and 31 pixels of the built-up area are classified as bare soil (Table 3). The PA
for cropland is less than 25%, suggesting a large omission error. The UA is highest for
water (94.49%), followed by the built-up area (90.58%), bare soil (76.45%), forest (53.91%),
and cropland (23.61%). The UA for water is 94.49% because 4 pixels of built-up area and
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9 pixels of cropland are wrongly classified as water (Table 3). The user’s accuracies for
forest and cropland are less than 60%, showing a large commission error for these two land
cover categories. The producer’s and user’s accuracies for the built-up area, water, and
bare soil are higher than 70% (Table 3). The F-score is highest for water (93.11%), followed
by built-up area (81.67%), bare soil (76.45%), forest (67.35%), and cropland (19.83%). A
majority filter is applied to process the land cover classification (Figure 5).

Table 3. Confusion matrix of the classification results using only the Sentinel-1A SAR data.

Reference Data

Built-Up Water Forest Cropland Bare Soil Total PA(%) UA(%) F(%)

Built-up 548 3 16 17 21 605 74.36 90.58 81.67
Water 4 223 0 9 0 236 91.77 94.49 93.11
Forest 92 1 262 128 3 486 89.73 53.91 67.35

Cropland 62 1 14 34 33 144 17.09 23.61 19.83
Bare soil 31 15 0 11 185 242 76.45 76.45 76.45

Total 737 243 292 199 242
OA = 73.09% KA = 0.64
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4.3. Classification with the Combination of Sentinel-2B MSI and Sentinel-1A SAR Data

Sentinel-2B MSI and Sentinel-1A SAR data are fused to improve land cover classifica-
tion at the pixel level. The fusion of Sentinel-2B MSI and Sentinel-1A SAR data is achieved
via the layer-stacking method. The Sentinel-1A SAR data are combined as two bands to the
Sentinel-2B MSI data; an 11-dimensional dataset is obtained. The SVM-CK technique is
also employed to process the combination of Sentinel-2B MSI and Sentinel-1A SAR data.
The classification utilizing the SVM-CK algorithm yields an OA of 92.12% with a KA of 0.89
(Table 4). The above results suggest that the inclusion of Sentinel-1A data to Sentinel-2B
data can increase the OA of the classification. The highest PA is acquired for the built-up
area (99.73%), followed by water (98.77%), bare soil (90.08%), cropland (79.90%), and forest
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(77.40%). The highest UA is obtained for water (100%) and bare soil (100%), followed by
built-up area (96.33%), forest (84.33%), and cropland (70.98%). The F-score is highest for
water (99.38%), followed by built-up area (98%), bare soil (94.78%), forest (80.71%), and
cropland (75.18%). Among the five land cover types, the largest area is covered by built-up
area (43.55%), followed by forest (21.98%), water (16.41%), cropland (11.34%), and bare soil
(6.72%). A majority filter is applied to process the land cover classification (Figure 6).

Table 4. Confusion matrix of the classification results using the combination of Sentinel-2B MSI and Sentinel-1A SAR data.

Reference Data

Built-Up Water Forest Cropland Bare Soil Total PA(%) UA(%) F(%)

Built-up 735 3 1 0 24 763 99.73 96.33 98
Water 0 240 0 0 0 240 98.77 100 99.38
Forest 2 0 226 40 0 268 77.40 84.33 80.71

Cropland 0 0 65 159 0 224 79.90 70.98 75.18
Bare soil 0 0 0 0 218 218 90.08 100 94.78

Total 737 243 292 199 242
OA = 92.12% KA = 0.89

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 8 of 16 
 

 

bands to the Sentinel-2B MSI data; an 11-dimensional dataset is obtained. The SVM-CK 
technique is also employed to process the combination of Sentinel-2B MSI and Senti-
nel-1A SAR data. The classification utilizing the SVM-CK algorithm yields an OA of 
92.12% with a KA of 0.89 (Table 4). The above results suggest that the inclusion of Senti-
nel-1A data to Sentinel-2B data can increase the OA of the classification. The highest PA 
is acquired for the built-up area (99.73%), followed by water (98.77%), bare soil (90.08%), 
cropland (79.90%), and forest (77.40%). The highest UA is obtained for water (100%) and 
bare soil (100%), followed by built-up area (96.33%), forest (84.33%), and cropland 
(70.98%). The F-score is highest for water (99.38%), followed by built-up area (98%), bare 
soil (94.78%), forest (80.71%), and cropland (75.18%). Among the five land cover types, 
the largest area is covered by built-up area (43.55%), followed by forest (21.98%), water 
(16.41%), cropland (11.34%), and bare soil (6.72%). A majority filter is applied to process 
the land cover classification (Figure 6). 

Table 4. Confusion matrix of the classification results using the combination of Sentinel-2B MSI 
and Sentinel-1A SAR data. 

 Reference Data    

 Built-Up Water Forest Cropland Bare 
Soil Total PA(%) UA(%) F(%) 

Built-up 735 3 1 0 24 763 99.73 96.33 98 
Water 0 240 0 0 0 240 98.77 100 99.38 
Forest 2 0 226 40 0 268 77.40 84.33 80.71 

Cropland 0 0 65 159 0 224 79.90 70.98 75.18 
Bare soil 0 0 0 0 218 218 90.08 100 94.78 

Total 737 243 292 199 242     
  OA = 92.12%    KA = 0.89  

 
Figure 6. Land cover map obtained from the SVM-CK algorithm with the combination of Sentinel-2B MSI and Senti-
nel-1A SAR images. 

Figure 6. Land cover map obtained from the SVM-CK algorithm with the combination of Sentinel-2B MSI and Sentinel-1A
SAR images.

5. Discussion
5.1. Comparison of the Classifications Using Different Machine Learning Algorithms

The performance of the SVM-CK approach is evaluated by comparing it with the SVM
and KELM-CK approaches (Figure 7) [50,51]. Three different algorithms, including SVM-
CK, SVM, and KELM-CK, are applied to the Sentinel-2B MSI data. The classification based
on the SVM-CK algorithm obtains the highest OA (91.54%), followed by SVM (90.43%) and
KELM-CK (88.09%) algorithms (Table 5). Additionally, the McNemar test indicates that the
difference between classifications using the SVM-CK and SVM algorithms is statistically
significant (p < 0.05, Z = 2.22). Moreover, there is a statistically significant difference
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(p < 0.05, Z = 4) between the classifications using the SVM and KELM-CK algorithms. The
above results indicate that the SVM-CK is more accurate than the SVM and KELM-CK
in terms of land cover mapping. When using the KELM-CK algorithm, 78 pixels of the
built-up area are classified as water, and 14 pixels of the built-up area are classified as
forest. As a result, the PA for the built-up area is 87.52% when the KELM-CK algorithm
is used (Table 5). In comparison, when using the SVM-CK algorithm, 18 pixels of the
built-up area are classified as water, and 2 pixels of the built-up area are classified as forest.
Therefore, the PA for the built-up area is 97.29% when the SVM-CK algorithm is used
(Table 5). The results prove that it is challenging to distinguish the built-up area from water
when using the Sentinel-2B MSI image alone. The influence of the three different algorithms
is evaluated by a comparative experiment in Area 1 (see Figure 2). The MSI false-color
composite image (band 12, 8a, 2 in RGB) of Area 1 is shown in Figure 8a. The classification
results using the SVM-CK and SVM algorithms present good differentiation between the
built-up area and water (Figure 8b,c). However, some pixels of dark impervious surface
are incorrectly classified as water when using the KELM-CK algorithm (Figure 8d). This
confusion is caused by the spectral similarity between dark impervious surface and water.
The classification utilizing the KELM-CK algorithm shows more errors of commission
when classifying water. The mean texture of the Sentinel-2B bands can improve the OA of
classification by reducing the heterogeneity of the same land cover type. Compared with
the SVM-CK classification, the classification based on the SVM algorithm contains more
speckles (Figure 8b,c).
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Table 5. Accuracy assessment of the classification results using three different algorithms with the Sentinel-2B MSI data (all
in percent).

SVM-CK SVM KELM-CK

PA UA F PA UA F PA UA F

Built-up 97.29 95.22 96.24 92.40 96.73 94.52 87.52 96.85 91.95
Water 93.42 92.65 93.03 97.12 81.38 88.55 98.35 75.39 85.36
Forest 82.53 85.77 84.12 84.25 85.71 84.97 83.22 81.27 82.23

Cropland 81.91 76.17 78.93 81.41 77.88 79.61 80.90 76.67 78.73
Bare soil 90.91 100 95.24 92.56 100 96.14 91.32 100 95.46

OA 91.54 90.43 88.09
KA 88.40 87.03 84.00
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5.2. Comparison of the Classifications with Different Remote Sensing Data

The classification implemented on the Sentinel-1A SAR image shows that the Sentinel-
1A SAR data can distinguish the built-up area, water, and bare soil. The backscatter
coefficient (σ0) values of different land cover categories are affected by many factors.
Microwave is sensitive to surface roughness, which contributes to identifying land cover
types [52,53]. For both VV and VH polarizations, the built-up area has the highest mean
σ0 value while the water body has the lowest mean σ0 value. Compared with the VV
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polarization, weaker backscatter is observed for the five land cover categories at VH
polarization (Figure 9). The above results suggest that SAR data provide complementary
information to better distinguish the built-up area, water, and bare soil. The F-scores
for forest and cropland are 67.35% and 19.83%, indicating that Sentinel-1A SAR data are
inefficient for discriminating forest and cropland. The results show that the backscattering
information of forest and cropland is similar. When using only Sentinel-1A SAR data, forest
is easily confused with cropland (Table 3). The value of transformed divergence is 0.77 (less
than 1), suggesting that these two categories can be combined. The classification achieves
an OA of 81.38% with a KA of 0.74 when forest and cropland are combined as vegetation
(Figure 10). The PA and UA for vegetation are 89.21% and 69.52%, respectively. The F-score
for vegetation is 78.14%, showing that Sentinel-1A SAR data have efficient performance in
discriminating the vegetation category. The above results reveal the potential of Sentinel-
1A SAR data in land cover classification. To further improve the classification accuracy,
multi-temporal Sentinel-1A SAR data can be used [54,55].
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To reduce the confusion between the built-up area and water, Sentinel-1A SAR data are
synergistically combined with Sentinel-2B MSI data to improve the land cover classification.
Using the Sentinel-2B MSI image alone, 18 pixels of the built-up area are misclassified as
water, and 2 pixels of the built-up area are wrongly classified as forest. With the additional
use of Sentinel-1A SAR data, only 2 pixels of the built-up area are misclassified as forest.
Therefore, the confusion between the built-up area and water is greatly reduced. The PA
for the built-up area is 97.29% in the classification based on Sentinel-2B MSI data. The
classification implemented on the combination of Sentinel-2B MSI and Sentinel-1A SAR
data achieves a PA of 99.73% for the built-up area, which corresponds to the highest Z value
(Z = 3.84). Compared with the classification using Sentinel-2B MSI data via the SVM-CK
algorithm, the classification using the combination of Sentinel-2B MSI and Sentinel-1A SAR
data does not provide a statistically significant improvement in OA (p > 0.05, Z = 1.23).
Another comparative study is performed to evaluate the effectiveness of the Sentinel-
1A SAR data. When using Sentinel-2B MSI alone, it is noticeable that some areas of
built-up area are misclassified as water in Area 2 (Figure 11a,b). The classification result
obtained from the Sentinel-2B MSI image is spatially consistent with that obtained from the
combination of Sentinel-2B MSI and Sentinel-1A SAR data (Figure 11b,d). The classification
derived from the Sentinel-1A SAR data does not present a reasonable depiction of urban
land cover types (Figure 11c). It is obvious that some areas of water are misclassified as
bare soil (Figure 11c). When using Sentinel-2B MSI data alone, water is not easily confused
with bare soil (Figure 11b). The misclassification of forest and cropland is also observed
(Figure 11c). In comparison, the Sentinel-2B MSI image can distinguish the forest from
the cropland (Figure 11b). Compared with the classification based on the Sentinel-2B
MSI image, the classification based on the Sentinel-1A SAR image contains more speckles
(Figure 11b,c).
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the combination of Sentinel-2B MSI and Sentinel-1A SAR data (d).

6. Conclusions

Classifying land cover types in an accurate manner is very important for monitoring
urban environments. Taking the city of Wuhan as a case study, this paper has shown that
the combined use of Sentinel-2B MSI and Sentinel-1A SAR data can provide an accurate
land cover classification. When using the Sentinel-2B MSI image alone, the land cover
classification using the SVM-CK algorithm achieves an OA of 91.54% with a KA of 0.88.
We further evaluate the efficiency of SVM-CK by comparing it with SVM and KELM-CK.
The results suggest that the classification utilizing the SVM-CK algorithm obtains the
highest OA (91.54%), followed by the SVM (90.43%) and KELM-CK (88.09%) algorithms.
The SVM-CK algorithm has the ability to further improve classification performance. On
certain occasions, dark impervious surface can be easily confused with water. The SVM-CK
algorithm has the ability to improve classification accuracy by reducing the confusion
between dark impervious surface and water. Sentinel-1A SAR data are also applied for the
discrimination of the five land cover types. The classification utilizing Sentinel-1A SAR
data yields an OA of 73.09% with a KA of 0.64. Compared with the classification using
Sentinel-2B MSI data, the classification based on Sentinel-1A SAR data yields a lower OA.
When using Sentinel-1A SAR data alone, forest can be easily confused with cropland. The
classification achieves an OA of 81.38% with a KA of 0.74 when forest and cropland are
merged. The results show that Sentinel-1A SAR data can identify built-up area, water,
vegetation, and bare soil. This research demonstrates that Sentinel-1A SAR data have the
potential to classify different land cover types. Thus, Sentinel-1A SAR data can be used as
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an independent source when optical data are affected by weather conditions. Sentinel-1A
SAR data have great advantages in monitoring urban flooding when the city of Wuhan
is hit by a flood. Sentinel-1A SAR data can provide timely information for land cover
classification. The built-up area can be confused with water when using Sentinel-2B MSI
data alone. To reduce the confusion between the built-up area and water, Sentinel-1A SAR
data are synergistically combined with Sentinel-2B MSI data for land cover mapping. The
classification implemented on the combination of Sentinel-2B MSI and Sentinel-1A SAR
data achieves an OA of 92.12% with a KA of 0.89. The methodology proposed in this study
can be generalized to other areas worldwide. In addition, the SVM-CK algorithm can be
applied to other applications, such as crop-type classification, vegetation type classification,
and flood monitoring. The above results confirm that the fusion of Sentinel-2B MSI and
Sentinel-1A SAR data efficiently improves land cover classification in cloud-prone regions.

Author Contributions: Bin Hu, Yongyang Xu, Qimin Cheng, and Yan Li conceived and designed the
experiments; Bin Hu, Yongyang Xu, and Qing Ding analyzed the data and performed the experiments;
Bin Hu, Xiao Huang, Linze Bai, and Qimin Cheng wrote the paper in English. All authors have read
and agreed to the published version of the manuscript.

Funding: This work is supported by the National Key Research and Development Program of
China(2018YFB0505401), the Key Research and Development Program of Yunnan Province in
China(2018IB023), the National Natural Science Foundation of China under Grants 41771452, 41771454,
41890820, and 41901340, the Natural Science Fund of Hubei Province in China under Grant 2018CFA007,
the Natural Science Foundation of Inner Mongolia Autonomous Region (2019MS04017), and the
Scientific Research Project of Colleges and Universities in Inner Mongolia Autonomous Region
(NJZY20277).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M. Global land cover mapping at 30 m

resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [CrossRef]
2. Chen, B.; Huang, B.; Xu, B. Multi-source remotely sensed data fusion for improving land cover classification. ISPRS J. Photogramm.

Remote Sens. 2017, 124, 27–39. [CrossRef]
3. Godinho, S.; Guiomar, N.; Gil, A. Using a stochastic gradient boosting algorithm to analyse the effectiveness of Landsat 8 data for

montado land cover mapping: Application in southern Portugal. Int. J. Appl. Earth Obs. Geoinform. 2016, 49, 151–162. [CrossRef]
4. Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.-F.; Ceschia, E. Understanding the temporal behavior of

crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [CrossRef]
5. Carrasco, L.; O’Neil, A.W.; Morton, R.D.; Rowland, C.S. Evaluating combinations of temporally aggregated Sentinel-1, Sentinel-2

and Landsat 8 for land cover mapping with Google Earth Engine. Remote Sens. 2019, 11, 288. [CrossRef]
6. Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort,

P. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36.
[CrossRef]

7. Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S. Finer resolution observation and
monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654.
[CrossRef]

8. Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y. Stable classification with limited sample:
Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019,
64, 370–373. [CrossRef]

9. Lu, D.; Batistella, M.; Moran, E. Land-cover classification in the Brazilian Amazon with the integration of Landsat ETM+ and
Radarsat data. Int. J. Remote Sens. 2007, 28, 5447–5459. [CrossRef]

10. Mitchard, E.T.; Saatchi, S.S.; White, L.; Abernethy, K.; Jeffery, K.J.; Lewis, S.L.; Collins, M.; Lefsky, M.A.; Leal, M.E.; Woodhouse,
I.H. Mapping tropical forest biomass with radar and spaceborne LiDAR in Lopé National Park, Gabon: Overcoming problems of
high biomass and persistent cloud. Biogeosciences 2012, 9, 179–191. [CrossRef]

http://doi.org/10.1016/j.isprsjprs.2014.09.002
http://doi.org/10.1016/j.isprsjprs.2016.12.008
http://doi.org/10.1016/j.jag.2016.02.008
http://doi.org/10.1016/j.rse.2017.07.015
http://doi.org/10.3390/rs11030288
http://doi.org/10.1016/j.rse.2011.11.026
http://doi.org/10.1080/01431161.2012.748992
http://doi.org/10.1016/j.scib.2019.03.002
http://doi.org/10.1080/01431160701227596
http://doi.org/10.5194/bg-9-179-2012


ISPRS Int. J. Geo-Inf. 2021, 10, 533 15 of 16

11. Lehmann, E.A.; Caccetta, P.A.; Zhou, Z.-S.; McNeill, S.J.; Wu, X.; Mitchell, A.L. Joint processing of Landsat and ALOS-PALSAR
data for forest mapping and monitoring. IEEE Trans. Geosci. Remote Sens. 2011, 50, 55–67. [CrossRef]

12. Laurin, G.V.; Liesenberg, V.; Chen, Q.; Guerriero, L.; Del Frate, F.; Bartolini, A.; Coomes, D.; Wilebore, B.; Lindsell, J.; Valentini,
R. Optical and SAR sensor synergies for forest and land cover mapping in a tropical site in West Africa. Int. J. Appl. Earth Obs.
Geoinform. 2013, 21, 7–16. [CrossRef]

13. Jiang, L.; Liao, M.; Lin, H.; Yang, L. Synergistic use of optical and InSAR data for urban impervious surface mapping: A case
study in Hong Kong. Int. J. Remote Sens. 2009, 30, 2781–2796. [CrossRef]

14. Shao, Z.; Wu, W.; Guo, S. IHS-GTF: A Fusion Method for Optical and Synthetic Aperture Radar Data. Remote Sens. 2020, 12, 2796.
[CrossRef]

15. Zhang, H.; Zhang, Y.; Lin, H. A comparison study of impervious surfaces estimation using optical and SAR remote sensing
images. Int. J. Appl. Earth Obs. Geoinform. 2012, 18, 148–156. [CrossRef]

16. Huang, H.; Roy, D.; Boschetti, L.; Zhang, H.; Yan, L.; Kumar, S.; Gomez-Dans, J.; Li, J. Separability analysis of Sentinel-2A
multi-spectral instrument (MSI) data for burned area discrimination. Remote Sens. 2016, 8, 873. [CrossRef]

17. Roteta, E.; Bastarrika, A.; Padilla, M.; Storm, T.; Chuvieco, E. Development of a Sentinel-2 burned area algorithm: Generation of a
small fire database for sub-Saharan Africa. Remote Sens. Environ. 2019, 222, 1–17. [CrossRef]

18. Hu, B.; Xu, Y.; Wan, B.; Wu, X.; Yi, G. Hydrothermally altered mineral mapping using synthetic application of Sentinel-2A MSI,
ASTER and Hyperion data in the Duolong area, Tibetan Plateau, China. Ore Geol. Rev. 2018, 101, 384–397. [CrossRef]

19. Di Napoli, M.; Marsiglia, P.; Di Martire, D.; Ramondini, M.; Ullo, S.L.; Calcaterra, D. Landslide susceptibility assessment of
wildfire burnt areas through earth-observation techniques and a machine learning-based approach. Remote Sens. 2020, 12, 2505.
[CrossRef]

20. Wang, D.; Wan, B.; Qiu, P.; Su, Y.; Guo, Q.; Wang, R.; Sun, F.; Wu, X. Evaluating the performance of sentinel-2, landsat 8 and
pléiades-1 in mapping mangrove extent and species. Remote Sens. 2018, 10, 1468. [CrossRef]

21. Zhang, H.; Li, J.; Wang, T.; Lin, H.; Zheng, Z.; Li, Y.; Lu, Y. A manifold learning approach to urban land cover classification with
optical and radar data. Landscape Urban Plan. 2018, 172, 11–24. [CrossRef]

22. Balzter, H.; Cole, B.; Thiel, C.; Schmullius, C. Mapping CORINE land cover from Sentinel-1A SAR and SRTM digital elevation
model data using random forests. Remote Sens. 2015, 7, 14876–14898. [CrossRef]

23. Ruzza, G.; Guerriero, L.; Grelle, G.; Guadagno, F.M.; Revellino, P. Multi-method tracking of monsoon floods using Sentinel-1
imagery. Water 2019, 11, 2289. [CrossRef]

24. Bao, Y.; Lin, L.; Wu, S.; Deng, K.A.K.; Petropoulos, G.P. Surface soil moisture retrievals over partially vegetated areas from the
synergy of Sentinel-1 and Landsat 8 data using a modified water-cloud model. Int. J. Appl. Earth Obs. Geoinform. 2018, 72, 76–85.
[CrossRef]

25. Clauss, K.; Ottinger, M.; Leinenkugel, P.; Kuenzer, C. Estimating rice production in the Mekong Delta, Vietnam, utilizing time
series of Sentinel-1 SAR data. Int. J. Appl. Earth Obs. Geoinform. 2018, 73, 574–585. [CrossRef]

26. Erinjery, J.J.; Singh, M.; Kent, R. Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats
using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery. Remote Sens. Environ. 2018, 216, 345–354. [CrossRef]

27. Castillo, J.A.A.; Apan, A.A.; Maraseni, T.N.; Salmo III, S.G. Estimation and mapping of above-ground biomass of mangrove
forests and their replacement land uses in the Philippines using Sentinel imagery. ISPRS J. Photogramm. Remote Sens. 2017, 134,
70–85. [CrossRef]

28. Colson, D.; Petropoulos, G.P.; Ferentinos, K.P. Exploring the potential of Sentinels-1 & 2 of the Copernicus Mission in support of
rapid and cost-effective wildfire assessment. Int. J. Appl. Earth Obs. Geoinform. 2018, 73, 262–276.

29. Walker, W.S.; Stickler, C.M.; Kellndorfer, J.M.; Kirsch, K.M.; Nepstad, D.C. Large-area classification and mapping of forest and
land cover in the Brazilian Amazon: A comparative analysis of ALOS/PALSAR and Landsat data sources. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 2010, 3, 594–604. [CrossRef]

30. Weng, Q. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sens. Environ.
2012, 117, 34–49. [CrossRef]

31. Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci.
Remote Sens. 2004, 42, 1778–1790. [CrossRef]

32. Pal, M. Extreme-learning-machine-based land cover classification. Int. J. Remote Sens. 2009, 30, 3835–3841. [CrossRef]
33. Pal, M.; Maxwell, A.E.; Warner, T.A. Kernel-based extreme learning machine for remote-sensing image classification. Remote Sens.

Lett. 2013, 4, 853–862. [CrossRef]
34. Chen, C.; Li, W.; Su, H.; Liu, K. Spectral-spatial classification of hyperspectral image based on kernel extreme learning machine.

Remote Sens. 2014, 6, 5795–5814. [CrossRef]
35. Liu, J.; Wu, Z.; Wei, Z.; Xiao, L.; Sun, L. Spatial-spectral kernel sparse representation for hyperspectral image classification. IEEE J.

Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2462–2471. [CrossRef]
36. Fauvel, M.; Chanussot, J.; Benediktsson, J.A. A spatial–spectral kernel-based approach for the classification of remote-sensing

images. Pattern Recogn. 2012, 45, 381–392. [CrossRef]
37. Quesada-Barriuso, P.; Argüello, F.; Heras, D.B. Spectral–spatial classification of hyperspectral images using wavelets and extended

morphological profiles. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1177–1185. [CrossRef]

http://doi.org/10.1109/TGRS.2011.2171495
http://doi.org/10.1016/j.jag.2012.08.002
http://doi.org/10.1080/01431160802555838
http://doi.org/10.3390/rs12172796
http://doi.org/10.1016/j.jag.2011.12.015
http://doi.org/10.3390/rs8100873
http://doi.org/10.1016/j.rse.2018.12.011
http://doi.org/10.1016/j.oregeorev.2018.07.017
http://doi.org/10.3390/rs12152505
http://doi.org/10.3390/rs10091468
http://doi.org/10.1016/j.landurbplan.2017.12.009
http://doi.org/10.3390/rs71114876
http://doi.org/10.3390/w11112289
http://doi.org/10.1016/j.jag.2018.05.026
http://doi.org/10.1016/j.jag.2018.07.022
http://doi.org/10.1016/j.rse.2018.07.006
http://doi.org/10.1016/j.isprsjprs.2017.10.016
http://doi.org/10.1109/JSTARS.2010.2076398
http://doi.org/10.1016/j.rse.2011.02.030
http://doi.org/10.1109/TGRS.2004.831865
http://doi.org/10.1080/01431160902788636
http://doi.org/10.1080/2150704X.2013.805279
http://doi.org/10.3390/rs6065795
http://doi.org/10.1109/JSTARS.2013.2252150
http://doi.org/10.1016/j.patcog.2011.03.035
http://doi.org/10.1109/JSTARS.2014.2308425


ISPRS Int. J. Geo-Inf. 2021, 10, 533 16 of 16

38. Zhou, Y.; Peng, J.; Chen, C.P. Extreme learning machine with composite kernels for hyperspectral image classification. IEEE J. Sel.
Top. Appl. Earth Obs. Remote Sens. 2014, 8, 2351–2360. [CrossRef]

39. Wang, L.; Gong, W.; Xia, X.; Zhu, J.; Li, J.; Zhu, Z. Long-term observations of aerosol optical properties at Wuhan, an urban site in
Central China. Atmos. Environ. 2015, 101, 94–102. [CrossRef]

40. Hu, T.; Huang, X.; Li, J.; Zhang, L. A novel co-training approach for urban land cover mapping with unclear Landsat time series
imagery. Remote Sens. Environ. 2018, 217, 144–157. [CrossRef]

41. Zhou, K.; Liu, Y.; Tan, R.; Song, Y. Urban dynamics, landscape ecological security, and policy implications: A case study from the
Wuhan area of central China. Cities 2014, 41, 141–153. [CrossRef]

42. Wu, H.; Ye, L.-P.; Shi, W.-Z.; Clarke, K.C. Assessing the effects of land use spatial structure on urban heat islands using HJ-1B
remote sensing imagery in Wuhan, China. Int. J. Appl. Earth Obs. Geoinform. 2014, 32, 67–78. [CrossRef]

43. Shen, H.; Huang, L.; Zhang, L.; Wu, P.; Zeng, C. Long-term and fine-scale satellite monitoring of the urban heat island effect by
the fusion of multi-temporal and multi-sensor remote sensed data: A 26-year case study of the city of Wuhan in China. Remote
Sens. Environ. 2016, 172, 109–125. [CrossRef]

44. Zhang, T.; Yi, G.; Li, H.; Wang, Z.; Tang, J.; Zhong, K.; Li, Y.; Wang, Q.; Bie, X. Integrating data of ASTER and Landsat-8 OLI (AO)
for hydrothermal alteration mineral mapping in duolong porphyry cu-au deposit, Tibetan Plateau, China. Remote Sens. 2016,
8, 890. [CrossRef]

45. Malenovský, Z.; Rott, H.; Cihlar, J.; Schaepman, M.E.; García-Santos, G.; Fernandes, R.; Berger, M. Sentinels for science: Potential
of Sentinel-1,-2, and-3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ. 2012, 120, 91–101.
[CrossRef]

46. Yang, H.; Pan, B.; Wu, W.; Tai, J. Field-based rice classification in Wuhua county through integration of multi-temporal Sentinel-1A
and Landsat-8 OLI data. Int. J. Appl. Earth Obs. Geoinform. 2018, 69, 226–236. [CrossRef]

47. Shao, Z.; Fu, H.; Fu, P.; Yin, L. Mapping urban impervious surface by fusing optical and SAR data at the decision level. Remote
Sens. 2016, 8, 945. [CrossRef]

48. Zhang, Y.; Zhang, H.; Lin, H. Improving the impervious surface estimation with combined use of optical and SAR remote sensing
images. Remote Sens. Environ. 2014, 141, 155–167. [CrossRef]

49. Duro, D.C.; Franklin, S.E.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with selected machine
learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012, 118,
259–272. [CrossRef]

50. Clark, M.L. Comparison of simulated hyperspectral HyspIRI and multispectral Landsat 8 and Sentinel-2 imagery for multi-
seasonal, regional land-cover mapping. Remote Sens. Environ. 2017, 200, 311–325. [CrossRef]

51. Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Dedieu, G. Assessing the robustness of Random Forests to map land cover with
high resolution satellite image time series over large areas. Remote Sens. Environ. 2016, 187, 156–168. [CrossRef]

52. Zhu, Z.; Woodcock, C.E.; Rogan, J.; Kellndorfer, J. Assessment of spectral, polarimetric, temporal, and spatial dimensions for
urban and peri-urban land cover classification using Landsat and SAR data. Remote Sens. Environ. 2012, 117, 72–82. [CrossRef]

53. Dell’Acqua, F.; Gamba, P. Texture-based characterization of urban environments on satellite SAR images. IEEE Trans. Geosci.
Remote Sens. 2003, 41, 153–159. [CrossRef]

54. Waske, B.; Braun, M. Classifier ensembles for land cover mapping using multitemporal SAR imagery. ISPRS J. Photogramm.
Remote Sens. 2009, 64, 450–457. [CrossRef]

55. Cai, Y.; Guan, K.; Peng, J.; Wang, S.; Seifert, C.; Wardlow, B.; Li, Z. A high-performance and in-season classification system of
field-level crop types using time-series Landsat data and a machine learning approach. Remote Sens. Environ. 2018, 210, 35–47.
[CrossRef]

http://doi.org/10.1109/JSTARS.2014.2359965
http://doi.org/10.1016/j.atmosenv.2014.11.021
http://doi.org/10.1016/j.rse.2018.08.017
http://doi.org/10.1016/j.cities.2014.06.010
http://doi.org/10.1016/j.jag.2014.03.019
http://doi.org/10.1016/j.rse.2015.11.005
http://doi.org/10.3390/rs8110890
http://doi.org/10.1016/j.rse.2011.09.026
http://doi.org/10.1016/j.jag.2018.02.019
http://doi.org/10.3390/rs8110945
http://doi.org/10.1016/j.rse.2013.10.028
http://doi.org/10.1016/j.rse.2011.11.020
http://doi.org/10.1016/j.rse.2017.08.028
http://doi.org/10.1016/j.rse.2016.10.010
http://doi.org/10.1016/j.rse.2011.07.020
http://doi.org/10.1109/TGRS.2002.807754
http://doi.org/10.1016/j.isprsjprs.2009.01.003
http://doi.org/10.1016/j.rse.2018.02.045

	Introduction 
	Study Area and Materials 
	Study Area 
	Remote Sensing Data 

	Methods 
	Preprocessing of Sentinel-2B MSI and Sentinel-1A SAR Data 
	Reference Data Acquisition and Accuracy Assessment 
	SVM-CK Algorithm 

	Results 
	Classification with Sentinel-2B MSI Data 
	Classification with Sentinel-1A SAR Data 
	Classification with the Combination of Sentinel-2B MSI and Sentinel-1A SAR Data 

	Discussion 
	Comparison of the Classifications Using Different Machine Learning Algorithms 
	Comparison of the Classifications with Different Remote Sensing Data 

	Conclusions 
	References

