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Abstract: With the rapid process of both urban sprawl and urban renewal, large numbers of old
buildings have been demolished in China, leading to wide spread construction sites, which could
cause severe dust contamination. To alleviate the accompanied dust pollution, green plastic mulch has
been widely used by local governments of China. Therefore, timely and accurate mapping of urban
green plastic covered regions is of great significance to both urban environmental management and the
understanding of urban growth status. However, the complex spatial patterns of the urban landscape
make it challenging to accurately identify these areas of green plastic cover. To tackle this issue, we
propose a deep semi-supervised learning framework for green plastic cover mapping using very high
resolution (VHR) remote sensing imagery. Specifically, a multi-scale deformable convolution neural
network (CNN) was exploited to learn representative and discriminative features under complex
urban landscapes. Afterwards, a semi-supervised learning strategy was proposed to integrate the
limited labeled data and massive unlabeled data for model co-training. Experimental results indicate
that the proposed method could accurately identify green plastic-covered regions in Jinan with an
overall accuracy (OA) of 91.63%. An ablation study indicated that, compared with supervised learning,
the semi-supervised learning strategy in this study could increase the OA by 6.38%. Moreover, the
multi-scale deformable CNN outperforms several classic CNN models in the computer vision field.
The proposed method is the first attempt to map urban green plastic-covered regions based on deep
learning, which could serve as a baseline and useful reference for future research.

Keywords: green plastic cover; semi-supervised learning; deep learning; urban land cover mapping

1. Introduction

Nowadays, urban renewal has been widely performed around the globe, which could effectively
relieve the shortage of urban land resources and improve urban land use efficiency [1–3]. For instance,
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urban renewal in China has led to a large-scale demolition of old, low-density urban areas and urban
villages over the past few decades [2]. During the renewal process, construction sites can be a source
of huge amounts of dust, which could easily be transferred to the air and water nearby, leading to
severe environmental pollution.

To alleviate the accompanied dust contamination, plastic mulch has been widely utilized by local
governments in China (Figure 1). Moreover, the plastic mulch is always green, making it appear
environmentally friendly. Actually, green plastic mulch is commonly made from polyethylene. Most
urban renewal projects in China use the same green plastic mulch to alleviate dust contamination.
After the construction process, the plastic mulch can be recycled at relevant chemical plants. Due to the
stringent environmental protection regulations in China, green plastic mulch has been a must in urban
renewal projects, offering an opportunity to accurately identify construction sites during urban sprawl
and renewal. Therefore, it is of great significance to monitor and detect these green plastic covers
(GPC), which could provide the spatial distribution of construction sites. Moreover, the detection of
GPC could also help the environmental protection department with the precise control of construction
dusts. However, as far as we know, there is still no report on GPC detection in the remote sensing field;
therefore, we are highly motivated to propose an accurate classification method for GPC based on
deep learning (DL) from VHR remotely sensed imagery.
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The accurate classification of GPC is challenging for the following reasons. Firstly, the complex
urban landscapes lead to a high variability of the spatial patterns of GPC. Secondly, the limited labeled
data of GPC could lead to overfitting of the deep learning-based classification model. To tackle these
issues, we first exploited a multi-scale deformable CNN to account for the scale and shape variability
of GPC. Afterwards, we integrated unlabeled GPC samples with labeled data into a semi-supervised
learning framework to increase the model’s generalization capability.

Actually, urban green plastic cover could be viewed as a specific urban land cover category. Due
to its synoptic view and cost-effectiveness, remote sensing has been widely utilized for urban land use
and land cover (LULC) mapping [4–6]. Traditional methods mainly focused on the visual inspection
and vectorization from VHR remotely sensed imagery. However, this is both time and labor-intensive.
Therefore, how to develop an automatic urban LULC classification method has become a hot research
topic [7–9]. Early studies [10–15] mainly combined hand-crafted features (i.e., spectral indices, texture
features) with machine learning classifiers to automatically extract a specific urban LULC type. For
example, Shao et al. [10] performed the extraction of urban impervious surface based on random forest
(RF) from GaoFen-1 and Sentinel-1A imagery. Yin et al. [11] applied both sub-pixel and super-pixel
based methods for characterizing urban green space in Haidian District, Beijing. In our previous
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studies, we also adopted random forest and texture analysis for urban vegetation mapping [12] and
urban inundated regions extraction [13] from unmanned aerial vehicle (UAV) remote sensing data.

Meanwhile, there are still no relevant studies on urban green plastic cover mapping from remotely
sensed data. Similar research mainly consists of the detection of construction sites and urban landfill.
Yu et al. [16] proposed an unsupervised learning method for the classification of buildings under
construction from multi-temporal UAV data. Silvestri et al. [17] utilized maximum likelihood classifier
(MLC) and IKONOS images to recognize the uncontrolled urban landfills. Considering that no
published studies focus on green plastic cover classification, this paper could be the first attempt to
solve this important and challenging issue.

It should be noted that the aforementioned studies mainly rely on hand-crafted features and
machine learning approaches for urban LULC classification. However, the design of hand-crafted
features relies heavily on domain expertise, which might lead to inability to discover high-level
and discriminative features from remote sensing images. On the other hand, deep learning has a
strong ability to extract representative multi-level features from original data instead of empirical
feature design and can work in an end-to-end manner, which has led to impressive performance
in the computer vison field [18–22], such as in image classification [18], object detection [19], and
semantic segmentation [22]. More recently, deep learning, especially deep CNN, has also been
successfully applied in numerous remote sensing applications [23–29]. For instance, Huang et al. [23]
proposed a semi-transfer deep CNN for urban land use mapping, based on VHR WorldView-2 imagery,
and achieved an accuracy of 91.25%. Zhang et al. [24] proposed an object-based CNN for urban
land use classification and achieved excellent classification accuracy and computational efficiency.
Dong et al. [25] exploited a hybrid approach of random forest and CNN for subtropical forest mapping,
and their results indicated that the developed model could lead to an improvement in information
extraction. In our previous studies [30], we modified a two-branch CNN for urban land use mapping
and found that the proposed CNN model outperforms traditional machine learning algorithms such
as MLC, RF, and support vector machine (SVM). Moreover, we extended the above model to a
multi-branch version for the fusion of multi-senor and multi-temporal Sentinel-1/2 imagery [31]. All of
the above studies demonstrated that CNN could provide an effective tool for remote sensing image
classification. Therefore, in this study, we exploited a novel multi-scale deformable CNN to learn
high-level and representative features for green plastic cover classification.

There is no denying that great improvements have been made in urban LULC mapping from
remote sensing images through deep learning. However, deep learning works in an exhaustive
data-driven manner, and a large number of labeled samples need to be fed into a DL model to
avoid overfitting. Meanwhile, it should be noted that labeling enormous training samples is both
labor-extensive and time-consuming, especially in the remote sensing and geoscience fields. Therefore,
how to integrate the limited labeled samples with massive unlabeled data to improve the model’s
generalization capability is a key question. Semi-supervised learning precisely provides an effective
tool to tackle this issue. He et al. [32] proposed generative adversarial network (GAN)- based,
semi-supervised learning to classify hyperspectral images (HSI), while the unlabeled samples were
from the GAN’s generator. Fang et al. [33] also utilized a semi-supervised learning strategy based on
several sample selection methods for HSI classification. Inspired by these studies, we also introduced
a semi-supervised learning framework for the classification of urban green plastic covers based on
limited well-annotated samples.

To sum up, the contributions of this study are as follows:

(1) For the first time, we developed a deep learning method for urban green plastic cover mapping
from VHR remote sensing data, which could provide an effective tool for construction site
monitoring and environmental protection.

(2) We exploited a multi-scale deformable CNN to tackle the variability of land object’s scales and
shapes under complex urban landscapes.
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(3) We integrated the limited labeled samples with massive unlabeled data into a semi-supervised
learning framework to increase the generalization capability of the classification model for green
plastic covers.

2. Study Area and Dataset

2.1. Study Area

The study area (Figure 2) is the urban built-up regions of Jinan City, which is the provincial capital
of Shandong Province, China. It includes parts of Licheng District, Lixia District, Tianqiao District,
Huaiyin District, Shizhong District, and Changqing District, with an approximate area of 1015 km2.
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Figure 2. Study area.

Jinan City lies in the midwest of Shandong Province, on the eastern edge of the North China
Plain. It is characterized by a temperate, semi-humid continental monsoon with an annual average
temperature of 13.8 ◦C, an average frost-free period of 178 days, and an annual average rainfall of
approximately 685 mm. Recently, Jinan has witnessed rapid urban sprawl and renewal. Numerous
villages on the fringe of urban areas have been demolished, and some old buildings in the urban areas
have been reconstructed. Most of these renewal regions are covered by green plastic mulch.

2.2. Dataset

Considering the widespread usage and data availability, the remotely sensed data from the Google
Earth (GE) platform [34] were adopted. Specifically, the image was from the GE history database
(obtained in 2019) and had a spatial resolution of about 1.19 m/pixel. Actually, the corresponding
remote sensing imagery was mainly provided by Maxar (namely, DigitalGlobe company, Westminster,
CO, USA). The optical sensors included WorldView-2, WorldView-3, and WorldView-4. Although
the WorldView series could provide multi-spectral observations, the data provided by the Google
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Earth platform have only three bands (namely, red, green, and blue, RGB). Moreover, the Google Earth
platform only provides data at an 8-bit radiometric resolution.

The size of the image was 35,976 × 63,055 pixels, corresponding to about 43 × 75 km2 (Figure 2).
The classification scheme in this study included two types: Green plastic cover (GPC) and non-GPC.
Both the training and testing samples belong to image patches with a size of 224 pixel × 224 pixel.
Actually, the size of 224 pixel × 224 pixel has been a standard image patch size in the computer vison
(CV) field, where the popular convolutional neural networks (e.g., ResNet, DenseNet) take a 224 × 224
image patch and output a predicted label. Therefore, to be comparable with these CV models, we also
used this setting in this study. Furthermore, as the spatial resolution is about 1.2 m/pixel, the 224 × 224
image patch corresponds to 268 × 268 m2. Under this context, the image patch could cover a scene that
is not too big or too small for the task of plastic covered region detection. Figure 3 illustrates several
samples of each land cover type.
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In order to describe the material composition of GPC in detail, we downloaded Sentinel-2 L2A
data acquired on 28 August 2019 from the European Space Agency (ESA) and delineated the spectral
reflectance signature of GPC (Figure 4) using bands 2-8 (Visible/Near Infrared), band 8a (Near Infrared),
and band 11-12 (Shortwave Infrared). They indicated that the spectral reflection signature of green
plastic cover is similar to that of built-up or bare land, which leads to spectral confusion in image
classification (Figure 4), especially for RGB images with only three bands, as in our experiment.
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3. Methods

3.1. Overview of the Proposed Model

Figure 5 illustrates the overview of the proposed method for green plastic cover mapping. The
input is an image patch with 224 rows and 224 columns, and the final result is a predicted land cover
class. More specifically, the proposed method consists of two components: (1) Feature extraction based
on a deep CNN; and (2) semi-supervised learning that integrates both labeled and unlabeled data. As
for the former, we exploited a multi-scale deformable CNN to learn representative spatial features
under complex urban landscapes. For the latter, the trained CNN was first utilized to endow the
unlabeled data with a pseudo label. Afterwards, the most confident data were selected through top-k
ranking and added to the training set to retrain the CNN model.
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3.2. Multi-Scale Deformable CNN for Feature Representation

Figure 6 and Table 1 shows the detailed structure of the multi-scale deformable CNN for deep
feature representation. Specifically, it includes several convolutional layers, max pooling layers, and
deformable multi-scale residual blocks. Meanwhile, to obtain the final classification result, a global
average pooling (GAP), a fully connected (FC) layer, and a Softmax layer were cascaded.
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Table 1. Detailed parameters of the multi-scale deformable CNN.

Name Input Output Kernel Size Filter Number Stride

Input 224 × 224 × 3 – – – –
Conv 1 224 × 224 × 3 109 × 109 × 64 7 × 7 64 2
Conv 2 109 × 109 × 64 54 × 54 × 128 3 × 3 128 2

Max-pooling1 54 × 54 × 128 27 × 27 × 128 – – 2
Deform res-block A1 27 × 27 × 128 27 × 27 × 128 – – –
Deform res-block A2 27 × 27 × 128 27 × 27 × 128 – – –

Max-pooling2 27 × 27 × 128 13 × 13 × 128 – – 2
Conv 3 13 × 13 × 128 6 × 6 × 256 3 × 3 256 2

Deform res-block B1 6 × 6 × 256 6 × 6 × 256 – – –
Deform res-block B2 6 × 6 × 256 6 × 6 × 256 – – –

GAP 6 × 6 × 256 1 × 1 × 256 6 × 6 – –
FC 256 128 – – –

Softmax 128 2 – – –

In this study, both deformable convolutions and multi-scale residual blocks were introduced into
the deep CNN model for better feature representation. Through deformable convolution, the receptive
field and sampling locations were trained to be adaptive to the shapes and scales of land objects,
which was beneficial for extracting highly discriminative features. Meanwhile, a multi-scale residual
block could extract hierarchical, multi-scale features and improve gradient flow at the same time. In
addition, the integration of deformable convolutions into the multi-scale residual block could combine
the merits of both modules, increasing the feature adaptability to the complex spatial patterns of urban
landscapes. Figure 7 illustrates the detailed parameters of deformable multi-scale residual blocks.
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Moreover, in our previous study [31], the multi-scale deformable CNN was proposed for spatial
feature learning in a coastal wetland landscape, and showed good performance. Therefore, we also
introduced it in this study when considering the spatial heterogeneity of complex urban scenarios.
More details of the above model can be found in [31].

3.3. Samples Selection for Semi-Supervised Learning

The data-driven nature of deep learning calls for a massive number of high-quality labeled
samples to maintain the model’s generalization capability. However, in the field of remote sensing and
geoscience, manually labeling sufficient samples is infeasible due to both the high labor intensity and
the low efficiency. Semi-supervised learning, on the other hand, aims to learn from both labeled and
unlabeled data, providing a favorable strategy to address the insufficient training data issue, and can
achieve satisfactory accuracy with the mining of a massive number of unlabeled samples. Therefore,
we resorted to deep semi-supervised learning and proposed a two-step strategy to select the most
confident unlabeled samples for model retraining.

Before the description of the two-step strategy for unlabeled samples selection, we first introduce
the details of the labeled data. To begin with, we annotated 700 samples for each category, including
both GPC and non-GPC, to construct the initial labeled pool. The labeled samples were randomly
divided into two parts: 300 for the training set and 400 for the testing set. Meanwhile, 90% of the
training set was employed to train the CNN, while the remaining 10% were used as a validation set to
evaluate the performance during training.

The proposed two-step strategy for semi-supervised learning was as follows. In the first step, the
trained CNN was used to predict samples from the unlabeled pool to derive the posterior probability.
Only the unlabeled samples with a probability exceeding 0.5 would be selected and assigned with a
predicted category (namely, pseudo-labeled samples). However, these pseudo-labeled samples may be
unreliable. If we directly added all these samples into the labeled pool to retrain the CNN model, the
performance would not always increase due to additional noise.

To ensure the reliability of the pseudo-labeled samples, we introduced a second step for unlabeled
data selection. We calculated the similarities between each pseudo-labeled sample and all labeled
samples, which are measured by the Euclidean distance:

s(ui, l j) = ‖ f (ui) − f (l j)‖
1/2
2

where ui and l j denote the i-th unlabeled and j-th labeled sample, respectively; s(·) represents the
similarity metric; and f (·) stands for the deep feature expression. Afterwards, we sorted the labeled
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pool by descending order of the above similarities. If the top-k training samples have the same category
as the pseudo-labeled sample, then this pseudo-labeled sample was regarded as reliable and could be
added to the labeled pool for CNN retraining [29]. In addition, we analyzed the impact of value k in
top-k on GPC classification; the results are shown in Section 4.4.

3.4. Details of Network Training

Although the number of training samples could be increased by means of semi-supervised learning,
we still adopted the data augmentation technique to further boost the generalization capability and
decrease the risk of overfitting. Specifically, all the initial labeled samples were rotated 90, 180, or 270◦

and flipped up and down.
All the weights of the proposed CNN model were initialized with He normalization [35], and all

biases were initially set to 0. For optimizing weights and biases to improve classification performance,
an Adam optimizer [36] was used with an initial learning rate of 10-4. An early-stopping technique was
adopted to select the best model. Cross-entropy loss [37] was adopted, whose expression is as follows:

L =
N∑
i

yi log(ŷi)

where L denotes cross-entropy loss; ŷi stands for the probability predicted by the model; yi denotes the
ground truth; and N refers to the number of classes.

The training procedure included the following steps:

(1) Firstly, the backbone, i.e., the multi-scale deformable CNN was trained using only the initial
labeled data.

(2) Next, the backbone was utilized to predict the unlabeled datasets, and only the samples that
passed the two-step selection process would be added to the labeled pool with pseudo labels.

(3) The backbone was retrained with samples from the new labeled pool.

In addition, the deep learning library used was TensorFlow [38]. The entire semi-supervised
learning framework was conducted on the Ubuntu 18.04 operating system with Intel Xeon(R) Gold
5118 CPU and NVIDIA TITAN V with 12 GB memory.

3.5. Accuracy Assessments

After the classification model was trained, a total of 400 testing samples were utilized to calculate
the overall accuracy and confusion matrix. The following metrics were also calculated: Producer
accuracy (PA), user accuracy (UA), and Kappa coefficient. Meanwhile, visual evaluation was also
involved to check for obvious classification errors. In general, visual inspection is a subjective evaluation
method that determines whether the classification result is good or not through comparing the green
plastic cover mapping results with high-resolution images from Google Earth. Since the green plastic
mulch could be identified by eye on Google Earth, we used the visual interpreted images as the “gold
standard.” Moreover, we conducted field surveys in several places in Jinan to make sure that the
interpreted images were correct.

We also conducted an ablation study to justify the performance of the semi-supervised learning
strategy. Furthermore, a comparison with several commonly used CNN models in the computer vision
field was performed to evaluate the effectiveness of the multi-scale deformable CNN in this paper.

4. Results and Discussion

4.1. Classification Results of GPC

After the semi-supervised learning procedure, the trained best model was utilized to classify the
entire VHR remote sensing imagery. A sliding window of 224 × 224 was adopted for green plastic
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cover prediction. Figure 8 displays the spatial distribution of the GPC prediction results. It could
be observed that the green plastic covered regions were mainly located in the eastern part of Jinan,
indicating that Jinan has been experiencing urban renewal towards the east. The above remote sensing
monitoring results are in accordance with Jinan’s urban planning, which verifies the effectiveness of
the proposed method in discovering key information on urban renewal.
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Figure 8 also illustrates several parts of the original remote sensing imagery and the GPC prediction
results. From the sub-regions, it could be seen that the urban landscape is rather complex, with a
high spatial heterogeneity. Therefore, the accurate detection of GPC is a challenging task. However,
careful visual inspection indicates that the extraction results of green plastic-covered areas have good
consistency with the ground truth, justifying the robustness of our proposed method.

4.2. Accuracy Assessment Results

Section 4.1 mainly evaluates the classification results qualitatively from a visual inspection. To
further justify the performance, this section adopts a confusion matrix calculated from the testing set
to quantitatively evaluate the accuracy of urban green plastic cover mapping. The number of testing
samples is 400 for each class. Table 2 lists the accuracy assessment results.

Table 2. Confusion matrix.

Class
Ground Truth Test Data

GPC Non-GPC UA (%)

GPC 374 41 90.12
Non-GPC 26 359 93.25

PA (%) 93.50 89.75
OA (%) 91.63 Kappa 0.8325

Note: GPC: Green plastic cover; PA: Producer accuracy; UA: User accuracy; OA: Overall accuracy.

Table 2 indicates that the overall accuracy reached 91.63% and the Kappa index reached 0.8325,
indicating that the proposed method achieved an excellent performance in urban green plastic cover
mapping from VHR remote sensing data. Meanwhile, since we viewed the GPC identification as a
remote sensing scene classification task, the patch-based classification and sliding window strategy
would result in a serrated boundary, which would lead to extra errors when calculating the total areas
of GPC. To tackle this issue, we would like to exploit semantic segmentation methods such as UNet [39]
and DeepLab series [40] in future studies to retrieve the exact boundaries of GPC. However, it should
be noted that semantic segmentation methods need to vectorize the GPC for training data preparation,
which calls for more labor than our proposed method. In this situation, the proposed method could be
viewed as a fast, cost-effective yet still reliable way to detect GPC, especially when considering the
compromise between workload and accuracy.

4.3. Impact of Semi-Supervised Learning on GPC Classification

To justify the contribution of semi-supervised learning on GPC classification, we conducted an
ablation study. Specifically, only the initial 270 labeled samples for each class (GPC and non-GPC)
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were utilized to train the classification model. The accuracy was evaluated using the same testing set
as that of Section 4.2. The new confusion matrix is as follows.

Table 3 indicates that when using only limited labeled data, the classification performance is
inferior to that of semi-supervised learning. The OA only reaches 85.25%, a decrease of 6.38%, while
the Kappa index dropped from 0.8325 to 0.7050, a decrease of 0.1275. Therefore, the introduction of
semi-supervised learning could improve the classification performance. This is mainly due to the
capability of semi-supervised learning to effectively mine the massive unlabeled data. The two-step
selection strategy of pseudo labeled data in this study could ensure that the most confidential ones are
added to the labeled pool.

Table 3. Confusion matrix based on the initial training set.

Class
Ground Truth Test Data

GPC Non-GPC UA (%)

GPC 352 70 83.41
Non-GPC 48 330 87.30

PA (%) 88.00 82.50
OA (%) 85.25 Kappa 0.7050

Note: GPC: Green plastic cover; PA: Producer accuracy; UA: User accuracy; OA: Overall accuracy.

4.4. Impact of k in Top-k on GPC Classification

In this section, we analyze the impact of k in top-k on GPC classification. A series of k from 45 to
270 with a step of 45 were considered. Due to the fact that the number of GPC samples is much less
than that of non-GPC in the unlabeled pool, we first selected a number of M GPC samples; afterwards,
the same number of M non-GPC samples was also selected. The accuracy assessment results are shown
in Table 4.

Table 4. k vs. classification accuracy.

Top-k Pseudo GPC Label Pseudo Non-GPC Label OA (%)

45 1246 1246 88.79
90 1029 1029 91.63

135 888 888 89.34
180 791 791 88.51
225 156 156 86.92
270 0 0 85.25

Table 4 indicates that the number of candidate pseudo labeled samples progressively decreased
with the increase of k in top-k. This is understandable since the higher the value of k, the higher the
confidence threshold of these pseudo-labeled samples. When the value of k is too high, there would be
no pseudo labeled samples that would satisfy the selection strategy.

Table 4 also indicates that the GPC classification accuracy is the highest when k equals 90. This
might be due to a compromise between the additional information gain and the introduced noise.
When k is less than the optimal value (90 in this study), there would be more pseudo-labeled samples
added into the labeled pool. However, more noise would also be introduced. Meanwhile, when k
increases beyond the optimal value, both the number of pseudo-labeled samples and the accompanying
information gain would decrease, leading to a reduction in the classification performance.

4.5. Comparison with Classic CNN Models

To further justify the effectiveness of the proposed model, several classic CNN models in the
computer vision field were adopted for comparison, such as VGG [41], ResNet [42], and DenseNet [43].
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It should be noted that all the above models were trained using the same semi-supervised learning
strategy and evaluated on the same testing set. The comparison results are listed in Table 5.

Table 5. Comparison with classical CNN models.

CNN Model OA (%) Kappa

VGG 85.87 0.7175
ResNet 86.88 0.7375

DenseNet 89.62 0.7925
Proposed CNN model 91.63 0.8325

Table 5 indicates that the proposed CNN model (multi-scale deformable CNN) achieved the
highest accuracy among the four deep learning models. More specifically, VGG had a relatively lower
OA (85.87%) in comparison with ResNet (86.88%) and DenseNet (89.62%). This is mainly because
VGG utilized a simple cascade of convolutional layers in building its network architecture [41], and
has difficulty in extracting highly representative features. Meanwhile, ResNet avoided the gradient
vanishing issue in the process of error back-propagation due to the introduction of residual learning
and skip connection, which led to higher accuracy. As for DenseNet, its network architecture contained
more skip connections for aggregating features and had the best performance. However, in this paper
the multi-scale deformable CNN outperformed all the classical CNN models. This could be because
the proposed CNN has better adaptability when considering the shape and scale variations of complex
urban landscapes.

Furthermore, we compared the above CNN models without the semi-supervised learning strategy,
i.e., only the initial limited labeled samples were utilized. The comparison results are in Table 6.

Table 6. Comparison with classical CNN models using only limited samples.

CNN Model OA (%) Kappa

VGG 83.62 0.6725
ResNet 82.50 0.6500

DenseNet 83.38 0.6675
Proposed CNN model 85.25 0.7050

Similar to Table 5, Table 6 indicates that the proposed CNN model outperformed other backbone
networks with an OA of 85.25% and a Kappa index of 0.7050. Therefore, the effectiveness of the
proposed CNN in GPC classification was further verified under the condition of limited labeled samples.

4.6. Comparison with Sentinel-2 Data

Since the successful implementation of the European Copernicus program initiated by the
European Space Agency (ESA), Sentinel-2 multi-spectral data are now open-access and free to the public,
providing new insights for remote sensing applications, such as coastal land cover classification [31],
crop mapping [44], and urban areas monitoring [45]. To further justify the performance of the proposed
method, we utilized the proposed CNN to detect GPC from Sentinel-2 data. Specifically, the Sentinel-2
L2A data were acquired on 28 August 2019. A total of 10 bands were used in the experiment, including
bands 2–4 (10 m), bands 5–7 (20 m), band 8 (10 m), band8a (20 m), and bands 11-12 (20 m). Meanwhile,
bands with a 20 m spatial resolution were resampled to 10 m using the SNAP software developed by
ESA. Since the image patch of GE data used is 224 × 224 with a spatial resolution of 1.19 m/pixel, to
maintain comparability, the image patch of Sentinel-2 data was set to 27 × 27. Moreover, the same
training and testing dataset were used to train and evaluate the model. The accuracy comparison
results are listed in Table 7.
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Table 7. Comparison with Sentinel-2 data.

Data Source OA (%) Kappa

S2 90.87 0.8175
GE 91.63 0.8325

Note: GE: Google Earth data; S2: Sentinel-2 data.

Table 7 indicates that the proposed CNN could yield high performance for both Sentinel-2 and
Google Earth data, with an OA of 91.63% and 90.87%, respectively. This further demonstrated that our
proposed CNN model has a strong GPC identification ability for either Google Earth data or Sentinel-2
multi-spectral data as the network input.

Figure 9 displays the spatial distribution of the GPC prediction results using Sentinel-2 data.
Through a comparison with the GPC prediction results using Google Earth data, it could be observed
that the GPC prediction results using these two different images have similar spatial patterns.

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 14 of 18 

 

Table 7. Comparison with Sentinel-2 data. 

Data Source OA (%) Kappa 
S2 90.87 0.8175 
GE 91.63 0.8325 

Note: GE: Google Earth data; S2: Sentinel-2 data. 

Table 7 indicates that the proposed CNN could yield high performance for both Sentinel-2 and 
Google Earth data, with an OA of 91.63% and 90.87%, respectively. This further demonstrated that 
our proposed CNN model has a strong GPC identification ability for either Google Earth data or 
Sentinel-2 multi-spectral data as the network input. 

Figure 9 displays the spatial distribution of the GPC prediction results using Sentinel-2 data. 
Through a comparison with the GPC prediction results using Google Earth data, it could be observed 
that the GPC prediction results using these two different images have similar spatial patterns. 

 
Figure 9. Mapping results of green plastic cover using Sentinel-2 data. 

Now that the GPC classification result from Sentinel-2 is available, it could be used to refine the 
result from GE data. It should be noted that the entire study region covers a large area of approximate 
1015 km2, making it difficult to cover the whole region with single-date VHR imagery. Actually, the 
study area is covered by multi-date VHR datasets from GE. Meanwhile, most GPCs would be 
replaced by new buildings within a short period, therefore, if we refine the entire classification results 
from multi-date GE by single-date Sentinel-2, there would be errors from the mismatch of observation 
dates. In this section, we selected a subset of GE data, whose observation date (23 August 2019) is 
close to that of Sentinel-2 data (28 August 2019). We then applied a decision level fusion to merge the 
classification results of GE and Sentinel-2. Only the intersection of GE and Sentinel-2 classification 
results were maintained to increase the reliability of GPC recognition, which is shown in Figure 10. 

Figure 9. Mapping results of green plastic cover using Sentinel-2 data.

Now that the GPC classification result from Sentinel-2 is available, it could be used to refine the
result from GE data. It should be noted that the entire study region covers a large area of approximate
1015 km2, making it difficult to cover the whole region with single-date VHR imagery. Actually, the
study area is covered by multi-date VHR datasets from GE. Meanwhile, most GPCs would be replaced
by new buildings within a short period, therefore, if we refine the entire classification results from
multi-date GE by single-date Sentinel-2, there would be errors from the mismatch of observation dates.
In this section, we selected a subset of GE data, whose observation date (23 August 2019) is close to that
of Sentinel-2 data (28 August 2019). We then applied a decision level fusion to merge the classification
results of GE and Sentinel-2. Only the intersection of GE and Sentinel-2 classification results were
maintained to increase the reliability of GPC recognition, which is shown in Figure 10.
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4.7. Comparison with Random Forest Classification

Random forest (RF), proposed by Breiman [46], has been widely utilized for land use/land cover
mapping in the remote sensing field with improved classification accuracy [12,13,47,48]. To further
justify the performance of the proposed CNN, it should be compared with RF. Therefore, RF was
trained and tested with the same training and testing samples as the proposed method to maintain
fairness. The accuracy comparison results are listed in Table 8.

Table 8. Comparison with random forest classification.

Data Source Method OA (%) Kappa

GE RF 83.87 0.6775
S2 RF 85.75 0.7150
GE Proposed CNN 91.63 0.8325
S2 Proposed CNN 90.87 0.8175

Note: GE: Google Earth data; S2: Sentinel-2 data.

Table 8 indicates that, compared with RF classification, the proposed CNN could increase the OA
by 7.76% and 5.88% for GE and S2 data, respectively. This is mainly because the CNN could extract
high-level discriminative features compared with RF, which was beneficial for the improvement of
classification accuracy.

5. Conclusions

This study proposed a deep semi-supervised learning framework for urban green plastic cover
mapping from VHR remote sensing imagery. A multi-scale deformable CNN was exploited for
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discriminative feature learning in the complex urban landscapes. A two-step sample selection strategy
was proposed for semi-supervised learning to identify the most reliable sample from the unlabeled
pool. Experiments and an ablation study were conducted to confirm the good performance of the
proposed method.

The experimental results indicate that the proposed method could classify green plastic covered
regions in Jinan with a high performance. An accuracy assessment showed that the overall accuracy
(OA) was 91.63% and the Kappa index was 0.8325. Moreover, a careful visual inspection showed that
most of the green plastic-covered areas could be correctly identified. An ablation study showed that the
semi-supervised learning strategy could increase the OA by 6.38% compared with supervised learning,
indicating that the mining of the most confidential unlabeled data could effectively improve the
classification accuracy. Meanwhile, the comparison with several classic CNN models in the computer
vision field showed that the multi-scale deformable CNN in this study yielded the highest accuracy,
justifying its effectiveness for spatial feature learning in complex urban landscapes.

Moreover, this study is the first attempt to identify green plastic cover from VHR remote sensing
data based on deep learning methods, which could provide a baseline for relevant studies. Although
the proposed CNN is now utilized for urban plastic-covered region recognition, it could also be applied
to other applications, such as remote sensing scene understanding. In future work, we will further
justify the model’s effectiveness and use semantic segmentation models to derive the exact boundaries
of the green plastic covered regions.
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