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Abstract: As an important component of terrestrial ecosystems, the mountainous areas of south-
west China are facing eco-environmental stress due to rapid urbanization. This study analyzed the
vegetation dynamics during urbanization in 410 counties in the mountainous area of southwest
China using trend analysis and bivariate spatial autocorrelation analysis. The results demonstrate the
following: (1) The regional differences in the natural background and the stage of economic develop-
ment resulted in obvious geographical heterogeneity in the relationship between urbanization and
vegetation coverage. (2) The relationship between the rate of urbanization level change (RULC) and
the slope of the normalized difference vegetation index (NDVI) (Slope−NDVI) in the mountainous
areas of southwest China is characterized by an inverted-U-shaped curve. Based on the inflec-
tion point (0.206, 57.60) of the inverted-U-shaped curve, the optimal mean annual RULC is 1.37%.
(3) The relief degree of the land surface, the gross domestic product (GDP) change rate, and the slope
of temperature change are positively correlated with the Slope−NDVI. Overall, an understanding of
how urbanization affects vegetation dynamics can inform decisions concerning ecological restoration
and urban–rural development in China.

Keywords: urbanization; vegetation dynamics; NDVI; human activity; mountainous areas of south-
west China

1. Introduction

Since the beginning of the 21st century, industrialization and urbanization in China
have accelerated. The urbanization level of China reached 59.58% in 2018. Rapid urbaniza-
tion is accompanied by a series of deteriorations of the urban environment, which may lead
to the degradation of the ecological quality of the city and surrounding areas. Therefore, the
relationship between urbanization and the ecological environment will become an urgent
problem in China in the future, and it will also become a focal point among scholars [1–3].
In the terrestrial ecosystems affected by urbanization, vegetation plays a significant role in
reflecting the influences of urbanization over time and across a region [4]. Therefore, the
study of vegetation changes in the process of urbanization can fully realize the potential
correlation between vegetation changes and urbanization, which is indispensable for the
sustainable development of cities [5].

As an important part of the ecosystem, vegetation plays an irreplaceable role in
the living environment of human beings, and it has always received extensive attention
from academia [6–8]. Currently, there are many types of indices for measuring vegeta-
tion cover [9,10]. The normalized difference vegetation index (NDVI), which indicates
vegetation cover or vegetation restoration, has the advantages of a wide coverage and a
continuous time series [11] and has widely influenced other studies [12–17]. Spatiotempo-
ral variations in vegetation cover are characterized by spatial heterogeneity and temporal
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periodicity. Investigations of the driving factors of vegetation cover are affected by natural
and human factors. Natural factors include temperature, precipitation, and solar irradia-
tion. Human factors include agricultural irrigation, deforestation, returning farmland to
forests, and urbanization [18–21].

In recent years, some studies have explored the relationship between urbanization and
vegetation activities at different scales and during different stages of urbanization [19,22].
However, the relationship is uncertain due to differences in the scale, stage of development,
and speed of development of the study areas and other natural and human factors that
influence vegetation changes. Therefore, it is necessary to investigate the relative variation
in the trends of urbanization and vegetation activities to clarify the dynamic relationship
between the two. These studies can provide scientific support to optimize land use and
promote ecosystem protection.

The mountainous areas of southwest China have been set aside by the Chinese gov-
ernment for eco-environmental construction. Since 2000, the process of urbanization in
southwest China has accelerated. Therefore, focusing on the response of vegetation dy-
namics to urbanization in this region is of great significance to realize the coordinated
development of economic growth and ecological protection. Considering the needs for
urbanization studies, this study used administrative units as the analysis unit to high-
light the influences of human factors. In addition, the mountainous areas of southwest
China were taken as the study area, and 410 counties were selected as the study units.
The relationship between vegetation dynamics and urbanization in the study area from
2000 to 2015 was analyzed using trend analysis, bivariate spatial autocorrelation analysis,
and stepwise multivariate regression analysis. In addition, the factors influencing this
relationship were explored.

2. Theoretical Framework and Hypothesis

Grossman and Krueger [23] proposed the environmental Kuznets curve theory based
on their research. This theory mainly focuses on the relationship between environmental
quality and economic development. We assume that the relationship between urbanization
and ecological restoration is similar to that between economic growth and environmental
pollution; i.e., the relationship between urbanization and vegetation dynamics follows
an inverted-U-shaped curve. Furthermore, Peng et al. [24] studied ecosystem services
and urbanization in Beijing and found a nonlinear relationship of regression discontinuity
between the two. In fact, this relationship may be a deformed version of the inverted-U-
shaped relationship. In addition, because urbanization is a regional dynamic variable with
saturability (up to 100%), we believe that the rate of urbanization level change (RULC) (in
absolute value) may be more suitable to characterize urbanization dynamics. This is the
key difference between our study and previous studies. In summary, in this study, we first
assumed an inverted-U-shaped relationship between the RULC and the Slope−NDVI and
then used a regression model to test this hypothesis. In addition to urbanization, we also
considered natural and human variables, including topography, temperature, precipitation,
population density, land-use change, and economic growth, as control variables [25–28] to
fully reveal the mechanism of vegetation dynamics (Figure 1). In the specific measurement
process, we adopted the multiple linear stepwise regression model. After verifying the
establishment of the inverted U-shaped curve, we further analyzed its inflection point and
proposed relevant policy implications.
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Figure 1. Flowchart of the algorithm used to estimate the effects of urbanization on vegetation dy-
namics. 

3. Materials and Methods 
3.1. Study Area 

The mountainous areas of southwest China are between 97°3′–110°11′ E and 21°8′–
34°19′ N (Figure 2) and include parts of Yunnan, Sichuan, Chongqing, and Guizhou Prov-
inces (435 counties). The total area is 1,138,570 km2, of which 89.54% are mountainous 
(statistical units at the county level). As of 2015, the total population was 194.9185 million, 
and the mean urbanization level was 42.09%. The overall level of urbanization was rela-
tively low, but the process of urbanization was gradually accelerating; the average urban-
ization level increased from 24.61% in 2000 to 42.09% in 2015, and the population became 
rapidly concentrated in cities and towns. The ecological value of the study area is im-
portant because it is the key area of ecosystem services in China and an important com-
ponent of the crucial ecological security shelter of the Yangtze River [29]. 

Figure 1. Flowchart of the algorithm used to estimate the effects of urbanization on vegetation dynamics.

3. Materials and Methods
3.1. Study Area

The mountainous areas of southwest China are between 97◦3′–110◦11′ E and
21◦8′–34◦19′ N (Figure 2) and include parts of Yunnan, Sichuan, Chongqing, and Guizhou
Provinces (435 counties). The total area is 1,138,570 km2, of which 89.54% are mountainous
(statistical units at the county level). As of 2015, the total population was 194.9185 million,
and the mean urbanization level was 42.09%. The overall level of urbanization was
relatively low, but the process of urbanization was gradually accelerating; the average
urbanization level increased from 24.61% in 2000 to 42.09% in 2015, and the population
became rapidly concentrated in cities and towns. The ecological value of the study area
is important because it is the key area of ecosystem services in China and an important
component of the crucial ecological security shelter of the Yangtze River [29].

3.2. Dataset and Preprocessing

The NDVI data used in this study were obtained from the International Scientific and
Technical Data Mirror Site, Computer Network Information Center, Chinese Academy
of Science (CAS) (http://datamirror.csdb.cn/ (accessed on 14 December 2020)), with a
spatial resolution of 1 × 1 km and a temporal resolution of 1 month. The annual NDVI
dataset was generated using the maximum-value composite procedure. The urbanization
level, population density, and county-level gross domestic product (GDP) data were
obtained from the statistical yearbooks of counties, cities, and provinces in China in
2000 and 2015. Meteorological data, including precipitation and temperature data, were
obtained from the National Meteorological Information Center of the China Meteorological
Administration (http://data.cma.cn/ (accessed on 10 January 2019)). The spatial resolution
of the precipitation and temperature data was 1 km, and the time period considered was
from 2000–2015, for a total of 16 years of data. The relief degree of the land surface (RDLS)
was based on digital elevation model (DEM) data and computed using ArcGIS software.
The land-use data for 2000 and 2015 were obtained from the Global Change Research
Data Publishing and Repository (http://www.geodoi.ac.cn/WebCn/ (accessed on 14 April
2020)), and the spatial resolution was 30 × 30 m. The landcover type was divided into six

http://datamirror.csdb.cn/
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level I classes (arable land, forestland, grassland, waters, residential land, and unused land)
and 25 level II classes.

The urbanization levels of provincial capital cities and some individual districts and
counties with rapid development reached 100% before 2015. Therefore, the main urban
areas of four provincial capital cities and the city of Panzhihua were excluded from the
actual measurement. Eventually, 410 sample points were obtained, and a 410 × 2 database
was created.
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Figure 2. Location of the mountainous areas of southwest China. The main map is a digital elevation model (DEM) of
southwest China.

3.3. Methods
3.3.1. Trend Analysis of NDVI and Meteorological Data

Trend analysis can reflect the interannual variabilities in the NDVI and temperature.
We used the slope of change to study the degree of change in the NDVI and the annual
mean temperature. Here, the following NDVI is presented as an example to introduce the
calculation process for this method [26]:

slope_NDVI =
m ∑m

j=1 jNDVIj −∑m
j=1 j ∑m

j=1 NDVIj

m ∑m
j=1 j2 −

(
∑m

j=1 j2
) (1)

where Slope−NDVI is the slope of the NDVI change; m is the fixed number of years of
the study, which was 16 in this study; and NDVIj is the NDVI of the jth year. When
Slope−NDVI < 0, the NDVI decreases during the study period; otherwise, it increases.
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The coefficient of variation can express the degree of fluctuation of geographic data
and is thus used to measure the degree of variation of precipitation in a time series and
reflect precipitation fluctuations. The annual mean precipitation is calculated as follows:

PF =
σ

µ
=

√
∑(xi−µ)2

n−1
∑ xi

n

(2)

where PF is the coefficient of variation of precipitation, which represents the precipitation
fluctuation; i is the time period; xi is the mean annual precipitation in the ith year; µ is the
mean annual precipitation from 2000 to 2015; and n is the number of samples.

3.3.2. Calculation of the Rate of Urbanization Level Change (RULC)

The value of urbanization level change can reflect the changing trend of urbanization.
The calculation formula is as follows:

RULC =
UL2015 −UL2000

UL2000
(3)

where UL2000 and UL2015 are the urbanization levels in 2000 and 2015, respectively; and
the urbanization level here refers to the proportion of permanent residents in a city to the
total population.

3.3.3. Calculation of Land-Use Intensity (LUI)

According to methods proposed in previous studies [30,31], the land-use intensity
(LUI) can be divided into the following four grades: grade 1, unused land, which contains
saline-alkali land, marsh land, and sandy land, as well as bare land and other unused or
almost unused land, such as mountain deserts and tundra; grade 2, forest/grass/water
land, including woodland, grassland, and water; grade 3, agricultural land, including
cultivated land, gardens, and artificial grassland; and grade 4, urban residential land,
including urban land, residential land, industrial land, and transportation land. Higher LUI
indicated higher land use intensity. Additionally, CLUI is the value obtained by subtracting
LUI at two different points in time. A comprehensive LUI index can be calculated from the
following formula, with a value range between 100 and 400 [26]:

LUI = 100×∑l
i=1 Ai × Ci (4)

where Ai is the grading index of the grade i LUI; Ci is the proportion of the area of the
grade i LUI classification; and l is the LUI grading index.

3.3.4. Establishment of the Stepwise Multivariate Regression Model

To analyze the relationship between urbanization and vegetation change, we used a
stepwise multivariate regression method. The explanatory variables include natural factors
and factors related to human activity. The model can be represented as follows:

Slope_NDVI = β0 + β1RULC + β2SRULC + ∑5
j=1 β jXj + εi (5)

where Slope−NDVI is the rate of NDVI change (%/year); RULC is the rate of urbanization
level change (%/year); SRULC is the square of the RULC (%2/year2), which can indicate
the presence of an inverted-U-shaped relationship between RULC and Slope−NDVI; Xj
represents the control variables, including the change in the LUI (CLUI), PF, RDLS, the
GDP change rate (GDPCR),) and the slope of the temperature change (Slope−T); β0 is
the intercept; β1, β2, and βj are regression coefficients; and εi is the error term caused by
unobservable factors.
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3.3.5. Spatial Autocorrelation

Spatial autocorrelation is an assessment of the correlation of a variable with reference
to the spatial location of the variable. Moran’s I is a popular test statistic for spatial
autocorrelation. The global Moran’s I examines the existence of spatial correlation over an
entire region, and is calculated as follows:

I =
n

∑n
i=1 ∑n

j=1 wij
·
∑n

i=1 ∑n
j=1 wij(xi − x)

(
xj − x

)
∑n

i=1 (xi − x)2 i 6= j (6)

where n is the number of observations for an entire region; xi and xj are the observations at
locations of i and j; x is the mean of x; and wij, an element of the spatial weights’ matrix
w, is the spatial weight between locations of i and j. The local Moran’s I is a local test
statistic for spatial autocorrelation that is used to identify the locations of spatial clusters
and spatial outliers. It is computed as follows:

Ii =
n(xi − x)∑n

j=1 wij
(
xj − x

)
∑n

i=1 (xi − x)2 (7)

The variables in Equation (7) are the same as those used in Equation (6), but the
corresponding values are from the local neighboring region. For the local Moran’s I, five
categories of local spatial autocorrelation can be distinguished. Two of these categories
are spatial cluster types, including high values surrounded by high values (High–high)
and low values surrounded by low values (Low–low). Two of these categories are spatial
outlier types, including high values surrounded by low values (High–low) and low values
surrounded by high values (Low–high). The last type is spatial randomness without
significant spatial patterns in the corresponding weight matrix.

4. Results
4.1. Dynamic Variation in NDVI and Urbanization

Overall, the spatial distribution of the NDVI values (Figure 3a,b) in 2000 and 2015 was
geographically heterogeneous. The regions with high NDVIs were mainly located in the
undulating hilly areas, which were mainly covered with forest vegetation. The regions
with low NDVI values were mainly located in the western plateau region, a portion of
the plain region, the urban areas, and some of these regions were in hilly areas where
agricultural cultivation dominated. By calculating the change in the NDVI from 2000 to
2015, the average growth rate over these 15 years was 0.58%/a (p < 0.05). Figure 4a,b
show the spatial distribution of urbanization levels in the mountainous area of southwest
China in 2000 and 2015, respectively. The urbanization levels in the mountainous areas of
southwest China in 2000 and 2015 followed a center–periphery spatial distribution pattern:
the regions with high urbanization levels were mainly located in the provincial capital
cities and their surrounding areas, and the urbanization levels gradually decreased toward
the peripheral regions.

Figure 5a shows that the NDVI increased in most areas, while it decreased in some
areas, indicating that the vegetation in the study area improved year by year. As shown
by the RULC trend from 2000 to 2015 (Figure 5b), the urbanization level in the study area
gradually increased over time. Overall, the RULC showed a geographical pattern of high
in the east and low in the west. The increase in the urbanization level was significant in the
regions with high initial urbanization levels, such as the Cheng-Yu Urban Agglomeration,
the central Yunnan Urban Agglomeration, and the central Guizhou Urban Agglomeration.
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The bivariate spatial autocorrelation analysis of the RULC and the Slope−NDVI
(Figure 6a) showed that the Moran’s I index was negative, indicating that the RULC
and the Slope−NDVI had a negative spatial correlation and significant agglomeration
characteristics in their spatial distribution. A local indicator of spatial association (LISA)
agglomeration map for bivariate local spatial autocorrelation (Figure 6b) was used to
further investigate the spatial correlation types and the distributions of the RULC and the
Slope−NDVI for different county units. Figure 6a,b show that the correlation between
the two variables was nonsignificant in most of the counties, and the High–High, Low–
Low, High–Low, and Low–High type agglomeration areas were relatively concentrated.
Overall, the spatial distributions of the RULC and the Slope−NDVI were significantly
negatively correlated, but in some regions, they were significantly positively correlated. In
other words, the interaction between the RULC and the Slope−NDVI was not completely
consistent in the study area. Therefore, it was impossible to describe an overall influencing
pattern from the spatial perspective, and it was necessary to include a series of control
variables to characterize the influences of this relationship.

4.2. Econometric Model Results

According to the theoretical analysis framework established in Figure 1, a regression
model was used to test the hypothesis of the inverted-U-shaped relationship between the
RULC and the Slope−NDVI. Before the model estimation, a multicollinearity diagnostic
was performed on the selected factors. The population density change showed a character-
istic root of approximately 0, indicating its multicollinearity with other indices; therefore,
it was excluded. Finally, the RULC and its quadratic term, the SRULC, were taken as
the main explanatory variables, and the GDPCR, the PF, the Slope−T, the CLUI, and the
RDLS were used as control variables for the stepwise regression. The results show that the
normalized residuals of the regression followed a normal distribution, indicating that the
model satisfies the assumption that the random error terms follow a normal distribution.
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Table 1 shows the influence of the RULC on the Slope−NDVI in the mountainous
areas of southwest China. Based on the table, the model passes the significance test in
the 95% confidence interval (p = 0.005 < 0.05), and all the evaluation indices in the model
pass the significance test. The standardized regression coefficient can reflect the degree of
impact of an evaluation index on the Slope−NDVI. The results show that the impact of the
indices on the Slope−NDVI follows the descending order of SRULC > RULC > RDLS >
CLUI > Slope−T > GDPCR > PF. When we separated the factors into human and natural
factors, the human factors had a total standardized coefficient of 1.4806, accounting for
68.02% of the influence of all the factors, while the natural factors had a relatively small
total standardized coefficient, accounting for 31.98%. In addition, the results show that the
RULC and the SRULC were both significant.

Table 1. Stepwise regression model results of the Slope−NDVI.

Variable Unstandardized Coefficient Std. Error Standardized t-Value p-Value

Constant 23.805 8.087 2.944 0.003
Explanatory variables

RULC 140.099 49.447 0.491 2.833 0.005
SRULC −340.260 95.847 −0.603 −3.550 0.000

Control variables
GDPCR 0.685 0.206 0.137 3.322 0.001

PF −93.286 29.763 −0.131 −3.134 0.002
Slope−T 1.185 0.333 0.157 3.556 0.000

CLUI −1.505 0.258 −0.249 −5.834 0.000
RDLS 2.332 0.303 0.408 7.700 0.000

Regression statistics Adjusted R2 Std. Error Number of observations F Sig.F

0.584 22.649 410 8.028 0.005

(RULC—rate of urbanization level change; SRULC—square of RULC; GDPCR—GDP change rate; PF—coefficient of variation of precipita-
tion; Slope−T—slope of temperature change; CLUI—change in LUI (comprehensive index of land-use intensity); RDLS—relief degree of
land surface).
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4.2.1. Impact of the RULC on Vegetation Dynamics

The influence coefficients of the RULC and the SRULC on the Slope−NDVI are 0.491
and −0.603, respectively, indicating an inverted-U-shaped relationship between the RULC
and the Slope−NDVI that starts with positive values and then turns negative; that is, there
is an inflection point for the impact of the RULC on the vegetation dynamics. To clearly
express the relationship between the urbanization process and the vegetation dynamics, the
following three scenarios were defined by controlling the values of other control variables
(Figure 7a): most conducive to vegetation restoration (best), moderately conducive to
vegetation restoration (average), and least conducive to vegetation restoration (worst).
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In the three scenarios, the curves representing the relationship between the RULC and
the Slope−NDVI have the same shape but different intercepts. The intercepts reflect the
contributions of the other control variables. Based on the statistical relationship between
the RULC and the Slope−NDVI, the RULC at the inflection point was calculated to be 0.206,
and the mean annual optimal RULC was 1.37%, indicating that when the RULC is less
than 0.206, the Slope−NDVI increases as the RULC increases. In this case, the urbanization
process has a promoting effect on vegetation restoration. When the RULC is greater than
0.206, the Slope−NDVI decreases as the RULC increases, and the urbanization process still
has a positive influence on vegetation restoration, but its degree of influence gradually
declines;, i.e., the marginal utility gradually decreases. In extreme cases, an extremely
rapid increase in the rate of urbanization may negatively influence vegetation restoration.
There are a total of 129 counties on the left side of the inflection point in Figure 7b, with
a total area of 479,800 km2 (43% of the total area), and a total of 281 counties on the right
side of the inflection point, with a total area of 636,800 km2 (57% of the total area). In
addition, the annual mean RULC of the counties in the mountainous areas of southwest
China in 2000–2015 was 0.245, and the median RULC was 0.251, both of which exceed the
optimal RULC. These results indicate that as urbanization has accelerated, the speed of
improvement in vegetation activities has decreased.
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4.2.2. Impact of Other Control Variables on Vegetation Dynamics

The influence coefficient of the GDPCR on the vegetation dynamics was 0.137, which
passes the significance test at the level of 1%. This indicates that the GDPCR has had a
positive influence on vegetation changes. Figure 8a shows that the regions with a high
GDPCR were sporadically distributed near provincial borders and along the Yangtze River.
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The PF was significantly negatively correlated with vegetation changes. From 2000 to
2015, the PF was the most intense in the Hengduan Mountains region, followed by south-
eastern Guizhou Province and parts of northern Sichuan Province (Figure 8b). Precipitation
is an important climatic factor that affects vegetation growth. Generally, vegetation growth
in arid regions is significantly positively affected by precipitation [32,33]. However, the
influence of precipitation on vegetation varies in humid areas [10,34,35]. The mountainous
areas of southwest China are mostly humid, and the overall restriction of precipitation
on vegetation growth is small. Unlike most studies that have directly used precipitation
as an influencing factor, this study measured the PF as an influencing factor because it
reflects precipitation fluctuations. For the mountainous areas of southwest China alone, the
interannual fluctuation of precipitation is not indicative of an improved vegetation cover.
In other words, a more stable interannual change may be more effective in improving the
vegetation cover.

The Slope−T was significantly correlated with vegetation changes, and its influence
coefficient on the Slope−NDVI was 0.157. The temperatures in the central southern regions
of the study area and the Sichuan Basin were relatively high. As shown by the temperature
change in the study area from 2000 to 2015 (Figure 8c), the temperature in the study
area increased overall. Temperature is another important factor that restricts vegetation
restoration. The impact of the air temperature on vegetation activities varies by region.
As shown by the model results, the marginal utility of climate change in the study area
is conducive to improvements in the vegetation conditions;, i.e., significant temperature
changes can increase the rate of improvement in the vegetation conditions.

The significant negative correlation between the CLUI and the Slope−NDVI found in
this study is consistent with the results of most relevant studies from China [36,37]. The
changes in the regional environment and human activities caused by land-use change
restrict regional vegetation dynamics [38,39]. From 2000 to 2015, the land use in the
mountainous areas of southwest China changed drastically (Figure 8d). For instance, the
area of construction land increased by 91.63%.
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The RDLS and the Slope−NDVI were significantly positively correlated;, i.e., the
regions with a mountainous topography and the largest RDLS showed the highest level
of improvement in vegetation cover. The RDLS of the mountainous areas of southwest
China decreased from the northwest to the southeast (Figure 8e). According to previous
studies, topographical variations can lead to significant regional differences in water, soil,
and climate conditions and thus influence vegetation dynamics, and an improvement in
vegetation activities is more significant in areas with a larger topographic relief [40,41].
As shown by the results of this study, regions with a large RDLS are usually located in
areas with a high Slope−NDVI, and these regions have also been the main target regions
of vegetation restoration and ecological protection in recent years.

5. Discussion

Theoretically, due to differences in study subjects and regional geographical envi-
ronments, the relationship between urbanization and improvements in the vegetation
cover shows scale differences and spatial divergence. Based on the inverted-U-shaped
relationship found in this study, we can see that in most cases, the dynamic urbanization
process has had a positive influence on vegetation restoration; therefore, urbanization and
ecological restoration are not contradictory. However, after the inflection point, an exces-
sively high RULC may lead to a marginal decline in the rate of improvement in the regional
vegetation conditions. The marginal decline refers not to the deterioration of vegetation
but to the decline in the rate of improvement in the vegetation conditions. It is true that
in extreme cases, the Slope−NDVI may be negative when the speed of urbanization is
excessively fast, which is evident in the inverted-U-shaped curve. Compared with China’s
national target for new urbanization in 2020 (60%), the urbanization level still needs to
be improved in most of the mountainous areas of southwest China. However, the goals,
routes, and methods of future urbanization should be different. The goals, guidelines, and
policy implementation of each county should be based on their own resource advantages
to realize tailored management.

Unlike many studies, this study used the RULC rather than the urbanization level.
The RULC reflects the growth rate of urbanization and characterizes the speed of the
dynamic process of urbanization. Therefore, this study did not characterize the relationship
between urbanization and vegetation but rather revealed the changes in vegetation during
the dynamic process of urbanization. From the perspective of the research design, the
RULC can better reflect the ability of urbanization to drive vegetation dynamics.

Through analysis, we found that the RDLS, the CLUI, the Slope−T, the GDPCR, the
PF, and other factors have different effects on vegetation dynamics. Therefore, various
factors, including human factors and natural factors, should be considered in the formu-
lation and implementation of ecological management planning in urbanized areas. For
example, the changes in the regional environment and human activities caused by land-use
change can restrict regional vegetation dynamics. Therefore, the relevant government
departments should scientifically optimize the structure and spatial layout of land use.
Precipitation, temperature, and terrain will also affect vegetation dynamics, and there are
differences in the degree of impact in different geographical environments. Therefore, in
ecological restoration, measures suitable to local conditions should be adopted, various
factors should be comprehensively considered, and corresponding restoration measures
should be formulated based on the actual situation of the region.

Human activities directly affect both urban development and ecological restoration,
which are two ends of the spectrum of environmental preservation. Referring to major
function-oriented zone planning, most mountainous counties in southwest China are
development-restricted zones that are significant for safeguarding ecological and food
security. However, in recent years, the economy of this area has developed rapidly, and
the process of urbanization has accelerated. Therefore, local governments should address
the complex relationship between urbanization and vegetation dynamics by restricting
urbanization to protect vegetation. In addition, the funds that have been accumulated
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in the process of urbanization can be applied to ecological restoration in the later stage
of urbanization, including the implementation of ecological projects such as returning
farmland to forest (grass) and the corresponding ecological compensation measures, to
promote regional ecosystem recovery and improve the quality of the environmental and
the carrying capacity of the regional ecological environment.

6. Conclusions

This study focused on the vegetation dynamics during the process of urbanization
in the mountainous areas of southwest China and hypothesized an inverted-U-shaped
relationship between the RULC and the Slope−NDVI to investigate the dynamic driving
force of vegetation dynamics. We drew the following conclusions based on the results of
this study: (1) From 2000 to 2015, the Slope−NDVI of the study area increased overall, and
only a few urban areas had a decreasing Slope−NDVI. (2) The relationship between the
RULC and the vegetation dynamics in the mountainous areas of southwest China can be
characterized by an inverted-U-shaped curve that first increases and then decreases;, i.e.,
there is an inflection point for the impact of the urbanization process on vegetation changes.
When the RULC is extremely high, the Slope−NDVI may be negative. The inflection points
of the U-shaped curves of the RULC and the Slope−NDVI (0.206, 57.60) indicate that the
optimal mean annual RULC is 1.37% in all the mountainous areas of southwest China.
(3) The control variables, including the RDLS, the CLUI, the Slope−T, the GDPCR, and
the PF, were significantly correlated with the Slope−NDVI. The CLUI and the PF were
negatively correlated with the Slope−NDVI, while the RDLS, the GDPCR, and the Slope−T
were positively correlated with the Slope−NDVI. Overall, the total standardized coefficient
of human factors accounted for 68.02% of the influence of all the factors, while the total
standardized coefficient of natural factors accounted for 31.98%, indicating that the human
factors had a greater impact on the vegetation dynamics.

In this study, the interaction mechanism between urbanization and the ecological
environment as well as the influencing factors of vegetation dynamics in southwest China
were summarized and analyzed. The results of this study have theoretical value and
practical significance for the construction of regional ecological security barriers and the
adjustment of urban agglomeration development models. Different regions have different
geographic environments, and the inverted-U-shaped relationship between the RULC and
vegetation dynamics awaits verification in different regions. In addition, for counties with
low urbanization levels, how to promote the coordinated interaction between urbanization
and ecological restoration is a topic that needs to be explored in the future.
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