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Abstract: Population aging has become a notable and enduring demographic phenomenon world-
wide. Older adults’ walking behavior is determined by many factors, such as socioeconomic attributes
and the built environment. Although a handful of recent studies have examined the influence of
street greenery (a built environment variable readily estimated by big data) on older adults’ walking
behavior, they have not focused on the spatial heterogeneity in the influence. To this end, this study
extracts the socioeconomic and walking behavior data from the Travel Characteristic Survey 2011
of Hong Kong and estimates street greenery (the green view index) based on Google Street View
imagery. It then develops global models (linear regression and Box–Cox transformed models) and
local models (geographically weighted regression models) to scrutinize the average (global) and
location-specific (local) relationships, respectively, between street greenery and older adults’ walking
time. Notably, green view indices in three neighborhoods with different sizes are estimated for
robustness checks. The results show that (1) street greenery has consistent and significant effects on
walking time; (2) the influence of street greenery varies across space—specifically, it is greater in the
suburban area; and (3) the performance of different green view indices is highly consistent.

Keywords: street greenery; street view imagery; walking time; walking behavior; population aging;
older adult; mobility; built environment; spatial heterogeneity; geographically weighted model

1. Introduction

Population aging is a notable demographic phenomenon worldwide. It has been
widely observed in a myriad of developed and developing countries/regions. Low fertility
(or childbearing) and prolonged lifespan contribute to this trend, and the former is the
major contributor [1]. Hong Kong, an international city with over 7.5 million residents [2],
has evidently grappled with the conundrum of aging for years. In 2019, Hong Kong held
1.32 million older adults and had the second-highest percentage (17%) of older adults
(defined as those aged 65 years or above) in Asia (the continent expeditiously shifting from
being predominantly young to being primarily old), which was exceeded only by Japan [3].
The number and proportion of older adults are predicted to increase to 2.69 million and
34%, respectively, in 2049 [3]. Therefore, catering for the future vigorous increase in the
number and proportion of older adults in Hong Kong is indispensable.

Travel is an indispensable component of life for everyone (irrespective of age) [4].
For older adults, mobility (often defined as the ability to travel) is closely associated
with independence, quality of life, subjective wellbeing, and social integration [5]. It
is also one of the ingredients of active aging [6]. Therefore, improving the mobility of
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older adults is exceedingly important for bolstering social development and should be
prioritized in future policy measures, especially in the population aging period. Evidently,
understanding the travel behavior of older adults is the first and foremost step toward the
abovementioned goal.

Walking is a popular travel mode for older adults [7]. It is effortlessly fused into a daily
routine and easily promoted or hindered by numerous interventions [8]. Moreover, walking
has a wide variety of health, economic, environmental, and social benefits, and it helps
promote healthy aging and active aging, which are essential for older adults. As the most
prevailing aerobic exercise, walking requires the physical activity of human beings and
helps beat the notorious sedentary and inactive lifestyle. Therefore, it increases individuals’
physical and mental health and lowers the risk of numerous non-communicable diseases
(e.g., type 2 diabetes) [9].

The built environment is a known and extensively studied concept in fields such as
geography, environmental science, transportation, public health, and urban planning [10].
Recently, with the advancement of science and technology (e.g., compute vision as well as
deep learning algorithms) [11–13], street greenery, a built environment factor that cannot be
easily assessed by traditional approaches, can now be accurately calculated based on street
view imagery (e.g., Google, Baidu, and Tencent) data, which effectively describe real-world
scenery [14,15]. Therefore, it has recently attracted scholarly attention. Many travel studies
that used street view imagery data to measure neighborhood built environment have
sprung up in the past couple of years. However, only a handful of previous studies have
examined the link between street greenery and the walking behavior of older adults.

The spatial heterogeneity (or nonstationarity) in the connection between street green-
ery and the walking behavior of older adults is an issue of high relevance for research and
practice. In other words, an enriched understanding of such links is of great importance as
it serves as a valuable reference for evidence-based interventions to promote walking and
increase physical activities for older adults. Inspired by recent empirical studies focusing
on the spatially heterogeneous relationship between travel behavior and numerous built
environment factors [16,17], we reasonably assume that spatial heterogeneity exists in the
association between older adults’ walking behavior and street greenery. However, to our
best knowledge, no previous studies have been devoted to this issue. To address the above
issues and fill the gap left by previous research, we used Hong Kong as the study area and
extracted the socioeconomic and walking behavior data of older adults from the Travel
Characteristic Survey (TCS) 2011. More importantly, we used Google Street View (GSV)
imagery and the fully convolutional neural network (FCN-8s), a machine learning tech-
nique, to evaluate neighborhood-level street greenery. A set of geographically weighted
regression (GWR) models was developed to characterize the spatially heterogeneous effect
of street greenery (with various neighborhood definitions) on the walking time (walking
duration) of older adults. Inspired by previous studies, three distance thresholds, namely
400 m, 800 m, and 1600 m, were selected. Finally, we discussed the empirical findings
and proposed implications for research and practice. Notably, to our best knowledge, this
study is the pioneer in scrutinizing the spatially heterogeneous relationship between street
greenery and the walking behavior of older adults.

The contributions of this study include the following: (1) examining the relationship
between street greenery and the walking behavior of older adults; (2) advancing the
understanding of the spatial heterogeneity in the relationship; and (3) comparing the
performance of several street greenery measures in neighborhoods with different sizes
(400 m, 800 m, and 1600 m).

The remainder of this paper is as follows. Section 2 offers a review of the literature
focusing on the correlates of older adults’ walking behavior. Sections 3 and 4 introduce
the data and modeling approaches, respectively. Section 5 presents the global and local
modeling results. Section 6 reveals the implications for research and practice and research
limitations. Finally, Section 7 summarizes the findings and winds up the paper.
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2. Literature Review

Numerous studies have been conducted by researchers from transport, public health,
and urban planning fields to identify the correlates (or determinants) of older adults’ walk-
ing behavior (more broadly, physical activity). The correlates can be mainly categorized
into three groups, namely socioeconomic characteristics (e.g., gender and age), neighbor-
hood built environment factors (e.g., population density and proximity to opportunities),
and attitudinal attributes (e.g., preference for walking) [18,19]. A wide variety of modeling
approaches, including linear regression models [20], discrete choice models (e.g., binary
logistic regression models and multinomial logit models) [21], Poisson or negative bino-
mial regression models [22], zero-inflated ordered probit models [7], Cox proportional
hazards models [7], and structural equation models [23], have been used. Recently, ma-
chine learning techniques, such as random forest, have been introduced into this research
field [24]. Moreover, some studies have not focused on overall walking but divided walking
into two categories, namely transportation (utilitarian) walking and recreational (leisure)
walking according to travel purposes [25]. Furthermore, many studies, especially those
from the public health field, have concentrated on physical activities (roughly equivalent
to walking + cycling) instead of walking. Interested readers can refer to two systematic
literature reviews on the physical environment and older adults’ physical activity (mostly
walking) [18,19] and Yang et al.’s summary [26] for more information.

Among the socioeconomic characteristics examined, age and gender elicited the
greatest scholarly attention. Findings on the links between age and walking behavior are
relatively consistent. Most, though not all, studies have concluded that for older adults,
age negatively affects walking time and frequency [27,28]. A strong explanation is that
mobility quintessentially reduces with age because of physical decline (physical frailty).
However, the role of gender in shaping older adults’ walking behavior is not so clear-cut.
Mixed, even conflicting, findings are obtained. For example, Yang et al. [20] suggested
that men have higher walking frequency and time, whereas Zang et al. [27] concluded that
gender plays an insignificant role in determining walking time. Notably, the above two
studies with distinct findings have been conducted in the same city, namely Hong Kong.
Furthermore, the contributing role of other socioeconomic characteristics, such as income,
education attainment, personal/family car availability, job status, transit pass availability,
mobile phone availability, dog ownership, marriage status, and residence condition, has
been empirically assessed [18,19].

The built environment, which is usually measured in the “3Ds”, “5Ds”, or “7Ds”
framework (including a variety of D variables, namely density, diversity, design, destina-
tion accessibility, distance to transit, demand management, and demographics), has been
extensively shown to significantly affect the walking behavior of older adults. A host of
built environment factors (e.g., population density and proximity to parks and open spaces)
have been determined to significantly associate with older adults’ walking behavior. Many
studies have concluded that when the built environment is well planned/designed and
has good attributes, walking can be popular among residents. Moreover, they reached
some relatively consistent conclusions. For example, a sufficient amount of evidence
of positive connections between density/diversity/walkability and the walking propen-
sity/time/frequency of older adults was found [18]. However, a few contradictory findings
are still obtained. For example, walking/cycling facilities have been shown to have positive,
insignificant, or adverse effects on the physical activity of older adults [19].

Nevertheless, the significant role of the built environment is also challenged and
questioned in a modicum of research. For example, Yang et al. [20] argued that five out of
six built environment factors, including population density, land use mix, and proximity to
retail shops, are too weak to influence the walking time of older adults in Hong Kong; the
only significant built environment factor is proximity to recreational facilities.

As the built environment attribute of our primary interest, street greenery has been
examined in elderly walking behavior studies. Zang et al. [27] investigated the walking time
of 180 older adults in six regions in Hong Kong. They identified its positive relationship
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with street greenery, which is measured by the manual extraction of green pixels in Baidu
street view imagery. Zang et al. [28] observed that street greenery, which is assessed by a
machine learning technique, has significant effects on the walking propensity and time of
older adults in private housing but has no discernable impact on that of older people in
public housing. Similarly, Yang et al. [20] scrutinized the effect of street greenery on older
adults’ walking propensity and time and determined a significantly positive effect. In a
departure from the above two studies employing regression methodologies, Yang et al. [26]
assumed the nonlinearity in the relationship between street greenery and the walking
propensity of older adults in Hong Kong. They thus adopted a machine learning approach,
namely random forest, to decipher such a complex relationship and demonstrated that the
effect of street greenery is not unconditional: the greenery has a positive effect only with a
particular range.

In comparison with the above two correlate categories (i.e., socioeconomic charac-
teristics and neighborhood built environment factors), attitudinal attributes have been
examined considerably less frequently. Handy et al. [29] carried out a quasi-longitudinal
analysis in Northern California and examined the contributory role of attitudinal attributes
on walking behavior. They concluded that attitudinal attributes, such as pro-bike/walk
attitude and pro-transit attitude, play a significant role in determining the residents’ walk-
ing behavior. Larrañaga et al. [30] observed that the pro-walk attitude significantly affects
residents’ transport and recreation walking behavior in a Brazilian city. Cheng et al. [7]
observed that preferences for walking and cycling have a marginal effect on active travel
frequency and time in Nanjing, China. Likewise, such preference variables are incorporated
into the travel behavior modeling framework of [31].

All in all, numerous theoretical and empirical studies have been conducted on the
identification of the correlates of older adults’ walking behavior. However, studies focusing
on street greenery are limited. More importantly, no studies have examined spatially
heterogeneous links between street greenery and older adults’ walking behavior.

3. Data
3.1. Travel Data

About every ten years, the Transport Department of the Hong Kong government
conducts a large-scale voluntary survey (i.e., TCS) to collect timely data on residents’
travel behavior to aid transportation planning and policymaking. Previous surveys were
conducted in 1981, 1992, 2002, and 2011. The most recent one was performed in 2011.

The TCS 2011 survey consists of three sections, namely Household Interview Survey on
residents’ trip information, Stated Preference Survey on factors influencing choices of travel
means, and Hotel/Guesthouse Tourists Survey on trip information of hotel/guesthouse-
staying tourists. The Stated Preference Survey was conducted on selected Household
Interview Survey sampled household members who matched the market segment criteria
relevant to the respective Stated Preference survey topics. That is, the respondents of
the Stated Preference Survey are a subset of those of the Household Interview Survey.
Moreover, some personal characteristics of the respondents, such as name and accurate
residence address, are not recorded.

The cornerstone of the TCS 2011 survey is the Household Interview Survey. It is a
weekday survey in which 101,385 residents in 35,401 families participated. The sampling
rate is about 1.5%. The Household Interview Survey covers three levels: (1) family-level
data (e.g., monthly income, housing address, and housing category); (2) family member-
level data (e.g., gender, job, job industry, and age); (3) trip-level data (24-hour trip records
for each family member, including but not limited to trip starting and ending points
and time, transport modes, interchanges, and trip legs). As travel-related socioeconomic
characteristics and trip characteristics are included in the TCS 2011 data, statistical models
can be calibrated to explore the underlying mobility behavior mechanism of older adults.

We extracted the walking behavior data of older adults (people aged 65 years or above)
from the Stated Preference Survey (Attachment Survey 2, “Travel Propensity, Walking
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and Use of Travellator”), which accurately characterizes the walking behavior of the
respondents. This survey only documents trips in which no mechanized transport was
involved during the reference 24-hour period. The origin, destination, start time, and end
time of the trips are recorded. However, other walking trips, such as those linking transit
(first-mile walking and last-mile walking), are not recorded.

Based on the TCS 2011 data, we geo-coded respondents’ residential locations in the
mapping and analytics software ArcGIS (Version 10.6) for neighborhood built environ-
ment evaluation.

3.2. Street Greenery Data

Street view imagery accurately records 360-degree high-resolution views of physical
environments in a way that resembles human vision. Its advantages over mainstream
data sources include widened coverage, limited data bias, time-effectiveness, and cost-
efficiency [14]. The earliest online street view service is GSV, which started in 2007 and has
since covered cities from about 90 countries [32]. GSV mainly gathers data through the
Global Positioning System tools installed on sensing cars.

GSV can be used to estimate the green view index (or eye-level street greenery index)
to simulate people’s perception of street greenery. First, GSV geocodes the coordinates
(latitude and longitude) of residential locations into the ArcGIS platform. Second, the
platform automatically recognizes street segments near geocoded locations. Third, GSV-
related positions are finalized in intervals of 50 m. Fourth, corresponding GSV images are
loaded from Google Maps: four mutually exclusive and collectively exhaustive images
represent a 360-degree panoramic of each GSV position. Fifth, the fully convolutional neural
network (FCN-8s), a machine learning technique, is used to identify greenery pixels from
the images (see Figure 1) [33]. This technique, which is based on semantic segmentation,
can exclude green facilities and buildings, guaranteeing its (relative) accuracy. For each
GSV-generating position, the calculation formula for the green view index is:

Green view index =
∑4

i=1 Greenery pixelsi

∑4
i=1 Total pixelsi
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The fully convolutional neural network has been adopted by numerous street view
imagery-based studies, and its applicability has extensively been validated. Moreover, to
further confirm the acceptability of the algorithm’s performance, results from our approach
are compared with those from manual extraction in Adobe Photoshop software. The
greenery pixels of thirty randomly chosen GSV images are extracted by student helpers.
The green view indices calculated by the two methods have been analyzed by a Pearson’s
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correlation test. The analysis outcome reveals a high correlation (r > 0.90), indicating the
excellent performance of our algorithm.

Figure 2 reveals the geographical distribution of the green view index. The index
is normally lower in the urban area (Hong Kong Island and Kowloon) but higher in the
suburban area (the New Territories).
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3.3. Built Environment Data

The built environment is a multi-facet concept and can be measured from a series
of dimensions. A widely accepted built environment assessment approach is the “3Ds”
model [34], or its enhanced version, the “5Ds” or “7Ds” model [35]. Inspired by the “5Ds”
model, this study evaluates many built environment variables, including density, diversity,
and destination accessibility. A built environment analysis framework is developed in
ArcGIS (Version 10.6) based on data from OpenStreetMaps (https://www.openstreetmap.org,
accessed on 8 September 2021).

4. Methods
4.1. Global Models

The response variable, the walking time of older adults, is a continuous variable.
Therefore, a linear regression model is developed to examine the association between the
response and independent variables. The linear regression model can be expressed as

Yi = β0 + ∑
k

βkXik + εi (1)

where Yi is the response variable at observation i (walking time in this study); k is the index
of the independent variables; Xik is independent variable k at observation i; β0 and βk are
the intercept and the coefficient of independent variable k, respectively; and εi is an error
term at observation i, which captures the collective effects of uncaptured factors on the
response variable ( εi ∼ N(0, σ2), Cov(εi, ε j) = 0 (i 6= j)).

The linear regression model predefines a linear functional form and assumes that the
connection between the response and independent variables is linear. As one of its alterna-
tives, the Box–Cox transformed model, a typical nonlinear regression method, relaxes the

https://www.openstreetmap.org
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linearity assumption and makes error terms closely follow the normal distribution. It is
used to search for the best model specification by maximizing the model log-likelihood
and has been extensively used in empirical studies with continuous response variables [36].
Generally, the Box–Cox transformed model can be expressed as

Yi
(θ) = β0 + ∑

k
βkXik

(λ) + εi,

where Yi
(θ) =

(
Yi

θ − 1
)
/θ for θ 6= 0, Xik

(λ) =
(
Xik

λ − 1
)
/λ for λ 6= 0, while Yi

(θ) = ln Yi

for θ = 0, Xik
(λ) = ln Xik for λ = 0; and other parameters are defined as before. The

response variable is Box–Cox transformed by parameter θ, while independent variables are
Box–Cox transformed by parameter λ. Notably, variables that are not constantly positive
are untransformed.

4.2. Geographically Weighted Regression (GWR) Models

In a departure from traditional regression models that use a sole equation to charac-
terize the link between the response and independent variables, the GWR model develops
a set of equations to capture the potential presence of spatial heterogeneity in the relation-
ship. Each regression point has its own equation, which is estimated using this point and
its neighborhood points (a subset of sample points in most cases). In other words, the
GWR model expands the traditional regression framework by relaxing the space-invariant
relationship assumption, thereby allowing point-varying parameters to be estimated [37].
It is employed in numerous empirical studies [38–40], and its formula can be expressed as

Yi = β0(ui , vi) + ∑
k

βk(ui , vi)Xik + εi,

where (ui, vi) represents the projected or spherical coordinate of observation (point) i;
β0(ui, vi) and βk(ui, vi) are the intercept and the coefficient of independent variable k,
respectively, in the local equation of observation i; and other parameters are defined
as before.

Four kinds of kernel functions are commonly used to weight “neighbors” (nearby
points) for local equation estimation, which is based on the weighted least square method.
They include:

Fixed Gaussian kernel function: wij = exp
(
−dij

2/θ2)
Adaptive Gaussian kernel function: wij = exp

(
−dij

2/θ2
i(k)

)
Fixed bi-square kernel function: wij =

{ (
1− dij

2/θ2)2 if dij ≤ θ2

0 if dij > θ2

Adaptive bi-square kernel function: wij =


(

1− dij
2/θ2

i(k)

)2
if dij ≤ θi(k)

0 if dij > θi(k)

,

where wij is the weight of nearby point j for point i’s equation estimation; dij is the straight-
line distance between points i and j; θ is the fixed bandwidth; and θi(k) is the adaptive
bandwidth, which hinges on the kth closest-neighbor distance for point i’s equation. All
kernel functions are monotonically nonincreasing to ensure that they agree with Tobler’s
first law of geography [41]. Among the four functions, fixed Gaussian and adaptive
bi-square kernel functions are the most extensively used in the existing literature [42].
Furthermore, the selection of the optimal kernel function and the bandwidth often relies
on the corrected Akaike information criterion (AICc) [43].

4.3. Variables

Following the existing literature and considering data availability, a total of nine
variables, including four socioeconomic and five built environment variables, are selected
as control variables (Table 1). Moreover, a set of street greenery variables with varying
neighborhood definitions (distance thresholds) is created to verify the robustness of our
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primary findings. Other popular greenness variables that often have high correlations
with street greenery, such as the Normalized Difference Vegetation Index (NDVI) and
the number of parks in the neighborhood, have not been incorporated, as Yang et al. [44]
pointed out that they play a limited role in shaping elderly mobility. In addition, the
metro, which is the backbone of Hong Kong’s advanced transit system, is considered in
the selection of distance-to-transit variables, following the existing literature [20,28,45].
Moreover, inspired by [20], recreational facilities, a popular destination for older adults,
are considered.

Table 1. Summary of the independent variables.

Variable Category Description Mean/Percentage Std. Dev.

Socioeconomic characteristics

Family size Number of persons in the family.
Discrete variable. 2.83 1.44

Male Dummy variable. = 1 for male, = 0 for female 0.47
Age Unit: year. Discrete variable. 74.24 7.00

Family income

Total monthly family income (including all
incomes and Mandatory Provident Fund
contributions). Ordinal variable ranging from
1 (<HK $4000/month) to
19 (≥HK $150,000/month)

6.18 4.49

Built environment

Population density Density Neighborhood-level population density.
Continuous variable (unit: 104 people/km2) 5.08 3.33

Land use mix Diversity

Neighborhood-level land use entropy.
Continuous variable ranging from 0 to 1
(no units). Three types of land use, including
residential, office, and retail, are considered.

0.54 0.27

Intersection density Design Neighborhood-level street intersection density.
Continuous variable (unit: 1/km2) 63.82 28.85

Access to the metro Distance to transit Number of metro stations within 400 m.
Discrete variable. 0.36 0.49

Access to recreational
facilities Destination accessibility Number of recreational facilities within 400 m.

Discrete variable. 60.99 28.75

Street greenery (400 m) Design Green view index within 400 m. Continuous
variable ranging from 0 to 1 (no units) 0.15 0.05

Street greenery (800 m) Design Green view index within 800 m. Continuous
variable ranging from 0 to 1 (no units) 0.15 0.04

Street greenery (1600 m) Design Green view index within 1600 m. Continuous
variable ranging from 0 to 1 (no units) 0.15 0.04

Sample size 1083

5. Results
5.1. Global Results

Three linear regression models are developed to estimate the global association be-
tween street greenery (evaluated by three variables) and the walking time of older adults.
Table 2 shows the results. Age affects walking time negatively. A compelling explanation
is that mobility typically decreases with advancing age, due largely to physical decline
and loss of functional abilities. In other words, age is a good predictor of walking time
for older adults. The very old, who likely live with diseases and frailties, always perform
few outdoor walking activities. In addition, family size is adversely related to walking
time. A possible explanation is family responsibility sharing [46]. In China, older adults
commonly receive much material and spiritual support. If living with others (e.g., rela-
tives and friends), they may not need to walk out to complete family tasks (e.g., going
to supermarkets and vegetable markets) in most cases. Instead, they can easily entrust
the tasks to other family members. Moreover, access to the metro is too weak to shape
walking time for older adults. A possible explanation is that as two travel modes, walking
and the metro have both complementary and substitutionary relationships. Therefore,
access to the metro may either increase or decrease walking frequency/time [20]. Fur-
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thermore, access to recreational facilities positively affects walking time. This finding is
consistent with [20,47,48].

Table 2. Linear regression modeling results.

Variable
Model 1 Model 2 Model 3

Coef. t-stat. Coef. t-stat. Coef. t-stat.

Family size −0.827 * −1.70 −0.813 * −1.67 −0.806 * −1.65
Male −0.504 −0.49 −0.386 −0.37 −0.370 −0.36
Age −0.180 ** −2.42 −0.185 ** −2.50 −0.185 ** −2.49

Family income −0.222 −1.42 −0.239 −1.53 −0.241 −1.54
Population density 0.322 1.44 0.373 * 1.66 0.346 1.54

Land use mix 4.162 1.27 4.294 1.31 3.639 1.11
Intersection density −0.043 −0.24 −0.023 −0.12 −0.056 −0.30
Access to the metro −0.908 −0.81 −0.970 −0.87 −1.098 −0.98

Access to recreational facilities 0.266 *** 4.19 0.293 *** 4.58 0.287 *** 4.49
Street greenery (400 m) 32.949 ** 2.48
Street greenery (800 m) 46.642 *** 2.79

Street greenery (1600 m) 37.851 ** 2.11
Constant 22.082 *** 3.41 19.406 *** 2.87 21.363 *** 3.13

Performance statistic
Log-likelihood −4592.63 −4591.80 −4593.48

AIC 9207.25 9205.61 9208.97
AICc 9209.54 9207.90 9211.26

Note: *** p < 0.01; ** p < 0.05; * p < 0.1. The variable of primary interest is shown in bold.

The interpretation of street greenery variables is of predominant interest here. We find
that their performance is highly consistent across the three models. That is, the variables
are significant at the 1% level. This observation resonates with [20,26,27]. Ample evidence
documents a positive association between street greenery and the walking time of general
residents, public housing residents, or older adults. In addition, the magnitude of the
coefficients is relatively consistent, which ranges from 32.949 to 46.642.

As noted before, three Box–Cox transformed models are developed to detect nonlin-
earity. The results are revealed in Table A1 (Appendix A). As expected, the three Box–Cox
transformed models all outperform the corresponding linear regression models (higher
log-likelihood and lower AIC). This observation indicates that nonlinearity exists in the
relationship between the response and independent variables. Furthermore, the street
greenery variables are all significant at the 1% level, which indicates their prominent role
in shaping older adults’ walking time. This observation confirms the robustness of our
primary findings and enhances their plausibility.

5.2. GWR Results

The above outcomes have well answered the question, “Does street greenery affect
the walking time of older adults?” However, they cannot answer “Does the effect vary
across space?” In other words, the global model can detect the average effect but cannot
examine the potentially spatially varying effect. Therefore, we separately estimate three
GWR models to describe this effect.

The GWR models are estimated by the popular GWR model estimation software
MGWR (Version 2.2.1), which was updated on March 20, 2020. The fixed Gaussian kernel
function is used to weigh the “neighbors.” The criterion for optimal bandwidth is AICc.
The optimal bandwidths are 760 (400 m), 738 (800 m), and 680 (1600 m).

Similar to developing three separate global models (see Section 4.1), we estimate
three GWR models with distinct street greenery variables. Table 3 presents the GWR
modeling results. The GWR models perform better than their global model counterparts.
For example, GWR model 1 has a higher log-likelihood (−4570.43 vs. −4592.63) but a
lower AIC (9198.06 vs. 9207.25) and AICc (9199.67 vs. 9209.54) than Model 1. Moreover,
the independent variables have noticeable spatial-varying effects on walking time. Family
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size and access to recreational facilities are the only two variable with a unidirectional
(constantly positive or negative) effect. Its effect is highly consistent across the three
GWR models.

Table 3. GWR modeling results.

Variable
Coef.

Mean Std. Dev. Min Median Max

GWR model 1
Family size −0.96 0.26 −1.64 −1.04 −0.00

Male −0.27 0.45 −2.10 −0.24 0.49
Age −0.21 0.04 −0.28 −0.22 0.11

Family income −0.17 0.08 −0.43 −0.16 0.13
Population density 0.27 0.42 −0.33 0.13 1.31

Land use mix 3.38 3.18 −2.19 2.79 9.85
Intersection density −0.01 0.11 −0.42 0.01 0.40
Access to the metro −1.07 0.68 −4.08 −0.90 0.26

Access to recreational facilities 0.23 0.03 0.17 0.22 0.35
Street greenery (400 m) 21.10 23.42 −52.83 21.84 75.38

Constant 27.14 6.07 13.03 28.19 39.86

Performance statistic
Log-likelihood −4570.43

AIC 9198.06
AICc 9199.67

GWR model 2
Family size −0.96 0.27 −1.70 −1.04 0.03

Male −0.19 0.40 −2.28 −0.16 0.53
Age −0.21 0.04 −0.30 −0.22 0.14

Family income −0.18 0.08 −0.43 −0.16 0.08
Population density 0.29 0.46 −0.31 0.13 1.46

Land use mix 3.42 3.41 −1.88 2.53 10.56
Intersection density 0.02 0.11 −0.45 0.03 0.45
Access to the metro −1.14 0.68 −3.79 −1.06 1.11

Access to recreational facilities 0.24 0.05 0.17 0.22 0.41
Street greenery (800 m) 30.23 30.16 −43.46 29.81 95.69

Constant 25.56 7.12 2.25 26.98 38.26

Performance statistic
Log-likelihood −4568.26

AIC 9195.47
AICc 9197.18

GWR model 3
Family size −0.94 0.26 −1.46 −1.02 0.03

Male −0.20 0.38 −2.05 −0.19 0.52
Age −0.21 0.04 −0.29 −0.21 0.11

Family income −0.18 0.08 −0.41 −0.16 0.03
Population density 0.26 0.46 −0.33 0.10 1.48

Land use mix 3.07 3.14 −1.11 2.01 9.81
Intersection density −0.04 0.11 −0.34 −0.04 0.45
Access to the metro −1.27 0.78 −4.38 −1.15 1.11

Access to recreational facilities 0.24 0.05 0.18 0.22 0.36
Street greenery (1600 m) 12.18 33.87 −63.36 17.27 85.90

Constant 28.73 8.38 4.05 31.10 40.95

Performance statistic
Log-likelihood −4570.83

AIC 9199.12
AICc 9200.75

Note: The variable of primary interest is shown in bold.
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Street greenery variables have spatially nonstationary influences on walking time. For
example, in GWR model 1, the variable has an unstandardized coefficient ranging from
−52.83 and 75.38 (a wide range). This observation indicates that street greenery has a
positive influence in some locations, but the influence turns negative in other places.

As mentioned before, an apparent strength of the GWR model is that its output can be
visualized easily for a better understanding of the marginal effects of independent variables
on the response variable. Figures 3–5 show the geographical distribution of the coefficient
of street greenery 400 m (in GWR model 1), 800 m (in GWR model 2), and 1600 m (in GWR
model 3), respectively. The Jenks Natural Breaks Classification method (No. of classes = 6)
is used for coefficient classification. (As previously mentioned, of particular interest is
the interpretation of street greenery variables. Indeed, other variables’ coefficients can be
visualized as well. The visualization outcomes can be obtained from the corresponding
author upon reasonable request.)
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Street greenery variables behave highly consistently in the three GWR models. Moran’s
I tests (with 99,999 permutations) are conducted in GeoDa (Version 1.14) to detect the exis-
tence of spatial autocorrelation (spatial dependence). The results illustrate the presence of
spatial autocorrelation in the coefficient of street greenery in all three GWR models. We
find that low clusters are located in the south of the city, indicating that street greenery
has a lower walking time-uplifting effect in the urban area, namely Hong Kong Island and
Kowloon. In other words, in the suburban area (the New Territories), older adults have
a higher predilection for street greenery. This finding is congruent with Yang et al. [44],
which exclusively focuses on travel propensity (another mobility measure). A possible
explanation is that people with low income (who usually live in the suburban area) have
a higher preference for street greenery and are thus more likely to walk out given the
same amount of street greenery in the neighborhood [49]. There are, however, other
alternative explanations.

6. Discussion
6.1. Implications for Research

Notably, this study exclusively uses GSV data to estimate the green view index because
its main focus is street greenery, a hypothesized essential and easily perceived contributor
to older adults’ walking time (partially due to biophilia, people’s innate affinity). Hence,
this study exclusively detects and extracts visual features (specifically, greenery) from street
view imagery. However, street view imagery has considerably greater potential to represent
the urban physical environment. As Kang et al. [14] suggest, by using street view imagery
data, we can objectively represent the “elements” and “scenes” of the built environment.
The former provides low-level semantic information, whereas the latter offers high-level
information. Other than greenery, more visual features can be detected and extracted from
street view imagery at the element level. Such features include but are not limited to the sky,
water bodies, traffic signs, smoke-free signage, and zebra crosswalks [32]. Therefore, more
factors, such as sky view factor and street canyons, can be accurately calculated in future
travel studies. Focusing on the entire scene and discovering the underlying semantics
become the research aim at the scene level. Deep learning algorithms are always used in
such research [14].

Street view imagery has great potential in urban physical environmental studies to
enhance our understanding of many issues. Thus, it can supplement but definitely cannot
fully replace traditional data acquisition methods, such as questionnaire surveys, self-
reports, field audits, and remote sensing. Indeed, these data sources capture the urban
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physical environment from totally different dimensions. A single data source cannot fully
describe the urban physical environment, and no data sources can dominate urban physical
environmental research. We, however, agree that different data sources can be integrated
and jointly used in urban studies. Such an endeavor can substantially present us with a
broader picture and enhance our understanding of the world. Moreover, we suggest that
the research with varying aims can choose the most appropriate data source. Small data
are still well-suited to address many interesting research questions.

6.2. Implications for Practice

Generally, human-centric urban planning must follow the evidence on how people
behave (e.g., walk). In other words, people’s behavior and preferences should be carefully
considered in human-centric urban planning [50,51]. This study lays the foundation for
evidence-based built environment planning and informs urban planners/designers to
plan/design cities with an adequate level of street greenery, which is one of its practical
implications. Specifically, as the findings of this study reveal that street greenery plays a
critical role in the walking time determination process, street greenery should be considered
in built environment planning, especially in the era with the goals of healthy and active
aging. Moreover, this study offers the basis for implementing spatially varying greenery
provision schemes, which is another practical implication.

In addition to street greenery (attribute of our predominant interest), many built
environment attributes can be altered to change older adults’ walking behavior. As
Wang et al. [52] indicated, two directions to enhance a place’s walkability and encourage
people’s walking behavior are (1) providing a safe, comfortable, pleasant, and continuous
walking environment (assuring “how to walk” from a physical perspective) and (2) locating
various opportunities within (reasonable) walking distance (assuring “why to walk” from
a functional perspective). However, the opportunities for older adults are vastly different
from those for younger adults. We will discuss this argument and related conventional
thinking in detail as follows.

Travel demand is normally perceived as a derived demand [34]. That is, residents
rarely travel for the pleasure of movement but make journeys to reach the opportunities
available at destinations. To some extent, this situation is true for younger adults, who
have limited free time and often make mandatory trips (the purpose of most of their trips
is accessing opportunities rather than recreation and leisure.). However, we conjecture that
the above argument cannot be applied to older adults—a cohort with considerable free time.
Older adults make few mandatory trips (e.g., commuting and going to school) but many
discretionary trips. They may pay little attention to built environment attributes related
to the opportunities highly regarded by younger adults (e.g., workplaces, schools, bars,
gyms, sports centers, and museums) [53,54]. For example, in China, in older adults’ eyes,
opportunities may include chess/card rooms, urban parks, open spaces, and vegetable
markets [53,54]. Therefore, we appeal to elderly travel researchers to carefully choose built
environment attributes, especially those highly relevant to opportunities.

Accessibility, generally defined as the ease of reaching opportunities, is a transportation–
land use planning goal [55]. Therefore, in accessibility planning (or transportation–land-use
planning), the accurate selection of the indicators truly characterizing proper opportunities
in the view of older adults is indispensable.

6.3. Research limitations

Despite offering many interesting findings, this study is by no means free from
limitations. First, the empirical data used in this study are cross-sectional. Therefore, it
fails to determine the causality between street greenery and older adults’ walking behavior.
In other words, the residential self-selection issue cannot be eliminated, although it is
not serious for older adults (who have limited freedom for residential relocation) [31].
Admittedly, conducting a before-and-after study in the future can help establish a causal
relationship and obtain stronger conclusions.



ISPRS Int. J. Geo-Inf. 2021, 10, 596 14 of 17

Second, due to the TCS 2011 data limitations that cannot be remedied by us, many
potential predictors of walking behavior, such as attitudes, long-established preferences,
habits, and weather, cannot be modeled. Hence, designing and conducting a survey to
collect first-hand data on more aspects of individuals, trips, or weather is necessary for
future fine-grained studies. Moreover, a time gap between walking behavior evaluation
and street greenery assessment may exist.

Third, we identify a spatial pattern of the marginal effect of street greenery. Based
on scatter evidence in the existing literature, we suspect but cannot conclude that the
above finding can be attributable to differences in socioeconomic statuses (specifically,
income). We cannot rule out other explanations (e.g., a lower density of recreational
facilities is the source) simply based on the GWR modeling results. This is an inherent
disadvantage of the GWR model, which can well reveal a spatial pattern but cannot be
used for hypothesis testing.

Fourth, this study solely focuses on one walking behavior measure: walking time.
Other measures, such as walking propensity, walking trip frequency, transportation walk-
ing propensity, and recreational walking frequency, can be investigated in future research.

Fifth, this study only identifies the “global” and “local” effect of street greenery on
older adults’ walking time. More sophisticated studies on the basis of advanced techniques,
such as random forest, multiple additive regression trees, and AdaBoost decision tree,
should be conducted to reveal the complex relationship between street greenery and the
walking behavior of older adults.

Last but not least, this study offers strong evidence supporting significant associations
between street greenery and the walking time of older adults. A question arises: why
does street greenery affect people’s walking time (more broadly, physical activity)? This
study cannot reject the claim that street greenery is a proxy for further variables that
support walking but are not explicitly considered here. More detailed and micro-scale
studies are needed to study the mechanism through which street greenery affects people’s
walking time. Therefore, we appeal to researchers worldwide, for example, those from
psychology and psychometrics fields, to pay substantial attention to the link between
greenery and physical activity and identify possible mediators through methodologically
rigorous research design.

7. Conclusions

Hong Kong is facing a population aging problem, and older populations will keep
increasing in the forthcoming years. In view of the importance of walking for healthy and
active aging, researchers should constantly agitate for a highly walkable city (and places
with high walkability). Analyzing the correlates of older adults’ walking behavior is a
prerequisite for creating an elderly-friendly and walkable city.

This study elucidates street greenery as a contributor to the walking time of older
adults. In a department from previous studies solely focusing on the global or average
effect, this study analyzes the spatial heterogeneity in such an effect using GWR models.
Moreover, street greenery is evaluated in neighborhoods of different sizes (400 m, 800 m,
and 1600 m). This study concludes that the influence of street greenery on the walking
time of older adults varies across space. Specifically, it is greater in the suburban area.
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Appendix A

Table A1. Box–Cox transformation modeling results.

Variable
Model 4 Model 5 Model 6

Coef. Coef. Coef.

Street greenery (400 m) 0.023 ***
Street greenery (800 m) 0.017 ***

Street greenery (1600 m) 0.014 ***
Performance statistic

Log-likelihood −3584.56 −3595.46 −3595.45
AIC 7173.13 7192.92 7192.90

Note: *** p < 0.01. The parameter estimates of control variables are largely consistent with those in linear regression
models and thus are not presented for brevity.
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