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Abstract: The Coronavirus disease 2019 (COVID-19) has been spreading in New York State since
March 2020, posing health and socioeconomic threats to many areas. Statistics of daily confirmed
cases and deaths in New York State have been growing and declining amid changing policies and
environmental factors. Based on the county-level COVID-19 cases and environmental factors in
the state from March to December 2020, this study investigates spatiotemporal clustering patterns
using spatial autocorrelation and space-time scan analysis. Environmental factors influencing the
COVID-19 spread were analyzed based on the Geodetector model. Infection clusters first appeared
in southern New York State and then moved to the central western parts as the epidemic developed.
The statistical results of space-time scan analysis are consistent with those of spatial autocorrelation
analysis. The analysis results of Geodetector showed that both temperature and population density
were strong indications of the monthly incidence of COVID-19, especially in March and April 2020.
There is a trend of increasing interactions between various risk factors. This study explores the
spatiotemporal pattern of COVID-19 in New York State over ten months and explains the relationship
between the disease transmission and influencing factors.

Keywords: COVID-19; Geodetector; New York State; spatial autocorrelation; space-time scan statistics

1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes
Coronavirus disease 2019 (COVID-19), has been spreading globally and seriously threat-
ening public health worldwide [1]. On 30 January 2020, the World Health Organization
declared COVID-19 a pandemic [2]. Since the outbreak of COVID-19 in the United States,
New York State has been severely affected by COVID-19. As of 4 January 2021, there were
515,815 total confirmed cases and 25,868 mortality cases of COVID-19 in New York State [3].
In addition, COVID-19 has seriously affected the economy of the state. During the second
quarter of 2020, the gross domestic product (GDP) of New York decreased by 36%, which
was 5% lower than the national figure [4]. To improve public health and the economic
development of the state as well as of the United States, how to control and prevent the
spread of COVID-19 has become a matter of paramount importance for the New York State
government and infectious disease prevention centers.

To identify the spread patterns and influencing factors of COVID-19, researchers have
conducted spatial and temporal analyses of geographic clustering of COVID-19. Using
the Bayesian space-time model and COVID-19 cases as of 30 January 2020, Chen et al.
(2020) found strong correlations between the early incidence cases and emigration waves
from Wuhan [5]. Kang et al. (2020) explored how COVID-19 spread to various types of
neighborhoods in mainland China [6]. It was found that COVID-19 had significant spatial
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autocorrelation in the early stage of regional transmission in Hubei, China [7]. Thakar
(2020) conducted space and time analysis using visual analysis of clusters, kernel density
estimation, and standard deviation ellipse with proxy data over Washington State, where
the first community spread occurred in the United States during the first stage of the
COVID-19 outbreak [8]. The research suggested that social distancing measures can help
prevent the spread of COVID-19 on a large scale. However, it was not easy to acquire
accurate information of infection cases in the early stage of COVID-19. Based on the
emergency calls and ambulance dispatches of emergency medical services, Gianquintieri
et al. (2020) applied a signal processing method and reconstructed the early spatiotemporal
evolution of COVID-19 in the Lombardy region of Italy [9]. Desjardins et al. (2020)
carried out the first study that utilized space-time scan analysis to monitor COVID-19
clustering in the United States, where New York City was identified as a high-risk area,
and suggestions for the local health department were provided [10]. Hohl et al. (2020)
investigated COVID-19 cluster patterns of the contiguous United States using time periodic
surveillance with the prospective space-time scan based on daily data of the first half of
2020. A series of innovative figures and graphs along with a web application tracking
the spatiotemporal distribution of significant clusters was developed to support decision
making [11]. To further explore the role and functions of geospatial information, Müller et al.
(2021) emphasized the requirements of a supranational approach of reliable and aligned
statistical data in managing COVID-19 spread. The Nomenclature of Territorial Units
for Statistics (NUTS) and the Infrastructure for Spatial Information in Europe (INSPIRE)
together provide a framework for geo-information integration and interoperability in
COVID-19 governing systems [12].

COVID-19 community transmission is influenced by various environmental factors,
which have been investigated from various perspectives. Sun et al. (2020) found that
spatial models, including ordinary lease squares (OLS), spatial lag model (SLM), and
spatial error model (SEM) models, can help partially explain the spatial disparities in
COVID-19 period prevalence in the United States [13]. Liu et al. (2021) combined sev-
eral models, including Moran’s I, K-means clustering, SIR (susceptible-infected-removed),
SLM, and OLS, to study the inter-county spatiotemporal interaction of COVID-19 trans-
mission of 49 states in the United States. The result suggested the significant association
of spatial heterogeneity with the socioeconomic factors of each state [14]. Mollalo et al.
(2020) used geographically weighted regression (GWR) and multi-scale GWR (MGWR)
models to examine the relationship between the COVID-19 incidence and environmen-
tal, demographic, and socioeconomic variables in the United States [15]. With data from
231 countries and regions, Meng et al. (2021) investigated annual and daily relationships
between air pollution and early-stage COVID-19 incidence and observed significant spa-
tially and temporally nonstationary variations between them, in which the United States
showed significant linear patterns of O3-confirmed cases [16]. Using Geodetector, Xie
et al. (2020) analyzed influencing factors of COVID-19 in mainland China, which include
population distribution, population inflow, traffic accessibility, economic connection, and
average temperature. The interactions of factors were analyzed, and authors found out
population inflow from Wuhan and economic connection intensity were the main factors
affecting the COVID-19 spread rate and other factors had influence on the COVID-19
spread to different degrees [17].

Geospatial data and geographic information systems (GIS) can help researchers and
public health experts analyze spatiotemporal trends and regional distribution and detect
the influencing factors of COVID-19, thus providing support for governmental and public
decision making [18]. Current studies have helped public health researchers better under-
stand epidemic characteristics and transmission patterns of COVID-19 [13]. Environmental
and socioeconomic factors increasing COVID-19 spread risks have been changing since the
first occurrence of COVID-19.

To develop knowledge about COVID-19 dynamic clustering patterns in different
seasons and understand relationships between influencing factors of the COVID-19 spread
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over time, this study first collected a 10 month county-level COVID-19 dataset from 1 March
to 31 December 2020 together with data of weather and population in New York State.
Secondly, spatial autocorrelation analysis and space-time scan analysis were conducted to
reveal spatiotemporal clustering patterns of COVID-19 in New York State. Finally, basic
factors influencing the transmission of COVID-19 in New York State and their relationships
are identified with the Geodetector model.

2. Materials and Methods
2.1. Study Area

The study area covers 62 counties of New York State, which is 141,000 km2, account-
ing for 1% of land area of the United States [19]. New York State can be divided into
seven geographic regions, including Albany–Schenectady, Buffalo–Cheektowaga, Elmira–
Corning, Ithaca–Cortland, Rochester–Batavia–Seneca Falls, Syracuse–Auburn, and New
York City [20]. Approximately 20.2 million inhabitants live in this area, accounting for
6.1% of the total U.S. population [19]. Population density varies greatly in different regions.
Kings county has the highest population density of 2380.21/mi, while Hamilton has the
lowest, at 4.13/mi [21].

New York State is one of most developed states in the United States and contributes
8% of the total GDP of the U.S [22]. New York State is also the leader in American
manufacturing and international trade.

Figure 1 shows the COVID-19 epidemic development of New York State. From
March to December 2020, the daily COVID-19 confirmed cases went through three stages:
occurring and quickly developing (March–May 2020), stabilizing (June–September 2020),
and quickly increasing (October–December 2020). Figure 1b exhibits seasonal variation
concerning the COVID-19 incidence rate.

Figure 1. New York State epidemic development curve: (a) cumulative confirmed and deaths,
(b) new confirmed COVID-19 cases.

2.2. Data

Daily COVID-19 data used in this work, including confirmed and death cases, was
derived from data courtesy of USA Facts [23] which covers ten months, from 1 March
to 31 December 2020. The boundaries of 62 counties of New York State were extracted
from GIS.NY.GOV [24]. Six influencing factors were selected, and corresponding data were
collected from various sources of spatiotemporal clustering analysis of COVID-19. Basic
metadata of the six influencing factors are listed in Table 1.

Based on the monthly cumulative confirmed cases (CCC) and the population size (PS)
from USA Facts [17], monthly incidence rate (IR, per 100 thousand people) can be derived:

IR = CCC/PS ∗ 100,000 (1)

The New York State Air Monitoring website [26] provides the PM 2.5 concentration
data of 17 air stations in New York State. Inverse distance weighting (IDW) interpolation
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was employed to produce a pollutant concentration surface of the entire region. To produce
a reasonable interpolation along the border of New York State, this study collected the PM
2.5 concentration data of 13 air stations located in adjacent states, including New Jersey,
Pennsylvania, Vermont, Massachusetts, and Connecticut, from US EPA [29].

By collecting the GPS data from mobiles, Unacast [27] grades social distancing behav-
ior across the U.S. in different grades (A, B, C, D, and F). In this study, the grades of daily
population mobility were converted to numerical scores (1, 2, 3, 4, and 5, respectively).
Then, monthly average data was produced for Geodetector analysis.

Table 1. Influencing factors used in this study.

Category Factors Time Range Source

Environmental
Temperature

March 2020–December 2020

National Centers for Environmental
Information [25]

Precipitation National Centers for Environmental
Information [25]

PM 2.5 concentration New York State Air Monitoring Website [26]

Demographic Mobility Unacast social distancing scoreboard [27]
Population density 2020 USA facts [23]

Economic Unemployment rate March 2020–December 2020 FRED Economics Data [28]

2.3. Methods

In this section, the procedure to determine an optimal power parameter for interpola-
tion was first implemented. Then, spatial autocorrelation analysis was conducted using
global Moran’s I to identify spatial dependence of COVID-19 cases in NYC. Getis–Ord
Gi* was used to reveal local correlations among neighboring counties. The prospective
space-time scan analysis based on the Poisson model was used further on to investigate
the emerging COVID-19 clusters at different stages. In order to explore the contribution
of driving factors to the changing process of COVID-19 clusters, influencing factors were
analyzed using Geodetector.

2.3.1. IDW Interpolation

Inverse distance weighting (IDW) was used to generate a pollutant’s concentra-
tion surface based on PM 2.5 concentration data from air stations [14]. IDW interpo-
lation determines cell values using a weighted average of surrounding points using the
following equation:

Zo =
∑s

i=1 zi
1

dk
i

∑s
i=1

1
dk

i

(2)

where Zo is the estimated value at point O; Zi is the known attribute value of point i
surrounding point O; di is the distance between point i and point O; S is the total number
of known surrounding points; and k is the power parameter of distance. The value of the
power parameter is how much a surrounding value contributes to the interpolated value
based on the distance between the two. Root mean squared error was used to determine
an optimal power value.

2.3.2. Spatial Autocorrelation Analysis

Both global and local Moran’s I values were employed to investigate spatial autocor-
relation of COVID-19 geographic distribution patterns in New York State. Global Moran’s
I statistics was applied to assess whether the cumulative number of confirmed COVID-19
cases in the entire New York State were spatially relevant [30]. It was calculated with the
formula below.

I =
n

∑n
i=1 ∑n

j=1ωij
×

∑n
i=1 ∑n

j=1ωij(xi − x)
(
xj − x

)
∑n

i=1(xi − x)2 (3)
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where:

• n = 62 indicates 62 counties in New York;
• i and j indicate different counties;
• xi and xj, respectively, indicate the monthly incidence of COVID-19 in counties i and j;
• x indicates the monthly incidence of COVID-19 in counties in New York State;
• ωij represents the spatial weight matrix.

Global Moran’s I ignores the instability of local spatial processes and cannot indicate
the specific aggregation area [17]. Local spatial autocorrelation Getis–Ord Gi* can reflect
the distribution and spatial correlation characteristics of the local aggregation areas. Local
spatial autocorrelation analysis was used to reflect the degree of correlation between a
county and its neighboring counties in New York State, turning statistically significant
clustering areas into “hot spot” and “cold spot” areas, which changed over time.

Spatial autocorrelation analysis was conducted with ArcGIS 10.5 Spatial Statistics.

2.3.3. Space-Time Scan Analysis

Aside from spatial dependence of the occurrence and development of COVID-19,
space-time scan analysis was applied to detect the time, scope, and risk intensity of
COVID-19 clustering in New York State.

The space-time scan analysis employs a moving cylindrical window that scans the
research area to detect potential spatiotemporal clusters of COVID-19, with a radius
changing continuously from zero to a specified maximum [30]. The radius of the cylinder’s
base represents the regional scope, and the height of the cylinder reflects time [10].

Under the Poisson model, the expected cases were calculated for each window using a
proportional formula of C ∗ p/P where C is the total number of cases, P the total population
and p the population inside the cylinder. According to the observed incidence cases, the
logarithm of the likelihood ratio (LLR) was generated, which could indicate how the
incidence cases within the scanning window differed from the cases outside the window.
The calculation formula of LLR is as follows:

LLR =
LA

L0
=

nA
u(A)

nA
(

nG−nA
nG−u(A)

)nG−nA(
nG
uG

)nG
(4)

where:

• L0 and LA are the likelihood function value under the hypothesis and the likelihood
function value of window A;

• nA represents the actual number of cases in window A, nG represents all cases, u(A) is
the expected cases in cylinder A, and uG = Σu(A).

Then, the relative risk (RR) of each county was calculated using the formula below to
measure the changes of the risk associated with that scanning window, and it was the ratio
of observed cases to expected cases [31].

RR =
c
e

C−c
C−e

(5)

where:

• c is the total confirmed cases of COVID-19 at the county level;
• e is the expected cases at the county level;
• C is the total confirmed cases of New York State.

This study used SaTScan 9.4 to perform space-time scan analysis. The upper spatial
and temporal limits of the scanning radius were set to 30%, and the minimum duration was
defined as 7 days. Based on the Poisson model, this study used Monte Carlo replications
and considered a 0.05 level of significance.



ISPRS Int. J. Geo-Inf. 2021, 10, 627 6 of 14

2.3.4. Geodetector

To explore the main influencing factors of COVID-19 in the research period, this study
analyzed the relationship between the monthly COVID-19 incidence rate and potential
risk factors using Geodetector. Geodetector is designed and implemented to assess the
association between the disease and relevant risk factors by analyzing their spatial differ-
entiation [32]. To evaluate risk factors and reveal relationships among these factors, this
study employed factor detection and interaction detection offered in Geodetector.

Factor detection is expressed by q-statistic:

q = 1− ∑L
h=1 Nhσ

2
h

Nσ2 = 1− SSW
SST

SSW =
L

∑
h=1

Nhσ
2
h, SST = Nσ2 (6)

where q-statistic is to measure the spatial stratified heterogeneity, and it is also the explana-
tory power of factor X on the spatial heterogeneity of factor Y. The value of the q-statistic
is between [0, 1], and it increases as the stratified heterogeneity increases [33]. The study
area is composed of N units and is stratified into h = 1, . . . , L stratum. The hth stratum is
composed of Nh units; σ2

h and σ2 are the variance of Y value for the hth stratum and the
whole study area. SSW and SST are the within sum of squares of a layer and the total sum
of squares of New York State.

Interaction detection can identify the interaction relationship between two different
factors. Following Equation (3), the q-statistics of X1 and X2, q(X1) and q(X2), were
calculated. Then, the q values of the interaction between X1 and X2, q(X1 ∩ X2), were
calculated. The interaction type between X1 and X2 was determined by comparing the
values of q(X1), q(X2), and q(X1 ∩ X2).

In the Geodetector model, continuous values of risk factors had to be transformed into
discrete values before their relationship with the COVID-19 incidence rate was analyzed.
Discretization can be implemented using classification methods. There are four most
frequently used classification methods including natural breaks, equal interval, geometrical
interval, and quantile. None of these is versatile in all circumstances. To reveal the
interaction variation of influencing factors in each specific month, q-statistics and p-values
are used to determine an appropriate one for each month [34].

3. Results
3.1. IDW Interpolation Result

As indicated above, the power parameter of distance, k, influences the result of the
interpolation process and the suggested value ranges from 0.5 to 3. The mostly suggested
value is 2, which may not be the most suitable one to produce a useful interpolation. To
determine a suitable value of k, this study calculated root mean squared error (RMSE)
of IDW interpolation for comparison. According to Table 2, this study finally set the k
value to 1 and then applied IDW to calculate the monthly average PM 2.5 concentration of
each county.

3.2. Spatial Distribution Characteristics

Figure 2 shows the distribution of cumulative and average monthly incidence rate of
COVID-19 in New York State. As seen on the maps, counties with the highest incidence
rate are located around NYC, including Rockland, Richmond, Westchester, Suffolk, and
Nassau. Counties with the lowest incidence rate are Clinton, Washington, Franklin, Essex,
and Delaware, which are mainly located in the north of New York State. There is a strong
regional heterogeneity of the COVID-19 incidence rate in New York State.

The counties with the highest incidence rate in the early stage of the epidemic (March–
May) are concentrated in and around NYC, including Suffolk, Queens, Richmond, and
Westchester. During the mid-epidemic period of this research (June–September), as shown
in Figure S1, the incidence rate of COVID-19 in these areas decreased, and that in the central
and northern areas increased over time. At the beginning of October, the overall incidence
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rate of New York State increased. In November, the range of high incidence rate areas in
New York State significantly expanded. In addition to NYC, the incidence rate in western
Erie, Allegany, and Genesee also increased significantly. In December, the incidence rate of
New York counties continued to rise, with decreasing spatial heterogeneity.

Table 2. RMSE of IDW interpolation with different k values.

k Value 1 1.5 2 2.5 3

March 0.85 0.88 0.92 0.96 1.09
April 0.98 1.02 1.07 1.12 1.17
May 1.24 1.28 1.33 1.37 1.42
June 1.47 1.48 1.51 1.55 1.59
July 1.34 1.37 1.42 1.48 1.54

August 1.21 1.27 1.33 1.4 1.46
September 1.1 1.16 1.22 1.28 1.33

October 1.1 1.15 1.2 1.25 1.3
November 0.78 0.82 0.96 0.96 0.96
December 0.86 0.86 0.88 0.91 0.94

Cumulative
error 10.93 11.29 11.84 12.28 12.8

Figure 2. Distribution of monthly average and cumulative incidence rate of COVID-19 in New York
State (March–December 2020).

3.3. Spatial Autocorrelation Analysis

The results of spatial autocorrelation analysis are shown in Table 3. As the table
indicates, the global Moran’s I was high at the beginning of the COVID-19 outbreak in NYC,
then decreased sharply and reached the lowest point in September when the COVID-19
was spreading over the New York State. In general, the infection cases of COVID-19 in
New York State were spatially clustered. Based on local spatial autocorrelation analysis,
the COVID-19 hot spots of New York State were identified, and the results are shown in
Figure S2. As the maps indicate, from March to May 2020, the High–High areas were the
southern counties of New York State, and the Low–Low areas were the northern counties.
Starting in June, High–High areas shrank to Westchester and Kings. Then, they moved from
NYC to the central region of New York State. Starting in October, the range of High–High
areas expanded to the west, while the northeastern Low–Low areas decreased.

Figure S3 shows that the hot spots from March to May were mainly located in NYC.
Since May, cold spots appeared in western and northern New York State. From June to
August, the range decreased, and hot spots appeared in the west. From September, hot
spots were located in the Albany–Schenectady area in western New York. From June, cold
spots could be found in the northern and western counties. The northern cold spots then
greatly reduced after August. In November and December, a wide range of cold spots
appeared in the northeast.
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The frequency of monthly hot-spot occurrence of each county was produced by
overlaying the results of hot-spot analysis, as shown in Figure 3. From March to December,
Putnam and Westchester in southern New York State were hot spots for seven months,
while counties in NYC were hot spots for four months. These were the key areas for
prevention and control of COVID-19 spread. The cold spots were mainly concentrated
in northeastern New York State, where the corresponding incidence rate of COVID-19
was low.

Table 3. Global Moran’s I analysis of COVID-19 incidence rate at the county level in New York State.

Global Moran’s I z-Score p-Value Spatial Pattern

March 0.7776 9.2978 0 cluster
April 0.7761 9.0308 0 cluster
May 0.5902 6.8092 0 cluster
June 0.3959 4.6962 0 cluster
July 0.2197 2.6244 0.0087 cluster

August 0.1373 1.7196 0.0855 cluster
September 0.0713 1.0222 0.3067 random

October 0.2443 3.1435 0.0017 cluster
November 0.2619 3.1161 0.0018 cluster
December 0.3545 4.1456 0.0000 cluster

Figure 3. Occurrence of COVID-19 hot spots in New York State from March to December 2020.

3.4. Space-Time Scan Analysis

The space-time scan analysis produced duration, scope, and risk intensity of COVID-
19 clustering in New York State as shown in Table S1. The cluster classes are ranked
according to the value of likelihood ratio (LLR) in each month. As the epidemic developed,
the number of clusters gradually increased from two in March to seven in September and
then dropped to three in December. The aggregation region with the largest LLR (264053)
was located in Westchester in December, and the aggregation region with the highest RR
(8.31) was located in Otsego in September. A series of maps was produced to represent the
COVID-19 spatiotemporal clustering area of each month in New York State, as shown in
Figure S4, where the clusters first appeared in NYC in March, and then Nassau became
the cluster center with a larger radius of 25.88 km in March and April. After June, the
cluster area appeared in the western areas and gradually expanded into surrounding areas.
In September, there were seven clusters in New York State. Among them, Chemung and
Chautauqua were cluster centers with a radius of 83.86 km and 78.71 km, respectively.
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Starting in November, the clustering area shrank. The radius of the cluster centered in
Ontario reached 155.19 km. In December, the cluster in central New York State expanded
again, and the clustering center in Tompkins appeared with a radius of 213.86 km.

To build an overview and evaluate the effectiveness of New York State’s epidemic
prevention and control policies, a timeline was produced, as shown in Figure 4, based
on data collected from the state policy database of Boston University School of Public
Health [35]. The results of space-time scan analysis and the daily confirmed cases were
overlaid [36].

Figure 4. Timeline of newly confirmed cases, clusters, and related epidemic prevention policies of
COVID-19 in New York State (the upper part shows the time series of the daily confirmed cases
with the public health interventions, and the lower part shows the timeline and cluster time for
each cluster).

When the first case was confirmed in New York State, a state of emergency was
declared by the government. As the COVID-19 pandemic developed, the government
took a series of preventive measures, including canceling inessential parties, closing public
sites, etc. [35]. Daily confirmed New York State cases reached a peak in April and then
decreased along with deterioration of the New York State economy. In June, as daily
confirmed cases decreased sharply, New York State reopened the economy and relaxed the
prevention policies. However, the fact that the COVID-19 coronavirus has an incubation
period was not taken seriously. Subsequently, in November, there was a second peak of
daily confirmed cases, which exceeded the first peak in April. When the situation became
slightly optimistic, New York State began to reopen the economy, and personal prevention
measures were not cautious, which caused the resurgence of the epidemic after October.

NYC became a hot spot of COVID-19 outbreaks in early 2020, partly due to its high
population density. However, when New York State restarted the economy in June, the
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epidemic clusters occurred in New York counties with relatively low population density,
including Chemung (203.15 people/km2), Chautauqua (84.6 people/km2), and other
counties in the Midwest. These places are not neighboring NYC. While the southern part
was no longer a hot spot, the infection cases in the Midwest may have been imported from
other regions when New York State’s epidemic prevention policies were relaxed, and the
population was highly mobile. In November, the New York epidemic deteriorated rapidly
again. Large-scale clusters broke out in the west, while counties in northeastern New York
State remained cold spots.

3.5. Geodetector

The COVID-19 infection cases exhibit variations on spatiotemporal heterogeneity
over the ten-month research period. Geodetector was used to better analyze the driving
factors in this process and their interaction. To prepare input data to Geodetector, it is
necessary to select the best discretization method for each month. Therefore, this study
utilized four different methods of discretization to classify the data of influencing factors.
The q-statistics, which are the explanatory power of results, were used to determine the
most suitable method corresponding to the highest q-statistics. Tables S2–S5 show the
computation results. The natural breaks method was used for discretizing the data of
March, April, November, and December. For the months in between, quantile was chosen
in discretization.

This study set a condition of P value smaller than 0.05 to identify significant factors.
According to Table 4, population density is the strongest factor concerning explanatory
power, followed by temperature, unemployment rate, PM 2.5 concentration, population
mobility, and precipitation, in a descending order. In the early epidemic stage, the ex-
planatory power of these factors, especially population and temperature, were higher
than 0.7. From May, all factors’ explanatory power were decreasing. In October, the P
values of all factors were greater than 0.05, meaning that all factors could not explain the
COVID-19 incidence rate significantly. In November, the explanatory power of factors,
including population density, unemployment rate, temperature, PM 2.5 concentration, and
population mobility rose.

Table 4. Explanation of the power of influencing factors.

Population
Density

Unemployment
Rate Temperature Precipitation PM 2.5 Con-

centration
Population
Mobility

March 0.8167 0.8167 0.7645 0.3746 0.3746 0.3154
April 0.7012 0.0322 0.8260 0.6195 0.3764 0.4343
May 0.3889 0.2465 0.4551 0.0842 0.5281 0.1939
June 0.4171 0.3013 0.3240 0.0429 0.3018 0.1663
July 0.4734 0.2266 0.2485 0.1203 0.0942 0.1453

August 0.3111 0.2597 0.1746 0.0237 0.1373 0.1347
September 0.2193 0.2168 0.1320 0.1059 0.0522 0.1302
October 0.0200 0.0426 0.1000 0.0940 0.0858 0.0683

November 0.1681 0.0977 0.2887 0.0698 0.1182 0.1565
December 0.2008 0.1156 0.1767 0.2009 0.1682 0.1532
represents p < 0.005; represents p < 0.01; represents p < 0.05.

As Table S6 shows, the q-statistic of each pair of interacting factors is greater than
the q-statistics of a single factor, indicating that those interacting factors have had more
significant impacts on the COVID-19 incidence rate than single factors during the research
period. In March, population coupled with other factors generated reinforcing effects, as
q values were greater than 0.8. In addition, interactions between temperature and other
factors also produced reinforcing effects. From May, since the q-statistics of all single
factors decreased, the interaction of any pair of factors decreased. In June, the interaction
between PM 2.5 concentration and population density increased with q-statistics greater
than 0.7, but then decreased after September.
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4. Discussion

Much of the previous research on COVID-19 has explored the spatiotemporal patterns
of COVID-19 and the key influencing factors of its transmission. However, research
periods in most studies shorter than six months could not expose seasonal variations of
spatiotemporal characteristics of COVID-19 and relationships among influencing factors.
This paper investigated the spatiotemporal patterns using spatial autocorrelation and
space-time scan analysis and analyses of the interaction of each pair of influencing factors
of the COVID-19 pandemic in New York State between March and December 2020.

There are two important strongpoints in this study. First, this study revealed the
spatiotemporal autocorrelation of COVID-19 spread in New York State in a period of ten
months, and thereby identified changing patterns, covering three seasons, in more detail
than previous works had done on relatively shorter research periods. It correlates with lab-
oratories’ findings that SARS-CoV-2 survives longer in low temperature conditions [37,38]
which may further pose higher risks of infection in cold weather. Second, Geodetector
analysis was employed in this study for analysis of influencing factors. The performance of
four different discretization methods were evaluated based on q-statistic and the p-values of
the results. The most appropriate method of discretization was determined for each month,
which can adapt to the spatial heterogeneity of influencing factors in different months.

This study used both spatial autocorrelation and space-time scan analysis to explore
the spatiotemporal clustering patterns more comprehensively. The clustering character-
istics detected from both methods matched each other, in that high-risk clusters first
appeared in NYC and then moved to the central and western parts of New York State
as the epidemic developed. The spatiotemporal changes of these clusters were closely
associated with the changes of the government’s response to COVID-19. Since the daily
confirmed cases decreased in May, New York State relaxed the prevention policies without
effective restrictions and measures on population mobility across counties, which may
have caused the epidemic spread from NYC to other parts of New York State, as reflected
by spatial autocorrelation analysis. As was reflected in this analysis, economic activity and
interpersonal contact between NYC and surrounding states may have also contributed to
the spread of COVID-19 inside NYC.

Identifying the key factors influencing the spread of COVID-19 during different
periods can help public health experts and policy makers adjust prevention measures more
promptly. The monthly influencing factors and their relationships were analyzed through
the Geodetector model. The results indicated that population density and temperature
could correlate with the risks of COVID-19 spread. Of course, the COVID-19 infection and
death rates are related to multiple factors, such as medical resources, economic conditions,
and prevention strategies. These could indicate the decrease in all the factors’ explanatory
power since June, which we need to further explore with more data. The time resolution
of analysis in this work was one month, and the daily data were aggregated. Detailed
variations of relationships on a daily or weekly scale may not be determined accurately,
especially since human mobility patterns can vary greatly from weekdays to weekends.

To prevent COVID-19 spread, COVID-19 vaccination has become an essential and
effective solution. At present, since more than half the New York State population has been
fully vaccinated, the incidence rate has gradually decreased [23], and New York State is now
reopening its economy [39]. However, the present epidemic stage (July 2021) is similar to
the stabilizing stage of the last year (June–September, 2020) of this research. The difference
is that SARS-CoV-2 variants, including the Delta variant, have been spreading in the United
States, and some of the variants might not be prevented effectively by current vaccines
especially after nearly half a year since the earliest vaccination [40]. It is still too early
to know about the duration of the antibodies generated from the available vaccines [41].
There is a risk that the epidemic might be resurgent in the future. If the effectiveness of
COVID-19 vaccines could last for six months, people should be vaccinated periodically,
and the government needs to guarantee sufficient supplies of vaccines. Considering these
potential challenges, reopening policies shall be implemented gradually and cautiously.
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Prevention measures, including social distancing, wearing facemasks, and hand hygiene
should be suggested to members of the public.

5. Conclusions, Limitations, and Future Work

Based on the county-level COVID-19 dataset in New York State from March to Decem-
ber 2020, this study conducted both spatial autocorrelation and space-time scan statistical
analysis to explore the spatiotemporal clustering patterns of COVID-19. Geodetector was
applied to investigate the relationship between six environmental, demographic, and eco-
nomic factors and the spread of COVID-19 across New York State. The results showed
that the COVID-19 incidence rate has strong spatiotemporal heterogeneity and regional
correlation. Both population density and temperature have been contributing to the spread
of COVID-19 in different periods. To control and prevent the spread of COVID-19 and to
ensure a conservative epidemic prevention strategy, New York State public health poli-
cies, based on careful consideration of social measures and supply of effective vaccines,
need to be made for COVID-19 variants. Future research can divide New York State into
some sub-regions based on the spatiotemporal patterns detected in this study and explore
more underlying risk factors of COVID-19, such as medical resources, urbanization, and
socioeconomic conditions in these regions. Surrounding regions shall also be included
into analysis. The monthly aggregated data used in this work can be replaced with finer
time scale data, for example weekly, daily, or even work days and weekends, to reveal
cyclic temporal patterns due to different social mobility behaviors. A focused investigation
can be conducted on determining suitable spatial and temporal radii in space-time scan
analysis which may detect different clustering results and exhibit geographic scale effect.
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