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Abstract: The paper proposes a fully automatic algorithm approach to map burned areas from
remote sensing characterized by human interpretable mapping criteria and explainable results. This
approach is partially knowledge-driven and partially data-driven. It exploits active fire points
to train the fusion function of factors deemed influential in determining the evidence of burned
conditions from reflectance values of multispectral Sentinel-2 (S2) data. The fusion function is used
to compute a map of seeds (burned pixels) that are adaptively expanded by applying a Region
Growing (RG) algorithm to generate the final burned area map. The fusion function is an Ordered
Weighted Averaging (OWA) operator, learnt through the application of a machine learning (ML)
algorithm from a set of highly reliable fire points. Its semantics are characterized by two measures,
the degrees of pessimism/optimism and democracy/monarchy. The former allows the prediction of
the results of the fusion as affected by more false positives (commission errors) than false negatives
(omission errors) in the case of pessimism, or vice versa; the latter foresees if there are only a few
highly influential factors or many low influential ones that determine the result. The prediction
on the degree of pessimism/optimism allows the expansion of the seeds to be appropriately tuned
by selecting the most suited growing layer for the RG algorithm thus adapting the algorithm to
the context. The paper illustrates the application of the automatic method in four study areas in
southern Europe to map burned areas for the 2017 fire season. Thematic accuracy at each site was
assessed by comparison to reference perimeters to prove the adaptability of the approach to the
context; estimated average accuracy metrics are omission error = 0.057, commission error = 0.068,
Dice coefficient = 0.94 and relative bias = 0.0046.

Keywords: interpretable machine learning; OWA operators; wildfires; mapping burned areas;
explainable fusion

1. Introduction

Data science comprises methods and techniques such as machine learning, statistics,
data mining, pattern recognition and “soft” computing for discovering knowledge in the
form of both patterns and relationship from large volumes of data, in order to understand
actual phenomena [1,2]. These technologies are particularly suited for processing satellite
and aerial remote sensing imageries. Disturbance phenomena such as wildfires, flooding,
landslides can be identified as abrupt changes in the surface conditions induced by a rapid
and unforeseen event. Thus, thematic mapping of remotely sensed data relies on the
spatio-temporal patterns of the target surface to be extracted from both spectral signatures
and signatures’ change. Operational monitoring of the environmental systems imposes
quick and efficient methods based on large-scale data, readily available to the agencies [3],
and it asks for automatic algorithms able to extract information from big data. In this work,
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we propose a fully automatic, interpretable and adaptive data fusion algorithm applied to
the case study of burned area (BA) mapping from remotely sensed data. Interpretability
is an important property of automatic systems in order to capture the trust of those who
have to use their results: criteria of the mapping that lead to a certain result should
be understandable to learn more about the phenomenon. This concern is expressed in
the recent Presidential Address (February 2021) in the issue of the Geological Society of
America (GSA) magazine “GSA Today” that cites four principles that data processing
should satisfy, and one of them is “I can’t use something I don’t understand”.

In recent years, machine learning (ML), and specifically deep learning, has become
very successful in environmental sciences [4–6] including mapping and monitoring the
status of the territory and changes induced by disturbances, such as wildfires [7], thanks to
the high accuracy of the predictions [8–10]. Nevertheless, the criteria it learns and applies,
besides requiring unbiased big data for training that are not always available, as in our
case, can be hardly explainable to both experts and decision makers due to its black-box
nature. Furthermore, ex-post explainability of ML is considered an essential aspect of the
European Union’s way to Artificial Intelligence [11], in line with the European General
Data Protection Regulation (GDPR) [12–14] that restricted the use of black-box ML [15].
Specifically, GDPR promotes transparency of automated systems, by requiring that they
provide meaningful information about the logics, and a justification of outcomes in order to
enable understanding [16]. Although some attempts have been made to create methods for
explaining black-box deep learning, the way forward is to design models that are inherently
interpretable [17].

Therefore, the approach proposed here is an interpretable and explainable method
based on a ML algorithm that exploits active fire points as a small training set for learning
an Ordered Weighted Averaging (OWA) operator defined within fuzzy set theory [18]; this
operator is used for the fusion of multiple partial evidence maps of burned areas, each one
derived from diverse factors identified based on expert’s knowledge.

The approach is applied to map burned areas in Mediterranean ecosystems. Wildfires
are a complex process caused by the simultaneous occurrence of several interrelated
factors (e.g., ignition source, fuel characteristics and composition, weather conditions and
topography) [10]. Fire monitoring from remotely sensed data is mainly carried out by
observing two distinct surface conditions: the presence of a fire front and the area affected
by a fire. The fire front can be captured at the time of satellite overpass and detected as
thermal hot spot; we refer to it as active fire (AF) or hot spot points. The area affected by a
fire shows a change in the vegetation cover and/or in the ground surface: we refer to it as
burned areas (BAs) [19]. Active fires are useful indicators of fire presence and fire timing
but they do not provide a direct estimate for the total burned area [20].

Remote Sensing (RS) technology has been proven to bring key source data for mon-
itoring and modelling complex disturbance phenomena affecting the environment, e.g.,
wildfires, insects and disease [21] for their capability of adapting to changing environmen-
tal conditions [22]. Several satellite missions carry on-board sensors specifically designed
for monitoring fires and thermal anomalies (e.g., NOAA-AVHRR, NASA Terra&Aqua
MODIS, NASA/NOAA VIIRS) which, combined with other systems for Earth Observation
(e.g., Landsat and Sentinel missions), provide data with variable spatial, temporal and
spectral resolutions. In particular, data acquired by both Landsat and Sentinel missions
have recently been widely exploited for fire monitoring for their medium spatial resolution
(10 to 30 m) that allows small and fragmented burned areas to be mapped. Moreover,
their free availability opens unprecedented opportunities to the scientific community [23].
However, Landsat missions offer the longest archive of medium resolution RS data, the
16-day revisit cycle, that is often increased by cloud cover, which could be a limitation
for fire monitoring. The multispectral instrument (MSI) onboard the Sentinel-2 A and B
(S2) satellites offers enhanced spatial and temporal resolutions, suitable for burned area
mapping [24]; in fact, if both S2 satellites are combined, global median revisit time interval
has been estimated to be 3.7 days [25].
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Our approach incorporates a region growing (RG) algorithm [26] adaptively tuned
to automatically map burned areas from imagery by exploiting spectral change in surface
reflectance induced by the fire in the visible (VIS) to near and short infrared (NIR, SWIR)
wavelength domain. In this context, a fuzzy multi-criteria approach is applied to fuse
degrees of partial evidence derived from pixel reflectance values in the S2 bands by means
of OWA operators to derive a single value of global evidence of burn. OWAs can model
distinct aggregation strategies through their weighting vector applied to the input values
reordered by their magnitude. Different OWAs lead to distinct burned area maps depicting
the phenomenon with variable rates of accuracy: underestimation (false negative/omission
error) and/or overestimation (false positive/commission error) errors are a function of
several factors, including site and fire characteristics. Hence, OWAs applying different
fusion strategies can be used to extract seed and growing layers to tune the RG algorithm,
which relies on binding conditions for the selection of the seeds while conditions for
identifying candidate boundaries (i.e., the limits for the region growing) can be looser. A
RG algorithm expands seed pixels over pixels with low burn signal but connected to more
reliable seeds. Indeed, in digital image processing, RG is a segmentation algorithm that
exploits spatial adjacency of pixels with similar characteristics to create clusters, and it has
been widely used for thematic classification of satellite images [20,27–30].

The approach proposed here is a hybridization of our previous proposal [31] by incor-
porating an adaptation mechanism based on a ML algorithm, partially knowledge and data
driven defined in Goffi et al. [32] to map standing water areas, in order to fully automatize
the mapping process. The novel contribution is the automated adaptation mechanism for
the generation of both the seed and growing layers used by the RG algorithm. Hence, we
propose: (i) to exploit a small training set of fire points to automatically define the OWA
for computing the seed layer, and (ii) to automatically choose the OWA for the generation
of the growing layer exploiting heuristic rules defined to minimize the final error in the
resulting map of the RG algorithm based on the interpretation of the decision attitude of
the OWAs.

This attitude is modelled by quantifying two dimensions: pessimism/optimism
and democracy/monarchy. Pessimism is the tendency of the OWA to generate more
commission errors than omission errors, and vice versa in the case of optimism. Democracy
foresees if there are only a few highly influential factors or many low influential ones that
determine the fused result. In facts, democracy is related to considering as necessary all
input data (i.e., factors deemed influential by the expert to map the undesired status of
burned area) in order to determine the fused maps, or just a few of the inputs in the case of
monarchy. A democratic fusion hints to the fact that the mapped burned areas are identified
thanks to all factors exhibiting low evidence, while a monarchical fusion indicates that the
burned areas are identified thanks to a few factors providing high evidence. We state that,
when the fusion is democratic, the patterns of the burned areas are more homogeneous
with respect to the factors than in the case of monarchy, when the influential factors may
be very different from region to region.

Since the OWA is learnt from training data, we can explain ex-post its proneness to
generating commission/omission errors, and in taking into account all low influential or a
few high influential factors (i.e., partial evidence of burn). This information is exploited
to generate the growing layer so as to tune the RG algorithm that expands the seeds to
generate the final burned area map, thus adapting the processing to site characteristics.
Furthermore, this automatic adaptation can take place even when reducing or changing
the input factors, without the need of human intervention.

The algorithm is applied to map burned areas at four distinct sites in southern Europe
during the 2017 summer fire season. The accuracy of the output BA map is assessed by
comparison with reference fire perimeters. Validation, besides demonstrating the high
accuracy achieved by the algorithm, also demonstrates that the predictions provided by the
learnt OWA operators in terms of degrees of pessimism/democracy can be appropriately
used to tune the RG algorithm so as to maximize accuracy of the final map.
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2. Materials

As case study, for applying the BA mapping algorithm from Sentinel-2 (S2) satellite
images, we selected four sites in southern Europe where large fires occurred in 2017, a
severe fire year for the European continent, due to abnormal droughts and heat waves [33].
Extreme weather conditions led to large fires affecting, in particular, Portugal, Spain,
southern France, Greece and Italy [34]. In particular, we selected sites in Spain and Greece
as shown in Figure 1. The geospatial dataset is composed of (i) S2 images, (ii) active fire
points and (iii) reference burned area perimeters.

Figure 1. The four study sites selected for BA mapping in southern Europe.

The algorithm, exploiting S2 spectral bands as input, delivers BA maps depicting the
total area affected by fires. The S2 multispectral instrument (MSI) measures the Earth’s
reflected radiance in 13 spectral bands from VIS/NIR to SWIR with a spatial resolution
ranging from 10 m to 60 m [35]. Table 1 reports the characteristics of the MSI reflectance
bands of interest for this study. Spectral bands in Table 1 were selected as potential inputs
for the BA algorithm; in a previous work [31] each reflectance band and the temporal
difference ∆ between post-fire and pre-fire reflectance were analyzed to identify the most
suitable ones for discriminating burned and unburned surfaces: post-fire S2 reflectance
in Red-Edge and NIR (RE2, RE3, NIR) and temporal difference ∆ between pre-fire and
post-fire S2 reflectance in the same bands and SWIR2 (∆RE2, ∆RE3, ∆NIR, ∆SWIR2).

Over each site, a pair of clear-sky S2 images were selected before (pre-fire date) and
after (post-fire date) major fire events (Figure 2, Table 2). The sooner the image is acquired
after the fire event the easier is the detection due to a stronger spectral signature of burn,
as a consequence of fire on vegetation compound. For this reason, in general, we select
the first available clear image after the event [36]. In this study, the temporal difference
between pre- and post-fire images is on average 20 days.
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Table 1. MSI S2 spectral bands, spectral domain, central wavelength, spatial resolution and name used in this paper.
Temporal difference (∆) is the reflectance difference between post-fire and pre-fire S2 images. In bold are the spectral bands
and difference used as input features for the BA mapping algorithm in this study.

Band Name Spectral Domain Central Wavelength (µm) Spatial Resolution [m] Features Name

Band 2 Blue 0.490 10 RE2 and ∆RE2

Band 3 Green 0.560 10 RE2 and ∆RE2

Band 4 Red 0.665 10 Red and ∆Red

Band 5 Red Edge 1 0.705 20 RE1 and ∆RE1

Band 6 Red Edge 2 0.740 20 RE2 and ∆RE2

Band 7 Red Edge 3 0.783 20 RE3 and ∆RE3

Band 8 NIR 0.842 10 NIR and ∆NIR

Band 11 SWIR 1 1.610 20 SWIR1 and ∆SWIR1

Band 12 SWIR 2 2.190 20 SWIR2 and ∆SWIR2

In bold are the spectral bands and difference used as input features for the BA mapping algorithm in this study.

Figure 2. Cont.
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Figure 2. Pre- and post-fire S2 images (first and second column, respectively) for each site: Calar,
Spain (a); Huelva, Spain (b); Kalamos, Greece (c) and Zakynthos, Greece (d). S2 images are displayed
as RGB false color composites (SWIR2, NIR, RED). In the second column, active fire points from
MODIS (red) and VIIRS (yellow) are overlaid on the RGB image.

Table 2. Pre-fire and post-fire S2 image dates. The reference date is the date of the EMS dataset used
for validation in the four study sites.

Study Site Pre-Fire Date Post-fire Date Reference Date

Calar, Spain 15/07 04/08 04/08

Huelva, Spain 11/06 01/07 27/06

Zakynthos, Greece 25/07 03/09 18/08

Kalamos, Greece 28/07 17/08 18/08

S2 images were downloaded as Level 1C from Copernicus Open Access Hub [37] and
processed with the Sen2r [38] toolbox developed in R, released under the GNU General
Public License version 3 (GPL-3) and available on GitHub [39]. The Sen2r toolbox makes
available functions to process Level-1C images for atmospheric correction to deliver Bottom
of Atmosphere (BOA) reflectance images in the VIS-NIR-SWIR wavelengths (S2 bands 2
to 12) at 10 m spatial resolution (after resampling of the lower spatial resolution SWIR
spectral bands available at 20 m).

In this study, a burned area represents the area affected by a fire that shows a change
in vegetation cover and/or in ground surface that can be detected by RS data [40]; hence,
a BA map is a geo-spatial product, generally representing a binary thematic informa-
tion (burned/unburned) as grid/raster or vector/polygon format, and delivered by the
algorithm that takes S2 images as input.

Active fires (AFs) were downloaded from the Fire Information for Resource Man-
agement System (FIRMS, https://earthdata.nasa.gov/earth-observation-data/near-real-
time/firms, last access 1 July 2021) and used as training data. FIRMS distributes Near
Real-Time (NRT) and archived active fire data from the NASA’s Moderate Resolution Imag-
ing Spectroradiometer (MODIS), aboard the Terra and Aqua satellites [41], and NASA’s
Visible Infrared Imaging Radiometer Suite (VIIRS), aboard the joint NASA/NOAA Suomi
National Polar orbiting Partnership (Suomi NPP) [42]. Both MODIS and VIIRS fire datasets
are accompanied by a layer of detection confidence of each individual fire, ranging in
0-100%. MODIS and VIIRS products were subset to extract fires detected between the S2
pre-fire and post-fire dates for each study site (Figure 2).

At the four sites, reference fire perimeters were downloaded from the Copernicus
Emergency Management Service (EMS). EMS delivers on-demand and near-real time
(hours/days) geospatial information in support of emergency management activities: this
information is and derived from processing and analysis of satellite imagery acquired imme-
diately after natural or man-made disasters such as floods, droughts and forest fires. EMS
delivers ready-to-print maps and geographic dataset (vector package) for fire perimeter

https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms
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and fire damage grading (burn severity) derived from very high-resolution (VHR) multi-
spectral images (https://emergency.copernicus.eu/mapping/list-of-activations-rapid, last
access 1 July 2021). In the EMS products, reference date is the date of the VHR image data
acquired for producing the delineation and damage mapping. Table 2 reports the dates
of the S2 pre- and post-fire image pairs and fire reference perimeters. EMS fire perime-
ters were used as reference/ground truth for the validation of the BA maps produced by
the algorithm.

3. Methods

The multi-criteria data-fusion approach proposed in this work builds on fuzzy sets
theory to aggregate information provided by a set of input features, or contributing factors,
by applying Ordered Weighted Averaging Operators (OWA) [18]. The approach imple-
ments a fusion function through an aggregation of multiple inputs to provide a reliable
evaluation of the target phenomenon by modelling a reinforcement of evidence provided
by redundant and complementary information.

In the case study of BA mapping, the aggregation of S2 bands and their temporal
difference (∆) can provide a reliable evaluation of the occurrence of fire, based on both
the spectral signature of burned areas and the spectral reflectance change induced by the
effect of a fire on the vegetated surface. Hence, input features are the seven spectral bands
and difference identified by Sali et al. [31] as providing the greatest separability between
burned and unburned surfaces: RE2, RE3, NIR, ∆RE2, ∆RE3, ∆NIR, ∆SWIR2 (Table 1).
Spectral bands and difference are interpreted by Membership functions (MF) of the fuzzy
sets, which assign to each pixel a membership degree (MD) in [0, 1] that is the partial
evidence of burn as brought by a single input: the closer the value to 1, the greater the
evidence of burn. This step first normalizes the domains of all input factors to a common
domain, so as to make them comparable and consistent, by, at the same time, enhancing
the signal of burned conditions. MFs can be defined with different approaches according
to available expertise and training data [43–45]; in this study, we exploited MFs from our
previous work defined as parameterized sigmoid-shaped functions from training data [31].

The MDs values are aggregated by means of a fusion function defined as an OWA
operator to provide a synthetic score of global evidence of burn, as brought by redun-
dant/complementary inputs. OWAs can model different attitudes/semantics. Global
evidence of burned areas obtained with different OWAs (e.g., ranging from extreme con-
ditions of minimum and maximum operators) is used as seed (OWAseed) and a grow
(OWAgrow) layers by the Region Growing (RG) algorithm that exploits spatial connectivity
of burned pixels. Here, we present a new formalization of the BA algorithm where the
input to the RG algorithm can be automatically generated from training AF points.

3.1. Ordered Weighted Averaging Operators (OWA)

An OWA of dimension N and weighting vector W, with ∑i = 1, ... N wi = 1, aggregates
N input values [d1, . . . , dN] and computes an aggregated value a in [0, 1] as follows [46]:

OWA : [0, 1]N → [0, 1] a = OWA([d1, . . . , dN ]) =
N

∑
i=1

wi ∗ gi (1)

in which gi is the i-th largest value of the d1, . . . , dN. In this case study, ([d1, . . . , dN ]) are
the MDs of the seven input factors (N = 7): RE2, RE3, NIR, ∆RE2, ∆RE3, ∆NIR, ∆SWIR2.

Input values d1, . . . , dN, are rearranged from the greatest to the smallest; reordering is
a fundamental step of OWA operators, meaning that a specific weight wi is not univocally
associated with the specific i-th input, but rather it is associated with the i-th position of the
reordered inputs. In the case of BA mapping, OWAs can adapt to burned surface spectral
characteristics, that can vary with site characterisitcs, by selecting pixel by pixel the input
feature that brings the greatest evidence of burn. Different weighting vectors W lead to
different OWAs, including Max, Min and arithmetic mean operators:

https://emergency.copernicus.eu/mapping/list-of-activations-rapid
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WAND = [0, . . . , 0, 1] OWAAND([d1, . . . , dN ]) = min{d1, . . . , dN}
WOR = [1, . . . , 0, 0] OWAOR([d1, . . . , dN ]) = max{d1, . . . , dN}

WAlmostAND = [0, . . . , 0.5, 0.5] OWAAlmostAND([d1, . . . , dN ]) =
1
2 min{d1, . . . , dN}+ 1

2 min{{d1, . . . , dN} − {min{d1, . . . , dN}}
WAverage =

[
1
N , . . . , 1

N

]
OWAAverage([d1, . . . , dN ]) =

1
N

N
∑

j=1
dj

WAlmostOR = [0.5, 0.5, 0, . . . , 0] OWAAlmostOR([d1, . . . , dN ]) =
1
2 max{d1, . . . , dN}+ 1

2 max{{d1, . . . , dN} − {max{d1, . . . , dN}}
It can be proved that OWA operators satisfy commutativity, monotonicity and idem-

potency and are bounded by Max and Min operators:

Min ([d1, . . . , dN]) ≤ OWA([d1, . . . , dN]) <= Max([d1, . . . , dN]) (2)

3.2. Semantics of Ordered Weighted Averaging Operators (OWA)

The semantics of an OWA operator with weighting vector W has been characterized
by two measures [46]: the measures of orness and of dispersion. The measure of orness(W) ∈
[0, 1] is defined as follows:

orness(W) =
1

N − 1

(
N

∑
j=1

(N − j) ∗ wj

)
(3)

This measure characterizes the degree to which the aggregation is similar to an OR
(Max) operator. Generally, in decision making, it is related to the tolerance of the decision
maker, intended as his/her attitude to accept that only some criteria are satisfied, while
intolerant decision makers demand that most or even all criteria are satisfied [47]. In other
terms, orness measures the degree to which the OWA operator has a conjunctive behaviour.

It can be shown that, when the input values d1, ..., dN are degrees of partial evidence of
an undesired phenomenon from N distinct sources, i.e., the greater they are, the more severe
the evidence, we can assess the following interpretation of orness in relation to the fusion
attitude, in which the fusion function is regarded as a decision maker agent [18,48,49]:

orness[1, . . . , 0] = 1 indicates a pessimistic attitude of the fusion applied to minimize
the risk of underestimating the spatial extent of a critical phenomenon (i.e., nothing is
disregarded, any single source alone is trusted and taken into consideration to map the
phenomenon extent);

orness[0, . . . 1] = 0 indicates an optimistic attitude of the fusion, applied to minimize
false positives due to overestimation of the effects of a critical phenomenon (i.e., one wants
to prioritize anomalies pointed out by all sources since any source alone is not trusted
by itself);

orness[1/N, . . . , 1/N] = 0.5 indicates a balanced and neutral attitude towards over
and under estimation of the phenomenon extent.

Notice that, in this interpretation, high values to aggregate are considered with a
negative connotation.

The dispersion measure can also be defined to qualify the semantics of an OWA op-
erator depending on the form of the weighting vector and representing how much of the
information in all the input values is used by an OWA. The idea behind its definition is
that the greater the dispersion, the more democratic the aggregation of the correspondent
OWA, since it uses information from more sources/factors. Several dispersion measures
have been proposed [50], the first of which is based on the concept of information entropy
of W:

dispersion(W) = −
i=1

∑
N

wi ∗ ln(wi) (4)

This definition of dispersion is an entropy and satisfies the following properties:

• Minimum value is obtained when wi = 1 for some i, then dispersion(W) = 0,
• Maximum value is obtained when wi = 1/N for all i, then dispersion(W) = ln(N).
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3.3. Fusion Attitude based on Optimism and Democracy

As stated in the previous section, a fusion function can be regarded as an automatic
decision maker agent, which can be pessimistic or optimistic on the impact of a critical
or anomalous event such as a wildfire. When it is fully pessimistic, it requires the worst
scenario to be identified, thus tolerating more false positive alarms (commission greater
than omission errors) in order to be cautious and not to neglect any possible critical situation.
Conversely, when it is fully optimistic, it means that it tolerates false negative (omission
greater than commission errors), in order to analyze only the priorities that demand
intervention. In between these two extreme cases, there is a continuum of blending of
optimistic and pessimistic attitudes. Perfectly in the middle, we have a neutral attitude that
equally balances optimism and pessimism. We can define a variable ps in [0, 1] to quantify
the desired degree of pessimism of a fusion attitude that assumes values 1 or 0 in the cases
of full pessimism or full optimism, respectively, and 0.5 in case of neutral attitude.

Another dimension of the fusion attitude is the level of democracy that it applies
among the multiple input factors to determine the result. Democracy depends on both
the number of the factors and the degree of evidence they provide, to determine the final
result. In the case of maximum democracy, all factors are considered equally influential,
while in the case of full monarchy, the rule of one drives to the result. In between these two
extremes, we can have a blend of democracy and monarchy.

We define a variable dm in {1/N, 2/N, . . . 1}, with N is the number of factors, to
represent the degree of democracy of a fusion attitude the meaning of which is the per-
centage of factors it considers. When dm = 1/N, we have full monarchy (the rule of one)
while dm=1 corresponds to full democracy (one head one vote), while intermediate values
1/N < x/N < 1, with 1 ≤ x ≤ N, specify a blend of the two extremes.

If we consider an OWA with weighting vector W that fuses partial evidence of burn
as a decision maker agent, we can define its attitude by the pair pessimism ps in [0, 1] and
democracy dm in {1/N, 2/N, . . . 1}. Pessimism is related to its orness (3) and democracy dm
to the dispersion measure (4) as follows:

ps = orness(OWA) (5)

dm = exp(dispersion(W))/N (6)

In order to make it easier to understand the semantics of the OWA operators once
we computed the pair (ps, dm), in Figure 3, we provide linguistic expressions that allow
humans to interpret the correspondent attitudes of the OWA operators to generate more
omissions/commissions errors in heterogeneous/homogenous areas. In the bi-dimensional
space of pessimism (ps, rows) and democracy (dm, columns) distinct quadrants correspond
to given attitudes.

Pessimism and optimism are determined by high and low degrees of evidence, re-
spectively, of an undesired status of the environment due to wildfires: a high value is
considered a pessimistic view of the status, i.e., something negative, while a low value is an
optimistic view, something positive. Thus, an OR (AND) fusion is regarded as a pessimistic
(optimistic) attitude since one trusts the most pessimistic (optimistic) criterion, and thus is
prone to generate more commission then omission errors (vice versa).

Moreover, a democratic fusion function indicates that all factors are needed to capture
the characteristics of all burned areas, meaning that these surfaces are likely to have homo-
geneous conditions. Conversely, if the fusion is monarchical, it means that each burned area
may exhibit its own highly influential factor, an thus may have heterogeneous conditions.
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Figure 3. Semantics of the fusion of N = 7 contributing factors of burned areas defined by OWA
operators with distinct degrees of pessimism (ps) in [0, 1] and democracy (dm) in {1/N, 2/N, .-..N/N}.

3.4. Learning OWA Weighting Vector from Training Points

An OWA operator, i.e., its weighting vector W, can be learnt from data assumed as
ground truth by applying a ML algorithm; training data can be used to this aim being a
highly reliable evidence of the phenomenon under investigation. The OWA operator can
be defined by iteratively minimizing errors between OWA results and training points.

Given K georeferenced training points in the map a1, . . . aK (in our case: points
labelled as active fires-Afs), they are assumed as ground truth. By knowing their geographic
coordinates, we can associate to each of them the MDs [ai1, . . . aiN] of the N input factors
having the same coordinates such that we obtain the following antecedent-consequent
rules that must be satisfied:

a11, ...., aN1 → a1

. . .

a1K, ...., aNK → aK

(7)

In the case study of BA mapping, the values a1, . . . aK, are defined on a continuous
scale [0, 1] to quantify the extent of the evidence of burn in the specific location (1 full
evidence, 0 no evidence, and intermediate values mean partial evidence).

The learning mechanism starts at epoch L = 0 by assuming as initial OWA0 operator
the weighted average (balanced and neutral attitude), that is defined with weighting vector
W0 = [1/N, . . . 1/N]. Then, at each epoch L, it iteratively determines the weighting vector
WL = [w1L, . . . , wNL] of OWAL that minimizes the error existing between the results of
its application to all the antecedents of the rules in (7) and the values a1, . . . aK, of the
training points (i.e., the consequents of the rules). Formally, this is equivalent to applying
the following rule:

WL such that | Λi(L) − Λi(L + 1)| < ε ≈ 0 or L = Lmax (8)

where
Λi(L + 1) = Λi(L) − βwiL (argmaxi(a1k, ...., aNk) − OWAL(a1k, ...., aNk))∗(OWAL(a1k, ...., aNk) − ak) (9)

in which β ∈ (0, 1] is a learning rate parameter, and the i-th weighting vector element
at epoch L is defined as follows:

wi L = eΛi(L)/∑j=1, . . . N eΛj(L) ∀i = 1, . . . , N (10)
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While in Goffi et al. [32], field observations of standing water were used as training
points to learn the best OWA operator for a given site, directly to map flooded areas, in
this work, by exploiting Afs points as training data, a vector W was learnt for each site
and used (i) to quantify the fusion attitude site by site and (ii) to define the OWA for the
generation of the seed layer for the RG algorithm.

3.5. Workflow of the Automatic BA Mapping Algorithm

The workflow of the automatic BA algorithm is shown in Figure 4 in which the grey
box enhances the novel part that has been embedded in our previous proposal [31]. Since
the algorithm is applied at the pixel level, one independently from the others, we can
refer to input/output of any step of the workflow as rasters/layers/maps, intended as
georeferenced and co-registered matrices of pixels. First, remote sensing data are collected
for each study area. A set of features is computed, identified as contributing factors to
determine partial evidence of burn. In this case, input features are spectral bands and
temporal difference. These features are subjected to membership functions of fuzzy sets
defined on the domain of the features and computing degrees of evidence of burn in [0, 1]
(i.e., MD for membership degree). Both the identification of the most suited features and the
definition of the membership functions have been carried out in a previous study [31]. Since
the same features and functions have been tested over the sites of the present experiment,
there was no need to readapt them.

Figure 4. Workflow of the fully automatic algorithm proposed for burned area mapping with the
multi-criteria adaptive approach. The grey box highlights the innovative step in the algorithm
introduced to fully automatize the definitions of both OWAseed and OWAgrow, generating the seed
and grow layers, respectively, and used in input by the RG algorithm.

Once MDs are computed, the ML algorithm described in Section 3.4 is applied inde-
pendently at each site by taking as training data AF points within the site, and by using
them to learn the OWA operator. The learnt OWA is subsequently applied to aggregate
MD values of the site to generate the seed layer for the RG algorithm. In order to choose
the most appropriate growing layer, we exploit the information on the attitude of the learnt
OWA operator by computing its degrees of pessimism (ps) and democracy (dm) as described
in Section 3.3 by applying Formulae (3) (4) and (5) (6).
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While the knowledge of dm can be useful to the expert, in order to have an idea of the
homogeneity or heterogeneity of the BAs’ features in each site, the degree of pessimism ps
is used in the RG algorithm to select the growing layer (OWAgrow) that should minimize
predicted errors by applying heuristic rules such as the following ones:

If ps > 0.75 then OWAgrow = OWAAlmost_AND

If 0.5 ≤ ps ≤ 0.75 then OWAgrow = OWAAverage

If 0.25 ≤ ps < 0.5 then OWAgrow = OWAAlmost_OR

If 0 ≤ ps < 0.25 then OWAgrow = OWAOR

(11)

Hence, rules in (11) formalize a simplified choice of the OWAgrow to counter-balance
the tendency to increase the commission/omission errors by containing the seeds’ expan-
sion depending on the learnt OWAseed. The rationale of this heuristic can be understood
by ordering the OWA operators by the increasing value of their pessimism ps:

OWAAND < OWAAlmost_AND < OWAAverage < OWAAlmost_OR < OWAOR

0 < 0.08 < 0.5 < 0.92 < 1
(12)

When ps is closer to the neutral attitude (ps ≈ 0.5) than to the extreme ps = 1 corre-
sponding to full pessimism, the prediction on the type of error is very uncertain, meaning
that omission and commission are more or less balanced. In this case, to maintain a bal-
anced behavior, OWAgrow is chosen as the OWAAverage. When ps is closer to full pessimism,
(ps = 1), it is more likely that the seed layer contains more commission than omission
errors, hence the expansion is contained by selecting an OWAgrow that is more optimistic
than OWAseed, i.e., OWAAlmost_AND. On the other side, if ps is closer to full optimism
(ps = 0), seeds are likely to be affected by more omission than commission, and thus they
are maximally expanded in an attempt to decrease the omission by selecting OWAOR. Since
in our experiment we assumed that it is preferable to have more commission than omission,
we introduced a rule for values of ps in between 0.25 and 0.5 that would hint to a slight
prevalence of omission, so as to relax the expansion in an attempt to decrease the omission
thus selecting OWAAlmost_OR. Notice that these rules have been set a priori, based on the
rationale, and without any tuning on experimental data.

After the selection of the most appropriate OWAgrow, the region growing (RG) algo-
rithm is run in Harris IDL language (https://www.l3harrisgeospatial.com/docs/region_
grow.html, last access 1 July 2021). Region growing is a procedure that groups pixels or
sub regions into larger regions based on pre-defined criteria [26]. The RG algorithm is
an iterative algorithm that starting from initial seeds extracted from the OWAseed layer
(OWAlearn, in this case), it searches the eight-neighbor connected pixels and it includes
in the new seed layer for the next iteration only those pixels that satisfy the constraint
OWAgrow > 0. Initial seeds are pixels with OWAlearn > 0.9. The output is a raster map with
pixel value, RGscore, in [0, 1].

3.6. Validation Metrics

Validation is the assessment of thematic accuracy of burned area maps, derived from
the output raster of the RG algorithm. Over each site, the output RGscore rasters are
converted to binary, burned/unburned maps, prior to comparison with reference EMS
fire perimeters. Since EMS products are distributed as shapefile, rasterization is necessary
for pixel by pixel comparison to build the error/confusion matrix (Table 3). An error
matrix is a square array of numbers organized in rows and columns, which expresses the
number of sample units (i.e., pixels, clusters of pixels, or polygons) assigned to a particular
class relative to the actual class, as indicated by the reference data [51]. In RS literature,
classification is generally a multi-class problem (e.g., land cover classification) and the
error/confusion matrix is an array with the number of columns/rows > 2.

https://www.l3harrisgeospatial.com/docs/region_grow.html
https://www.l3harrisgeospatial.com/docs/region_grow.html
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Table 3. Sampled error/confusion matrix: nij express the number of pixels of agreements (diagonal
cells) or disagreements (off diagonal cells) between the BA product and the reference EMS. In the case
of binary classification (burned areas and not burned areas), considering as target objective of the
algorithm the identification of burned areas, we can make this equivalence: True Positives (TP = n11),
True Negatives (TN = N22), False Positives (FP = n12) and False Negatives (FN = n21).

EMS Reference

Burned Unburned Total

RG
algorithm

Burned n11 n12 n1+

Unburned n21 n22 n2+

Total n+1 n+2

In the modelling literature, the evaluation of model forecast generates a 2 × 2 square
matrix, where columns and rows are labelled as false/negative or true/positive occurrence;
in this case, predicted values can be true positives (TP), false negatives (FN), true negatives
(TN) and false positives (FP) [52].

BA mapping is a binary classification problem (burned/unburned) and the error/confusion
matrix could be assimilated to the one proposed in the evaluation of modelling forecast,
but we maintain the RS formalization as shown in Table 3 and widely used in the RS
literature [53–56].

Various summary metrics can be derived from the error/confusion matrix; in this
work we selected the following ones which are those commonly used in remote sensing:
commission error, omission error, Dice Coefficient (DC) [57] and relative bias (Table 4).

Table 4. Metrics computed from the error/confusion matrix and range of variability.

Accuracy Metric Name Formula Range

Commission error Ce = n12
n1+

[0, 1]

Omission Error Oe = n21
n+1

[0, 1]

Dice Coefficient DC = 2n11
2n11+n12+n21

[0, 1]

Relative Bias relB = n21−n12
n+1

[−1, +1]

4. Results
4.1. Learning the OWA Operator for Seed Layer Computation

The algorithm described in Section 3.5 and depicted in Figure 4 was applied to the
four study sites. As stated above, from S2 image pairs for each site, pre- and post-fire, we
selected the seven input features, RE2, RE3, NIR, ∆RE2, ∆RE3, ∆NIR, ∆SWIR2, that are
converted to membership degrees MDs by applying the MFs to generate seven partial
evidence maps. These maps are fused by applying two distinct OWAs operators to generate
OWAseed and OWAgrow for the RG algorithm. In this case, OWAseed = OWAlearn that is
defined at each site by applying the ML algorithm described in Section 3.4 exploiting AF
points: its weighting vectors, W, are reported in Table 5 for each site. Results show that at
all sites except Kalamos, the learnt operators end towards a pessimistic attitude, generating
more commission than omission errors. However, this prediction is highly uncertain due
to the closer value of ps to the neutral attitude (ps = 0.5) than to the full pessimistic attitude
1 (ps = 0.55, ps = 0.70 and ps = 0.54, respectively). In Kalamos, the prediction is that there is
slightly more omission, even if it is highly uncertain too (ps = 0.4). Furthermore, at all sites
except Calar, the learnt operator is nearly monarchical, thus exploiting few partial evidence
maps to determine the result (i.e., the global evidence). In Calar, the nearly democratic
operator combines all partial evidence degrees. This is also apparent by looking at the
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elements of the single weighting vector W of Calar, which is never null (wi > 0, ∀i = 1 to 7),
while for the other vectors, we have at least two or more null elements.

Table 5. Weighting vectors of the OWAlearn in each site, its degrees of pessimism ps and democracy dm, the correspon-
dent attitude expressed linguistically, the expected type of error in the seed layer generated by OWAlearn, the predicted
OWAgrow based on the heuristic rules in (11) and the best performing OWAgrow that has been assessed based on the
validation comparison.

OWAlearn Weighting Vector ps dm Attitude
Expected

Errors
in Seed Layer

Predicted
OWAgrow

(OWAseed = OWAlearn)

Best
OWAgrow

(OWAseed = AND)

Calar [0.43, 0.02, 0.03, 0.03, 0.13,
0.16, 0.21, 0.55, 0.67] 0.55 0.67

Towards Pessimistic
and Nearly
Democratic

ce ≥ oe Average Almost OR
(∆dc = 0.01)

Huelva [0.69, 0.00, 0.00, 0.00, 0.00,
0.00, 0.30, 0.70, 0.28] 0.70 0.28

Towards Pessimistic
and Nearly

Monarchical
ce > oe Average Average

Kalamos [0.36, 0.02, 0.00, 0.00, 0.02,
0.11, 0.49, 0.4, 0.45] 0.40 0.45

Towards Optimistic
and Nearly

Monarchical
oe ≥ ce Almost OR OR

(∆dc = 0.007)

Zakynthos [0.53, 0.00, 0.00, 0.00, 0.00,
0.00, 0.46, 0.5, 0.30] 0.54 0.30

Towards Pessimistic
and Nearly

Monarchical
ce ≥ oe Average Average

The OWAgrow layer was then chosen by applying rules defined in (11), based on the values
of pessimism ps in each site: at all the sites except Kalamos, predicted OWAgrow = OWAAverage,
while in Kalamos predicted OWAgrow = OWAalmost_OR.

4.2. Burned Area Mapping Accuracy

The RG algorithm was applied to automatically generate the final map of burned
areas by masking out not-vegetated (bare soil and urban classes) and agricultural regions
based on the Corine Land Cover map [58]. Output BA maps are validated by comparison
with reference fire perimeters from the EMS products.

We also compared the result of the proposed fully automatic algorithm with those
yielded by using the semi-automatic algorithm proposed in Sali et al. [31], in which both
OWAseed and OWAgrow layers were manually selected with several different combinan-
tions. In this comparative analysis, seeds were extracted from OWAAND (OWAAND > 0.9)
to simulate the requirement of highest reliability of seed pixels and identified by the most re-
strictive operators (i.e., implanting an AND/Min condition) and from the OWAlearn to sim-
ulate a fully automatic condition; for the grow layer, we tested OWAAverage, OWAAlmostOR
and OWAOR. All RG output maps were compared to EMS fire reference perimeters for
accuracy assessment: the confusion matrices and metrics are reported in Tables A1 and A2.
In the tables, the combination of OWAseed and OWAgrow that achieves the greatest accu-
racy at each site is highlighted in bold; the same information is also reported in the last
column of Table 5, together with the increase in the Dice coefficient (∆dc) brought by the
best performing algorithm with respect to the fully automatic one, implemented with the
predicted OWAgrow.

Finally, we also performed an ablation study by removing the RG algorithm and
considering as direct result the map generated by OWAlearn in each site, and comparing it
with the map obtained by applying other OWAs, specifically, OWAAND, OWAAlmostAND,
OWAAverage, OWAAlmostOR and OWAOR, with weighting vectors defined in Section 3.2.
This study was performed to assess the utility of the RG algorithm, that is expected to
reduce commission errors. Results are synthetized by the accuracy metrics (defined in the
previous Section 3.6), and used to compare the experiments; metrics are also reported in
graphical form in Figure 5 and discussed in Section 5.
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Figure 5. Accuracy metrics estimated for the four study sites for all combinations of OWAs with
region growing (RG) and without region growing (noRG) (oe=omission error, ce=commission error,
dc=dice coefficient, relB=relative bias).

By looking Table 5, we can observe that the fully automatic algorithm proposed
in this paper using the predicted OWAgrow (Table 5, Predicted OWA) together with the
best-performing semi-automatic algorithm in two areas (Huelva and Zakynthos). At both
sites, the predicted OWAgrow = OWAAverage, the one with manual selection yielding best
performance (dc > 0.9).

In the Calar site, predicted OWAgrow = OWAAverage, while the best performing semi-
automatic version corresponds to OWAgrow = OWAAlmost_OR. In Kalamos, predicted
OWAgrow = OWAAlmost_OR, while the best performing one corresponds to OWAgrow = OWAOR.
Nevertheless, there is a negligible difference in mapping accuracy, as quantified by the Dice
coefficient; indeed, accuracy loss (∆dc) is 0.01 and 0.007 for Calar and Kalamos, respectively.

We can also notice that, in both of these two cases, the predicted OWAgrow operators
have a smaller pessimism than the best performing ones. This suggests a revision of the
heuristic rules which were set a priori, just based on the rationale and not on experimental
tuning. We can conclude that the fully automatic algorithm performs equally or very close
to the best semi-automatic algorithm with manual setting of both OWAseed and OWAgrow
for generating the seed and grow layers.

Figure 5 depicts accuracy metrics bar plots (commission, omission, Dice coefficient
and relative bias) for the tested combinations of OWAs with (RG) and without RG (noRG);
numeric values are summarized in Tables A1 and A2.

Average dice coefficient of the full automatic algorithm over all sites is 0.94 ± 0.03
(±one standard deviation) that equals the average accuracy over all sites of the best
performing semi-automatic algorithms in each site. They differ for the average relative bias
that is slightly positive 0.004 (omission > commission) for the fully automatic algorithm,
while the best performing algorithms, on average, produce a negative bias equal to −0.005.
The balance between average omission and commission is greater for the full automatic
algorithm (average oe = 0.057 and average ce = 0.068), while the best performing semi-
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automatic algorithm tends to generate more commission (average ce = 0.08) than omission
(average oe = 0.044). These results show that the fully automatic algorithm has a more
balanced behavior in terms of omission and commission than the best performing semi-
automatic algorithm at each site and equal accuracy.

By analyzing the ablation study, i.e., by comparing the results obtained when using
or not the RG algorithm, it is clear that the RG algorithm is very necessary to decrease
commission errors. The first clear outcome is that using an RG algorithm in the full
automatic algorithm leads to both: (i) a reduction in the errors and (ii) a lower variability in
the accuracy metrics among selected OWAs. The former is quantified by the Dice coefficient
ranging in [0.91, 0.97] and [0.73, 0.93] with and without RG algorithm, respectively.

At all the sites, we can observe a decrease in the Dice coefficient, dc, when not using
the RG algorithm: the largest decrease occurs in the Calar site, Spain, where dc is 0.92 with
RG, and 0.73 with noRG; in Huelva, dc is 0.91 with RG, and 0.88 with noRG; in Kalamos, dc
is 0.97 with RG, and 0.93 with noRG; finally, in Zakynthos dc is 0.94 and 0.78 with RG and
noRG, respectively. The reduced variability is confirmed by the lower standard deviation
of the dc metric estimates, that decreases from 0.09, when not using RG, to 0.03 when RG is
applied (Table A1).

Indeed, in the fully automatic version, the contextual conditions applied by the RG
algorithm reduce commission error at all sites by a quantity that ranges between a minimum
of 5.2% in Huelva, and 8.2% in Kalamos, to a maximum of 25.2% in Zakynthos, and 34% in
Calar. This decrease in commission does not always affect the increase in omission: when
applying RG at the Calar and Huelva sites, omission increases only for 0.4% and 0.1%,
respectively, while when applying RG in Kalamos and Zakynthos, there is also a decrease
in omission, with a reduction in ce equal to 0.3 and 0.1, respectively.

Results confirm that the best mapping accuracy is achieved when region growing is
applied as a way of balancing omission and commission errors [59]; in fact, region growing
and contextual approaches are largely used in thematic mapping.

Overall, the site with lowest ce is Kalamos (ce = 2%); also at this site the greatest
values for the Dice coefficient and relative bias metrics are obtained for the fully automatic
algorithm (dc = 0.97, relB = 0.005).

Finally, by observing the results obtained without the RG algorithm, extreme optimistic
conditions are depicted, consistently over all sites, by the noRG_AND and noRG_AlmostAND
algorithms which, not surprisingly, deliver the greatest omission errors due to the restrictive
condition applied by AND-like operators. This result was largely expected since AND-like
operators implement a fusion strategy based on the selection of the minimum value of the
global evidence of burn. Despite leading to a significant underestimation, global evidence
of these operators is highly reliable for the restrictive conditions applied to fuse input
features. Hence, OWAAND could be chosen as alternative source for seed points when no
training is available [31]. Indeed, it can be observed that, at all the sites, the fully automatic
algorithm achieves the same results of the manually set algorithm generating the seed layer
by OWAAND and having the same grow layer of the automatic algorithm. In seed-based
region growing algorithms, selection of initial seed points is crucial since it influences the
final accuracy [60,61]; our results confirmed that the proposed approach is robust with
respect to the choice of seeds from both OWAAND and OWAlearn. Nevertheless, when
choosing OWAlearn we can exploit the knowledge of its attitude to select the OWAgrow for
generating the grow layer adaptively in each site, so as to minimize errors. In fact, the
combination OWAseed = OWAAND and OWAgrow = OWAAverage achieves the same accuracy
of the fully automatic algorithm at all the sites. Nevertheless, if we regard the omission and
commission, we can see that the balance is slightly different for the manual set algorithm
at the Kalamos site, where oe = 5.2% and ce = 1.1, while with the fully automatic algorithm,
a better balance is achieved; oe = 3.1 and ce = 2%. Nevertheless, to confirm the usefulness
of the adaptability mechanism over the manual combination OWAseed = OWAAND and
OWAgrow = OWAAverage new experiments are needed.
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5. Discussion

In this paper, we propose an approach for automatically mapping burned areas from
S2 imagery, exploiting reflectance values in the S2 spectral bands; spectral signal of burned
surfaces in post-fire images as well as in temporal difference in reflectance values are
fused by OWA operators. The proposed algorithm builds on our previous work where
OWAs were exploited to map surfaces affected by disturbances such as wildfires [31] and
flooding [32]. In this paper, we further confirm that OWAs are flexible operators for data
fusion in multi-criteria evaluations and we also propose a fully automated version of the
BA mapping algorithm. In this improved version, we apply a ML algorithm, trained over
input active fire points operatively made available by RS data, to learn the weighting vector
of the OWA operator (OWAlearn). This way, we can learn an OWA that is tuned over site
and fire characteristics. The experimental tests carried out over four study sites in southern
Europe (Spain and Greece) for the 2017 summer fire season showed that the weighting
vector learnt from the training AFs changes from site to site, thus reflecting differences in
the characteristics of the surfaces affected by fires.

We propose exploiting two measures that can be derived from the semantic of the
OWAlearn operator (orness and of dispersion) to formalize fusion attitude through pessimism
(ps) and democracy (dm). In particular, pessimism (ps), is exploited to automatically identify
OWAgrow, i.e., the optimal growing layer, of the RG algorithm that is implemented in the
approach (Table 5).

Results of the experiments show that by adapting the choice of OWAgrow depending
on the degree of pessimism ps of OWAseed (where OWAseed = OWAlearn) and determined
based on learning allows us to achieve accuracy levels of BA mapping equal or very
close to the best performing OWAgrow in all the four sites. This is because the adaptation
mechanism actuated by the rules defined in (11) counterbalances the attitude of OWAlearn
to generate more or less commission/omissions.

If we compare the results of the automatic algorithm with all those obtained by
the semi-automatic algorithm in which OWAseed = OWAAND combined with different
OWAgrow, we can observe that at two of the sites the automatic algorithm achieves equal
or greater accuracy with respect to all semi-automatic versions. Only at the Calar site the
greatest accuracy is achieved by the semi-automatic algorithm with OWAseed = OWAAND
and OWAgrow = OWAAlmost_OR. The performance is certainly a function of the learning
mechanism and of the ability of active fire points to represent the variability of the spectral
characteristics of burned areas, as observed in S2 wavebands. Spectral characteristics of
burned areas are largely variable as a function of pre-fire vegetation, soil properties, fire
characteristics, fire severity and the age of the burned surface [62,63]. Fire severity is in
fact one of the factors controlling post-fire vegetation recovery and regrowth. Although
the learned OWA at this site may be inadequate to represent the actually burned areas,
mapping accuracy, as quantified by the metrics, is more than satisfactory (dc > 0.8).

Figure 6 shows the results of the automatic algorithms in each site: the RGscore with
seed points (first column) compared to EMS reference fire perimeters and the spatial
distribution of the agreement between BA maps and reference (second column, distinct
colors to mark agreement and disagreement classes). It can be immediately noticed that
RG algorithm exploiting spatial connectivity allows more compact burned areas to be
generated than by relying solely on the segmented RGscore maps obtained by applying a
given threshold, which appear highly fragmented. It can also be appreciated that omission
(False Negatives) and commission (False Positive) are located at the boundaries between
the burned (TP) and unburned (TN) areas, meaning that the grow layer generation could
be refined. It is, however, true that in these regions we can find the most critical detection
conditions, such as partially burned pixels and low severity burned pixels.
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Figure 6. Left: The RGscore maps (shades of blue) output from the algorithm (left column) with high-
lighted seed points (red pixels) and EMS reference perimeters (black line). Right: the accuracy maps
(correct burned TP = orange, correct unburned TN = white, omission FN = green and commission
FP = blue) for the four study sites: Calar, SP (a,b), Huelva, SP (c,d), Kalamos, GR (e,f) and Zakynthos,
GR (g,h). Unburnable masked regions are grey.

As far as the degree of democracy is concerned, it is an indicator of how many
factors and how much influence they have in determining the final map of burned areas.
Figures 7 and 8 depict the MDs of all factors at the Huelva and Kalamos sites, respectively;
in both cases, the degree of democracy dm is below 0.5, that is the neutral attitude, thus
corresponding to the nearly monarchical attitude (Table 5). Notwithstanding this, since
their degrees of dm are noticeably different, being equal to 0.28 and 0.45 in Huelva and
Kalamos, respectively, we can observe different patterns of the high influential partial
evidence degrees (MDs) at the two sites. While in Huelva there are only a few highly
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influential factors, in line with lower value of dm, essentially the most influential is ∆SWIR2
and then ∆NIR and ∆RE3, in Kalamos, we have a more variable situation with two most
influential factors ∆SWIR2 and ∆RE2, and then also ∆RE3 and ∆NIR, and finally RE2 and
RE3. This means that at the two sites, burned areas are characterized by different spectral
reflectance values in S2 bands probably due to different vegetation and burn severity.
The algorithm is indeed able to adapt to site characteristics by flexibly selecting the most
important layers in the fusion step. For example, in the Kalamos site, burned areas are
mainly located in shrubland vegetation class (data not shown).

Figure 7. Contribution of each feature MD after the re-ordering step (gi,i = 1, . . . 7) over the Huelva site, Spain: panels are
ordered from left to right to show pixels contributing to the i-th position. Along the columns, each pixel value belongs to
the n-th features and contributes to the i-th ordered layers.
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Figure 8. Contribution of each feature MD after the re-ordering step (gi,i = 1, . . . 7) over the Huelva site, Spain: panels are
ordered from left to right to show pixels contributing to the i-th position. Along the columns each pixel value belongs to the
n-th features and contributes to the i-th ordered layers.

6. Conclusions

The fully automatic interpretable and adaptable algorithm presents several advantages
over the literature both theoretical and practical.

First of all, it needs a small set of classified points for training (active fires) which
allows fast learning; in this case study, in particular, we used a total of 300, 79, 327 and
189 AF points for the Calar, Huelva, Kalamos and Zakynthos sites, respectively. Deep
learning approaches, on the contrary, typically Convolutional Neural Networks, need tens
of thousands classified pixels and, as a consequence, longer training phases. Additionally,
in many real cases of Earth Observation over large areas, representative and spatially
distributed data sets for training are not available. As proposed here, the training phase
relies on input active fires (MODIS and VIIRS from the FIRMS system) that are operationally
available at the global scale from satellite-based products. Moreover, when changing the
area, one generally needs to repeat the training phase with new ground truth data; in fact,
transfer of a pre-trained models greatly depends on the choice of a proper CNN architecture
for the target purpose.

Conversely, the proposed approach being partially knowledge-driven and partially
data-driven has the second advantage of exportability of the knowledge mined in a different
area: in fact, it exploits domain knowledge and data analysis performed in a study area to
identify the influential factors and transfers it to new sites without any need of modification.
Exportability with respect to membership functions has been proved in a previous paper
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in which we applied predefined MFs trained in a different site to new sites without any
modification and achieving a high mapping accuracy at all sites [31]. The adaptation occurs
at the level of factors fusion which allows both the selection of the most influential factors
and the factors’ contribution to be tuned depending on the characteristics of the site.

Average accuracy metrics values of the burned area maps delivered by the fully
automatic approach at the four sites are oe = 0.057, ce = 0.068, dc = 0.94 and relB = 0.0046;
these values refer to the implementation of the proposed approach incorporating the
RG algorithm. In fact, validation clearly showed that RG provides the highest accuracy
by reducing commission errors. Although a full comparison with published values is
difficult due to the differences in input data and algorithms, our results are more than
satisfactory and comparable to published reference values for accuracy metrics of burned
area maps [64–66].

The third advantage is the interpretability of the fusion in terms of its attitude to
generating a seed layer affected by more commission/omission errors. Deep learning
approaches are black boxes which achieve high prediction accuracy at the expense of
lack of transparency: there is no possibility of understanding the “why” of the prediction.
Nevertheless, being able to understand the prediction criteria is important in order to
increase experts’ knowledge of the problem. For example, one important aspect when
using a product generated from remote sensing data analysis, which is inevitably affected
by some form of error, is the knowledge of the types of errors: when using a map of
burned areas to estimate the loss in ecosystems, it is important to know whether one is
underestimating or overestimating the damage/loss. Nevertheless, there are situations in
which reference data are not available to assess the accuracy of the generated map. With
our proposed approach, even in this situation, we can state if the product will be affected
more by commission or omission errors. Furthermore, being able to identify the most
influential factors that determine the result is a condition that increases the trust of domain
experts and their knowledge of the context.

Finally, the approach is general: in this paper we presented it to map burned areas
but it can be applied for different tasks of environmental status assessment in land and
environment management and planning. A version without the RG algorithm was suc-
cessfully applied for mapping standing water areas [32]. The approach could be used to
deliver maps of critical situations and anomalies produced by disturbance phenomena
such as wildfires, floods, desertification, erosion.
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Appendix A

Table A1. Confusion matrices (TP = true positive, TN = true negative, FP = false positive, FN = false negative) and the
metrics (omission error = oe, commission error = ce, Dice coefficient = dc, relative bias = relbias) for the selected and tested
combinations of OWAseed and OWAgrow in the RG algorithm. Labels are the same displayed in Figure 5. The lines in
bold are the best performing combinations of the seed and grow layer in each site; the lines outlined in yellow are those
corresponding with the full automatic algorithm.

Seed Grow Label TP TN FP FN oe ce dc Relbias

Calar SP

AND Average RG_AND_Average 282073 1005800 10195 37818 0.118 0.035 0.920 0.027

AND AlmostOR RG_AND_AlmostOR 298753 990104 25891 21138 0.066 0.080 0.930 −0.005

AND OR RG_AND_OR 303087 912916 103079 16804 0.053 0.254 0.830 −0.085

learn Average RG_learn_Average 282276 1005800 10195 37615 0.118 0.035 0.920 0.027

learn AlmostOR RG_learn_AlmostOR 298753 990104 25891 21138 0.066 0.080 0.930 −0.005

learn OR RG_learn_OR 303087 912916 103079 16804 0.053 0.254 0.830 −0.085

Average 0.079 0.123 0.89 −0.021

Standard deviation 0.031 0.103 0.05 0.052

Huelva SP

AND Average RG_AND_Average 780066 3659400 98225 59952 0.071 0.112 0.910 −0.010

AND AlmostOR RG_AND_AlmostOR 803771 3612717 144908 36247 0.043 0.153 0.900 −0.029

AND OR RG_AND_OR 807912 3603750 153875 32106 0.038 0.160 0.900 −0.032

learn Average RG_learn_Average 782787 3656845 100780 57231 0.068 0.114 0.910 −0.012

learn AlmostOR RG_learn_AlmostOR 805279 3610946 146679 34739 0.041 0.154 0.900 −0.030

learn OR RG_learn_OR 809420 3601876 155749 30598 0.036 0.161 0.900 −0.033

Average 0.050 0.142 0.903 −0.024

Standard deviation 0.016 0.023 0.005 0.010

Kalamos GR

AND Average RG_AND_Average 260204 654869 3010 14341 0.052 0.011 0.970 0.017

AND AlmostOR RG_AND_AlmostOR 265908 652499 5380 8637 0.031 0.020 0.970 0.005

AND OR RG_AND_OR 266987 651743 6136 7558 0.028 0.022 0.970 0.002

learn Average RG_learn_Average 260204 654869 3010 14341 0.052 0.011 0.970 0.017

learn AlmostOR RG_learn_AlmostOR 265908 652499 5380 8637 0.031 0.020 0.970 0.005

learn OR RG_learn_OR 266987 651743 6136 7558 0.028 0.022 0.970 0.002

Average 0.037 0.018 0.970 0.008

Standard deviation 0.012 0.005 0.000 0.007

Zakynthos GR

AND Average RG_AND_Average 125635 2302900 14585 1122 0.009 0.104 0.940 −0.006

AND AlmostOR RG_AND_AlmostOR 126159 2298491 18994 598 0.005 0.131 0.930 −0.008

AND OR RG_AND_OR 126250 2296935 20550 507 0.004 0.140 0.930 −0.009

learn Average RG_learn_Average 125635 2302900 14585 1122 0.009 0.104 0.940 −0.006

learn AlmostOR RG_learn_AlmostOR 126159 2298491 18994 598 0.005 0.131 0.930 −0.008

learn OR RG_learn_OR 126250 2296935 20550 507 0.004 0.140 0.920 −0.009

Average 0.006 0.125 0.932 −0.008

Standard deviation 0.002 0.017 0.008 0.001

Global Average of full automatic algorithm over all sites 0.057 0.068 0.935 0.004

Global Standard deviation 0.048 0.048 0.026 0.017

Global Average of best performing algorithm over all sites 0.044 0.080 0.9375 −0.005

Global Standard deviation 0.030 0.041 0,025 0.005



ISPRS Int. J. Geo-Inf. 2021, 10, 546 23 of 25

Table A2. Confusion matrices (TP = true positive, TN = true negative, FP = false positive, FN = false negative) and the
metrics (omission error = oe, commission error = ce, Dice coefficient = dc, relative bias = relbias) for the OWA layers used
for mapping Bas without RG algorithm. Labels are the same displayed in Figure 5.

OWA Label TP TN FP FN oe ce dc Relbias

Calar SP

AND noRG_AND 127865 1015964 31 192026 0.600 0.000 0.570 0.189

AlmostAND noRG_AlmostAND 144475 1015940 55 175416 0.548 0.000 0.620 0.173

Average noRG_Average 283576 845991 170004 36315 0.114 0.375 0.730 −0.132

AlmostOR noRG_AlmostOR 299316 689234 326761 20575 0.064 0.522 0.630 −0.301

OR noRG_OR 303032 618881 397114 16859 0.053 0.567 0.590 −0.374

Average 0.276 0.293 0.628 −0.089

Standard deviation 0.274 0.277 0.062 0.262

Huelva SP

AND noRG_AND 197050 3752055 5570 642968 0.600 0.000 0.38 0.170

AlmostAND noRG_AlmostAND 295352 3745169 12456 544666 0.548 0.000 0.51 0.142

Average noRG_Average 782319 3601903 155722 57699 0.114 0.375 0.88 −0.026

AlmostOR noRG_AlmostOR 803296 3530378 227247 36722 0.064 0.522 0.86 −0.051

OR noRG_OR 807342 3501864 255761 32676 0.053 0.567 0.85 −0.059

Average 0.313 0.139 0.696 0.035

Standard deviation 0.362 0.100 0.234 0.111

Kalamos GR

AND noRG_AND 157782 657813 66 116763 0.425 0.000 0.730 0.177

AlmostAND noRG_AlmostAND 182066 657701 178 92479 0.337 0.001 0.800 0.140

Average noRG_Average 259006 648900 8979 15539 0.057 0.034 0.950 0.010

AlmostOR noRG_AlmostOR 264900 627739 30140 9645 0.035 0.102 0.930 −0.031

OR noRG_OR 265990 616726 41153 8555 0.031 0.134 0.910 −0.050

Average 0.177 0.054 0.864 0.049

Standard deviation 0.189 0.061 0.095 0.103

Zakynthos GR

AND noRG_AND 90652 2317245 240 36105 0.285 0.003 0.830 0.015

AlmostAND noRG_AlmostAND 101437 2316142 1343 25320 0.200 0.013 0.880 0.010

Average noRG_Average 125541 2248191 69294 1216 0.010 0.356 0.780 −0.029

AlmostOR noRG_AlmostOR 126152 2199065 118420 605 0.005 0.484 0.680 −0.051

OR noRG_OR 126259 2164238 153247 498 0.004 0.548 0.620 −0.066

Average 0.101 0.281 0.758 −0.024

Standard deviation 0.133 0.258 0.107 0.036
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