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Abstract: We explored various Machine Learning (ML) models to evaluate how each model performs
in the task of classifying histopathology reports. We trained, optimized, and performed classification
with Stochastic Gradient Descent (SGD), Support Vector Machine (SVM), Random Forest (RF),
K-Nearest Neighbor (KNN), Adaptive Boosting (AB), Decision Trees (DT), Gaussian Naïve Bayes
(GNB), Logistic Regression (LR), and Dummy classifier. We started with 60,083 histopathology
reports, which reduced to 60,069 after pre-processing. The F1-scores for SVM, SGD KNN, RF, DT,
LR, AB, and GNB were 97%, 96%, 96%, 96%, 92%, 96%, 84%, and 88%, respectively, while the
misclassification rates were 3.31%, 5.25%, 4.39%, 1.75%, 3.5%, 4.26%, 23.9%, and 19.94%, respectively.
The approximate run times were 2 h, 20 min, 40 min, 8 h, 40 min, 10 min, 50 min, and 4 min, respectively.
RF had the longest run time but the lowest misclassification rate on the labeled data. Our study
demonstrated the possibility of applying ML techniques in the processing of free-text pathology
reports for cancer registries for cancer incidence reporting in a Sub-Saharan Africa setting. This is an
important consideration for the resource-constrained environments to leverage ML techniques to
reduce workloads and improve the timeliness of reporting of cancer statistics.

Keywords: machine learning; multi-model supervised machine learning; text mining; text
classification; natural language processing; cancer coding; flagging malignant reports

1. Introduction

The South African National Cancer Registry (NCR) is responsible for the registration of all
malignancies, including histopathologically diagnosed malignancies, and annual reporting of cancer
statistics for South Africa (SA) [1,2]. The NCR receives over 100,000 cancer pathology reports annually
from pathology laboratories in SA [1,2]. All cancer pathology reports are coded according to the
International Classification of Diseases for Oncology 3rd edition (ICD-O-3), reports are de-duplicated
to identify index cancer cases, and the cancer statistics are calculated and reported annually [1,2].
The NCR database, since its inception in 1986, has over 1.2 million index cancer cases recorded [2].

The NCR receives pathology reports from both private and public laboratories throughout
SA [1]. These reports are electronic and in free-text format. Trained data coders perform medical
data abstraction and code the malignant reports using the ICD-O-3 topography and morphology
classification for downstream analysis [3]. The medical data abstraction process is labor-intensive,
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and the quality of the abstraction is prone to inter-person variability despite the training and experience
of the data coder [3]. Ongoing quality assurance measures are deployed to ensure the NCR’s reporting
meets industry standards [4]; therefore, the reports are robust and reliable to inform cancer control
policies and support robust research.

Despite technological improvements in the abstraction platform and workflows [5],
two weaknesses persist. (1) First, there is the issue of inter-coder variability for medical abstraction.
This process is labor-intensive [6] and prone to human errors. (2) Cancer reports from the reporting
laboratories are identified using the pathologists/laboratory-reported Systematized Nomenclature of
Medicine clinical terms (SNOMED-CT). Should pathologists/laboratories fail to report or incorrectly
report the SNOMED-CT, then the pathology report may be missed by the NCR. This weakness is
prominent in the laboratory reports submitted to the NCR by the public healthcare laboratories in
SA. To address the workflow weaknesses and improve efficiency, the NCR must adopt text-mining
techniques in the data processing workflow.

Text mining is the act of knowledge discovery in unstructured and structured textual data [7,8]. In the
biomedical domain, text-mining techniques are used for process automation [7–10]. Such techniques can
help to shorten data processing time, improve accuracy in text classification and abstractions, and reduce
operation costs [6]. Text mining can be done by applying rule-based approaches, natural language
processing, and/or machine learning (ML) [11].

The rule-based approaches include the use of regular expressions or creating a reference
dictionary [12,13]. In this approach, a list of key terms is developed. Then, the model searches
for the terms in the list and flags where the terms match [14,15]. For each row that matches the terms
in the list, it assigns a positive or actual value. For the rows with no values in the list, it assigns a
negative value or no outcome. This technique is ideal for classifying texts rows that are few or when
the texts are always standard or structured [12]. In cases where the text is unstructured and the data
keeps growing, the use of ML models is ideal [16,17].

ML models are broadly categorized into two groups: supervised or unsupervised [18].
Unsupervised ML models find patterns—for example, similarities and dissimilarities in the text or
classes. Unsupervised models have no training data [19,20]. Supervised ML models use training data
to perform classifications [21]. The training data act as the guide for performing the classification [21].
This makes that classification more accurate. Both supervised and unsupervised text-mining models are
continuously being used in cancer registries and cancer research around the world [6,13,16,19,22–24].

Currently, the literature on text mining and text analytics work in the cancer registries across
Sub-Saharan Africa is scarce. This work explores the use of text mining through multi-model supervised
machine learning (MMSML) to identify histopathology reports describing malignancies among all
histopathology reports in the public healthcare laboratories for the Western Cape Province in South
Africa for the year 2016.

2. Methods

2.1. Ethical Considerations

This study is covered under the ethical clearance waiver granted to the NCR by the Human
Research Ethics Committee of the University of the Witwatersrand.

2.2. Software and Hardware

We implemented this work entirely in Python 3.7 [25], running in Anaconda (Enterprise 4) [26]
using Jupyter IPython Notebook (version 5.3.1) [27]. The Python modules pandas (version 0.24.2) [28],
numpy (version 1.16.4) [29], regex (version 2.2.1) [30], nltk (version 3.4.4), and sklearn (version 0.21.2) [31]
were used. We used a computer with an i7 processor and 32 gigabytes of RAM.



Information 2020, 11, 455 3 of 17

2.3. Data Source

All histopathology reports collated in the National Health Laboratory Service’s (NHLS) Corporate
Data Warehouse (CDW) [32] for the year 2016 in the Western Cape province were made available for
this study. The NHLS is the central pathology laboratory service for the public healthcare sector in SA.

2.4. Pre-Processing

We assigned a unique row identifier (ID) for each record and then subset the dataset by retaining
the three columns that contained the result text in free text format, the SNOMED-CT morphology
codes, and the row ID. We plotted a word cloud on the result text to determine the word representation
before data cleaning of the result text. We also generated a character count, word count, and unique
word count before data cleaning. For each row in the result text, new lines, tabs, and extra spaces
were replaced with a single space. Then, we picked from the start word patterns that are “a” to “z” in
either lower or capital case, numbers 0 to 9, hyphens, apostrophes, and spaces. Then, we converted
all the resulting text into lower case. We expanded the contracted words—for example “don’t” to “do
not”—and removed the words “no” and “not” from the stopwords list [15] because these are negation
words in a sentence. We added the words “tel”, “telephone”, and “fax” to the stopwords list. Then,
we removed all the words in the stopwords list from the resulting text.

A second word cloud was constructed after data cleaning to visualize the effect of the pre-processing.
Character counts, word counts, and unique word counts were generated again after data cleaning.
Comparison of the metadata data frame was done before and after pre-processing, and we excluded
rows where the content was completely lost due to pre-processing. These rows, which initially had
tabs and newlines values, were left with no result text after pre-processing (had null values).

2.5. Feature Engineering

This is the process of transforming input data to features that machine learning models can easily
interpret to improve model performance [33,34]. This can be done by either reviewing the input
features or letting the machine learning model select the most appropriate features [33,34]. We used
Term Frequency-Inverse Document Frequency (TF-IDF) vectorizer with an ngram range of 1–3 to
convert the raw text to the matrix of TF-IDF features. TF-IDF is a mathematical representation of a
weight to a term or terms in a document [35]. It looks at how important a term or terms is/are with
respect to the whole corpus or document [35]. The TF-IDF is given by the equation below:

W(d, t) = TF(d, t) ∗ log
(

N
d f (t)

)
where d is document, t is term, df is document frequency, TF is term frequency, and N is the total number.

Through feature engineering, we were able to drop words that the TF-IDF vectorizer gave
more weight to when paired with other words that do not contribute to the actual classification
goal. These included words such as comment, diagnosis, final diagnosis, immunohistochemistry,
microscopic examination, etc.; these words were subheadings in the reports. We sampled some of
the most important words, bigrams, and trigrams for this classification and attached a list in the
Supplementary Materials.

Then, we fitted the features to the encoded value labels. Since TF-IDF generates many features,
it is impossible to use all the features to perform classification. Therefore, we used a dimensionality
reduction feature called Truncated Singular Value Decomposition (SVD) [36] through a topic modeling
technique called Latent Semantic Analysis [31].

2.6. Classification

We sampled records with SNOMED-CT morphology codes to create classes of malignancy status
for the training data. The cancer morphology codes are five-digit codes ranging from 8000/0 to
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9992/9. The first four digits indicate the specific histologic term [37], while the code after the backslash
represents the behavior code. The behavior code can be as follows: 0 is benign, 1 is uncertain whether
malignant or benign, 2 is carcinoma in situ, 3 is the malignant primary site, 6 is the malignant metastatic
site, and 9 is malignant, uncertain whether primary or metastatic site [37].

Using regular expressions [30], we were able to construct classes for “Malignant”, “Non-malignant”,
and “No diagnosis”. We performed the MMSML classification in scikit-learn in Python [31].
We randomly sampled 5000 rows each from “Malignant” and “Non-malignant” classes and 1000 rows
from “No diagnosis” to create the training data. Then, we used the Label Encoder to turn the labels
into numbers that are 0, 1, and 2 for “Non-malignant”, “Malignant”, and “No diagnosis”, respectively.
We applied a multiclass classification approach. We split the training data into “X” and “y” where “X”
is the result text that also contains the features for the classification and “y” is the encoded labels.

We evaluated the model performance by running non-optimized classification algorithms. We used
the train test split by stratification method in scikit-learn [31]. The test size was “0.3”, the random state
was “three”, stratification was “yes”, and shuffle was set to “true”. Then, we optimized the models
by performing hyperparameter tuning in GridSearchCV. The scikit-learn library allowed us to stack
these models together, thereby making it possible to compare the performance of each algorithm [31].
The algorithms used in this model are briefly explained below.

2.6.1. Gaussian Naïve Bayes (GNB)

GNB is a classifier is based on Bayes theorem [35]. It relies on the conditional probability to predict
the outcome of an occurrence [35]. For example, if documents n fit into k categories where k ∈ {c1, c2,
. . . , ck}, then the predicted output is c ∈ C. The model function is given as below:

P(c|d) =
P(d|c)P(c)

P(d)

where d is documents and c indicates classes.

2.6.2. Adaptive Boosting (AB)

AB was discovered by Freund and Schapire; this algorithm works by reweighing the examples in
the training set to improve the classification accuracy [38]. It converts any algorithm with an accuracy
higher than guessing to a higher performance [38]. A boost classifier is giver by the function below:

FT(x) =
T∑

t=1

ft (x)

where ft is a weak learner that takes an object x as input and return the class it belongs to.

2.6.3. Logistic Regression (LR)

LR uses a logistic function to predict a given outcome [39]. LR is also referred to as the maximum
entropy model in the multiclass text classification domain [39]. To perform multiclass text classification,
LR must be regularized. This is possible by adding a regularization term wTw/2, and a regularized
logistic regression is given by the function below;

min
w

f (w) ≡
1
2

wTw + C
l∑

i=1

log
(
1 + e−yiwTxi

)
where C > 0 is a parameter set by users. The function estimates (w) weight by (min), minimizing the
negative log-likelihood.
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2.6.4. Stochastic Gradient Descent (SGD)

SGD is mostly used in large-scale machine learning problems since the computational complexity of
machine learning becomes a limiting factor in very large datasets [40]. SGD addresses the complexity by
having a faster convergence [41], as the SGD algorithm learns by randomly obtaining examples from the
ground truth without necessarily taking into consideration the previous iterations [40]. Every iteration
in SGD updates the weights based on the gradient from the randomly picked example [40]:

wt+1 = wt − γt ∇w Q(zt, wt)

where zt is the random example picked, wt, t = 1, . . . , t = n, is the stochastic process that depends on
the randomly picked example [40]. SGD is derived from Batch Gradient Descent (BGD) [41]. BGD is
meant for small datasets, while SGD works well in large datasets. We used a constant learning rate to
maintain class labels.

2.6.5. K-Nearest Neighbor (KNN)

This is a non-parametric algorithm, which considers the closest neighbor to the point of
prediction [35]. For example, consider a document with the x training set; the algorithm will
find all the k neighbors of x. Since there may be lots of overlap in the neighbors, the algorithm assigns
a score to the k neighbors and only puts the k with the highest scores depending on the value of x.
We used weight-adjusted KNN that uses the TF-IDF weight vectors for the classification [35], where the
KNN weighted cosine measure was derived as follows:

cos(x, y, w) =

∑
t∈T(xt ×wt) × (yt ×wt)√∑

t∈T (xt ×wt)
2
×

√∑
t∈T (yt ×wt)

2

where T is the set of words, and xt and yt are the term frequencies. The training set (d ∈ D), where Nd =

{n1, n2, . . . , nk} is the set of k-nearest neighbors of d. The similarity sum of d neighbors that belongs to
class c given by Nd defined as:

Sc =
∑

ni∈N;C(ni)=c
cos(d, ni, w).

The similarity total is given as below:

T =
∑
c∈C

Sc

and d contribution defined in the terms of Sc of classes c.

2.6.6. Support Vector Machine (SVM)

Originally developed as a binary classifier, but with the recent advancement in technology,
SVM algorithms have improved to non-binary and multiclass classifications models [35]. SVM uses
either linear or non-linear kernels to perform classification [35]. We used multiclass SVM by applying
one versus the rest while generating classification features from TF-IDF [35]. To get proper classification,
we used a string kernel [35]. The string kernel uses Φ(.) to map the string in the feature space. By using
the spectrum kernel, which counts the number of times a word appears in string xi as a feature map
where defining feature maps from x→ Rlk:

Φ(x) = Φ j(x) j∈
∑k

where the kernel Φ j(x) = number of j feature appears in x.
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The feature map Φi(x) is then generated by sequence xi and kernel defined as follows:

F =
∑k

Ki(x, x′) =
〈
Φi(x), Φi(x′)

〉
2.6.7. Decision Trees (DT)

This classifier performs classification by creating a tree based on attributes of data points [35,42].
Classification is performed by getting attributes with the largest information gain as the parent’s
node, then using cross-entropy to evaluate the performance of the classification [42]. For example,
consider an attribute A with k distinct value divides the training set E in subsets of {E1, E2, . . . , Ek}.

2.6.8. Random Forest (RF)

This is an ensemble learning method for text classification; it works by generating random decision
trees [35]. It is faster to train for faster classification, though it is quite slow to make predictions [35].
The algorithm has been improved to have convergence as margin measures (mg(X,Y)) with indicator
function I(.) as below:

mg(X, Y) = avkI(hk(X) = Y) −max
j,Y

avkI(hk(X) = j).

The predictions in RF are assigned based on voting as follows:

δV = arg max
i

∑
j: j, j

I{ri j>ri j}

such that ri j + ri j = 1.

2.7. Model Optimization

Hyper-tuning of the model parameters was done, and the classification was run through a
GridSearchCV to improve the model performance [31]. GridSearchCV implements a fit and score
method [31]. We performed 5-fold cross-validation on a GridSearchCV, and the best model was
selected based on the score each fold returned. This allowed us to optimize all the algorithms in
the model except for the dummy classifier. Table 1 shows the optimized parameters that we used to
perform classification.

Table 1. Classification parameters for the optimized models. SGD: Stochastic Gradient Descent, RF:
Random Forest, SVM: Support Vector Machine, KNN: K-Nearest Neighbor, AB: Adaptive Boosting, DT:
Decision Tree, LR: Logistic Regression, GNB: Gaussian Naïve Bayes.

Model Parameters

SGD

Alpha = 0.0001, average = False, class_weight = None, early_stopping = False, epsilon = 0.1, eta0 = 0.0, fit_intercept =
True, l1_ratio = 0.15, learning_rate = ‘optimal’, loss = ‘log’, max_iter = 1000, n_iter_no_change = 5, n_jobs = None,
penalty = ‘l2′, power_t = 0.5, random_state = None, shuffle = True, tol = 0.001, validation_fraction = 0.1, verbose = 0,
warm_start = False

RF

bootstrap = True, ccp_alpha = 0.0, class_weight = None, criterion = ‘gini’, max_depth = None, max_features = ‘auto’,
max_leaf_nodes = None, max_samples = None, min_impurity_decrease = 0.0, min_impurity_split = None,
min_samples_leaf = 1, min_samples_split = 2, min_weight_fraction_leaf = 0.0, n_estimators = 100, n_jobs = None,
oob_score = False, random_state = None, verbose = 0, warm_start = False

SVM
C = 1.0, break_ties = False, cache_size = 200, class_weight = None, coef0 = 0.0, decision_function_shape = ‘ovr’,
degree = 3, gamma = ‘scale’, kernel = ‘rbf’, max_iter = −1, probability = True, random_state = None, shrinking = True,
tol = 0.001, verbose = False

KNN algorithm = ‘auto’, leaf_size = 30, metric = ‘minkowski’, metric_params = None, n_jobs = None, n_neighbors = 5,
p = 2, weights = ‘uniform’
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Table 1. Cont.

Model Parameters

AB algorithm = ‘SAMME.R’, base_estimator = None, learning_rate = 1.0, n_estimators = 50, random_state = None

DT
ccp_alpha = 0.0, class_weight = None, criterion = ‘gini’, max_depth = None, max_features = None, max_leaf_nodes =
None, min_impurity_decrease = 0.0, min_impurity_split = None, min_samples_leaf = 1, min_samples_split = 2,
min_weight_fraction_leaf = 0.0, presort = ‘deprecated’, random_state = None, splitter = ‘best’

LR
C = 1.0, class_weight = None, dual = False, fit_intercept = True, intercept_scaling = 1, l1_ratio = None, max_iter = 100,
multi_class = ‘auto’, n_jobs = None, penalty = ‘l2′, random_state = 8, solver = ‘lbfgs’, tol = 0.0001, verbose = 0,
warm_start = False

GNB priors = None, var_smoothing = 1 × 10−9

2.8. Evaluation

We evaluated our models by calculating the accuracy, precision, recall, F1-score, misclassification
rate (error rate), micro-average, and macro-average. We achieved this by plotting a Confusion
Matrix (CM), Receiver Operating Characteristics (ROC), and Area Under Curve (AUC) for various
algorithms [35]. CM is a table used to measure the performance of a classification model by getting
counts of predicted values against actual values [35]. ROC and AUC measure the performance of
the classification at various threshold settings [35]. ROC is the probability curve, while AUC is a
measure of separation of the classes [35]. The plotting of confusion matrices, ROC, and AUC are
possible from calculating elements such as the True Positive (TP), False Positive (FP), True Negative
(TN), False Negative (FN), True Positive Rate (TPR), and False Negative Rate (FNR) [35].

The example reports in Table 2 show examples of the reports before and after cleaning and their
respective SNOMED-CT classes.

Table 2. Example of the histopathology reports for the three classes.

Report before Pre-Processing Report after Pre-Processing Text Class Class

EPISODE NUMBER: \nXX1111111\n\n\nCLINICAL HISTORY:
\nMULTIPLE GROWTH ABDOMEN RIGHT THIGH MOBILE 2 X
2CM. NIL SKIN CHANGE.\nSUBCUTANEOUS LESION RIGHT

THIGH. LIPOMA.\n\n\nMACROSCOPY: \nSPECIMEN LABELED
¿LIPOMA RIGHT THIGH¿ CONSISTS OF A YELLOW FRAGMENT

OF TISSUE MEASURING 15 X 8 X
5MM.\n\n\nMICROSCOPY:\nSECTION SHOWS LOBULES OF

MATURE ADIPOCYTES WITH NUMEROUS INTERVENING SMALL
BLOOD VESSELS. FIBRIN THROMBI ARE CONSPICUOUS WITHIN

THE VESSELS. THERE IS NO EVIDENCE OF ATYPIA OR
MALIGNANCY.\n\nPATHOLOGICAL

DIAGNOSIS:\nSUBCUTANEOUS TISSUE OF RIGHT THIGH,
EXCISIONAL BIOPSY: ANGIOLIPOMA.\n\nREPORTED BY: DR

YYYYYY\n

episode number: xx1111111 clinical history: multiple
growth abdomen right thigh mobile 2 × 2 cm nil skin

change subcutaneous lesion right thigh lipoma
macroscopy: specimen labeled lipoma right thigh

consists yellow fragment tissue measuring
15 × 8 × 5 mm microscopy: section shows lobules
mature adipocytes numerous intervening small
blood vessels fibrin thrombi conspicuous within

vessels no evidence atypia malignancy pathological
diagnosis: subcutaneous tissue right thigh excisional

biopsy: angiolipoma reported by: dr yyyyyy

Non-malignant 0

EPISODE NUMBER: \nXX2222222\n\n\nCLINICAL HISTORY:
\nSKIN CANCER LEFT LOWER LEG. LONG STITCH = LATERAL,
SHORT STITCH = SUPERIOR.\n\n\nMACROSCOPY:\nSPECIMEN
LABELED ¿BCC LEFT LEG¿ CONSISTS OF AN ELLIPSE OF SKIN
WITH A LARGE POLYPOID ULCERATED TUMOR MEASURING

65MM IN THE LONG AXIS AND 45MM IN THE SHORT AXIS. THE
ULCER MEASURES 35 X 30MM.\n\n\nMICROSCOPY: \nSECTIONS

SHOW A MODERATELY DIFFERENTIATED KERATINIZING
SQUAMOUS CARCINOMA.\nMARGINS: \nLATERAL SKIN

MARGIN 4MM\nMEDIAL 6MM\nPROXIMAL 12MM\nDISTAL
10MM\nDEEP RESECTION MARGIN 4-5MM\n\n\nPATHOLOGICAL

DIAGNOSIS:\nSKIN OF LOWER LEG, EXCISION: SQUAMOUS
CARCINOMA\n\nREPORTED BY: PROF XXXXXX\n

episode number: xx2222222 clinical history: skin
cancer left lower leg long stitch lateral short stitch

superior macroscopy: specimen labeled bcc left leg
consists ellipse skin large polypoid ulcerated tumor
measuring 65 mm long axis 45 mm short axis ulcer
measures 35 × 30 mm microscopy: sections show
moderately differentiated keratinizing squamous

carcinoma margins: lateral skin margin 4 mm medial
6 mm proximal 12 mm distal 10 mm deep resection
margin 4–5 mm pathological diagnosis: skin lower
leg excision: squamous carcinoma reported: prof

xxxxxx

Malignant 1

EPISODE NUMBER: \nXX3333333\n\n\nCLINICAL HISTORY:
\nBMT\n\n\n\nPATHOLOGICAL

DIAGNOSIS:\nIMMUNOHISTOCHEMISTRY PERFORMED AT THE
DEPARTMENT OF ANATOMICAL PATHOLOGY, GROOTE SCHUUR

HOSPITAL.\n\nRETURNED TO REFERRING CENTRE FOR
REPORTING.\n

episode number: xx3333333 clinical history: bmt
pathological diagnosis: immunohistochemistry

performed department anatomical pathology groote
schuur hospital returned referring centre reporting

No Diagnosis 2

3. Results

3.1. Pre-Processing

A total of 60,083 histology reports were registered by the NHLS for the Western Cape Province in
2016. The mean character count before pre-processing was 1032.12 with a standard deviation of 832.17.
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The character count of the reports before pre-processing ranged from 1 to 16,961, which changed to 0
to 12,419 after pre-processing. The word count of the reports before pre-processing ranged from 1 to
5613, which changed from 0 to 1607 after pre-processing. Table 3 shows the summary statistics of the
text results before and after pre-processing.

Table 3. The summary statistics of the histopathology reports before and after pre-processing.

Character
Count before
Pre-Processing

Character
Count after

Pre-Processing

Word Count
before

Pre-Processing

Word Count
after

Pre-Processing

Unique
Words before
Pre-Processing

Unique
Words after

Pre-Processing

Percentage
Change

Row count 60,083 60,068 60,083 60,068 60,083 60,068

mean 1032.12 863.09 143.32 110.12 88.10 81.69 14.41

Standard deviation 832.17 667.63 154.34 87.82 54.05 47.76 15.79

min 1 0 1 0 1 0 −125

25% 626 538 74 67 60 57 6.67

50% 836 702 105 89 79 74 13.79

75% 1180 982 164 125 104 96 20

max 16,961 12,419 5613 1607 983 884 90.14

We plotted the distribution characteristics of the characters, word count, and unique word
count before and after pre-processing of the histopathology reports (Figure 1). The characters count,
word count, and unique word count remained fairly unchanged from before to after pre-processing,
as portrayed in the shapes of the distribution curves (Figure 1).Information 2020, 11, x FOR PEER REVIEW 9 of 17 
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Figure 1. The distribution of character, word count, and unique word count of the histopathology
reports before and after pre-processing.

We plotted two word clouds (Figure 2). Word clouds were used to visualize the keywords in the
histopathology reports [43]. From the two word clouds, the effects of pre-processing were highlighted:
the text changed to lower case, the new line tags were eliminated but generally, while the content of
the histopathology reports remained unchanged.

The average word percentage change for before and after pre-processing was 14.41% (Figure 3).
An expansion of shortened words led to a stopwords removal and a decreasing of words for some
histopathology reports while other reports remained unchanged.
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3.2. Classification

We randomly sampled 11,000 reports (from the total of 60,068 that survived pre-processing),
where the SNOMED-CT codes indicated the “Malignant”, “Non-malignant”, and “No diagnosis”
classifications for our training set. Then, we split the training dataset into two where 70% was for the
training set and 30% was for the test set. We performed classification without optimization (Table 4).

Table 4. Models performance before optimization.

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)

SVM 96 97 97 97
LR 95 96 96 96

KNN 95 96 96 96
SGD 95 96 96 96
RF 95 96 96 96
DT 90 93 92 92

GNB 85 89 88 88
AB 79 85 82 84

Dummy 41 32 32 32

We plotted the CM, ROC, and AUC to show the classification rates between various classes and
the average classification as shown in Figures 4–7.
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After model optimization, we performed the actual classification, as shown in Table 5. The table
presents the cross-tabulation between the labels before and the outcome of the predictions from the
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model. Then, we calculated the error rates for each algorithm in the model; the error rates were
calculated using all reports with labels. The error rates and the run time for each algorithm in the
model are presented in Table 6.

Table 5. Actual classification.

Model Predicted
Label before

Total
Non-Malignant Malignant No Diagnosis No Label

SDG

Non-malignant 5193 689 12 36,019

Malignant 208 10,000 3 5831 16,042

No diagnosis 0 1 1283 830 2114

Total 5401 10,690 1298 42,680

SVM

Non-malignant 5192 351 8 32,662 38,213

Malignant 209 10,338 7 9188 19,742

No diagnosis 0 1 1283 830 2114

Total 5401 10,690 1298 42,680

RF

Non-malignant 5379 282 1 29,199 34,861

Malignant 22 10,408 0 12,543 22,973

No diagnosis 0 0 1297 938 2235

Total 5401 10,690 1298 42,680

KNN

Non-malignant 5188 536 6 26,419 32,149

Malignant 213 10,153 8 15,425 25,799

No diagnosis 0 1 1284 836 2121

Total 5401 10,690 1298 42,680

DT

Non-malignant 5359 559 1 26,937 32,856

Malignant 40 10,126 1 13,900 24,067

No diagnosis 2 5 1296 1843 3146

Total 5401 10,690 1298 42,680

AB

Non-malignant 4142 2876 0 25,881 32,899

Malignant 1259 7810 17 15,834 24,920

No diagnosis 0 4 1281 965 2250

Total 5401 10,690 1298 42,680

GNB

Non-malignant 5000 3044 7 31,308 39,359

Malignant 398 7634 3 10,258 18,293

No diagnosis 3 12 1288 1114 2417

Total 5401 10,690 1298 42,680

LR

Non-malignant 5148 471 12 33,828 39,459

Malignant 253 10,218 3 8022 18,496

No diagnosis 0 1 1283 830 2114

Total 5401 10,690 1298 42,680
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Table 6. Misclassification error rates and model run times.

Model Misclassification Rates (%) Approx. (Run Time)

SGD 5.25 20 min
SVM 3.31 2 h
RF 1.75 8 h

KNN 4.39 40 min
DT 3.50 2 h
AB 23.90 50 min

GNB 19.94 4 min
LR 4.26 10 min

4. Discussion

This study demonstrates the possibilities of integrating ML models to process cancer reports.
Data labels make it possible to assign the SNOMED-CT codes to the unlabeled data. This is very
important, as in our data, 8.17% of the pathology reports are not assigned any SNOMED-CT codes,
while 10% of the assigned SNOMED-CT codes are misclassified. Considering the increasing cancer
burden in low and middle-income countries (LMIC) worldwide due to changes in the lifestyle and
environmental factors [5,44], more cancer reports are being collected in cancer registries. This requires
faster and more efficient means of data processing to meet the demand for the timely and accurate
reporting of cancer statistics.

By integrating ML models in data processing, it is possible to achieve timely data processing for
the increased reporting load. For example, NCR collects more than 100,000 raw reports per annum
for reporting purposes [1]. The number of raw reports is expected to increase with the increase in
population size and the rise of cancers cases in LMICs.

Using ML techniques such as TF-IDF to generate classification features per classes assigned, it is
possible to classify records without creating a reference/word dictionary. This also makes it possible to
classify records with variability, since the majority of pathology records do not follow definite standard
reporting guidelines, and variation exists amongst pathologists. Despite TF-IDF generating many
classification features, a dimensional reduction of features using SVD makes it possible to reduce the
number of classification features, thereby reducing the classification time while increasing the accuracy.
This allows the appropriate features to be assigned to the appropriate classes for the training data
promptly. This is evident, as we first tested the models by splitting the training dataset into two and
using 30% for testing each classification algorithm.

RF performs well with least misclassification rates followed by SVM, DT, LR, and then KNN;
this is also mirrored in the F1-score of the five algorithms except for DT. The F1-score for DT during
training and optimization were at 92%, but there was improvement during the actual classification
(Table 5, Figures 4 and 6). The classification rates of RF, SVM, LR, KNN, and SGD for each class were
at 97% and above for the five algorithms, while the micro- and macro-classification were at 98% and
above, as shown the ROC curves (Figures 6 and 7). Even though AB and GNB algorithms takes a
short time to train, optimize, and perform classification with, they have high misclassification rates
and are not appropriate to perform the classification of histopathology reports. The run time for RF
is a limitation, but it had the least number of misclassification rates on the label data, and therefore,
this showed its classification strength. The model is also known to train faster, but it takes longer to
perform optimization [35]. LR can still be applied in text classification tasks for histopathology reports
since it had a misclassification error of below 5% and an F1-score of 96%. LR also takes a short time to
train, optimize, and perform classification.

When we explored the misclassified reports in the model, all the algorithms uniformly misclassified
59 reports: 2 reports were predicted as malignant but were non-malignant, while 57 reports were
predicted as non-malignant but were malignant. Our study did not incorporate Deep Learning models
that are gaining popularity in the Natural Language Processing domain [35]. It would be ideal to try
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such models in the histopathology reports and measure their performance. We were also not able
to incorporate Multinomial Naïve Bayes (MNB) classifier, which is an improved GNB and has an
enhanced performance compared to GNB [35]. The SVD dimensionality reduction applied in this
study generates classification features with negative values, which made the MNB algorithm generate
value error.

Performing classification with ML models saves more time compared to human coding [6] and
is more accurate compared to rule-based approaches [13] in cases where datasets are big and have
no standard structure. This helps to cope with constantly increasing heterogeneous data when such
models are incorporated in workflow pipelines. This is a major strength, as there are no or little
adjustments made to the model compared to rule-based approaches [45].

5. Conclusions

Our study demonstrated the possibility of applying ML techniques in the processing of free-text
pathology reports for cancer registries for cancer incidence reporting in a Sub-Saharan African setting.
This is an important consideration for resource-constrained environments to leverage ML techniques
to reduce workloads and increase productivity. We can apply ML models to improve data processing
efficiency and report misclassification.

RF, though it takes a long time to train and optimize, has the least misclassification rates and
therefore would be recommended for performing the classification of histopathology reports. DT had
the third least misclassification rates after SVM, which makes RF, SVM, and DT classifiers appropriate
for text classification of the histopathology reports.
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Abbreviations

The following abbreviations are used in this manuscript:

SNOMED CT Systematized Nomenclature of Medicine—Clinical Terms
ICD-O International Classification of Diseases for Oncology
GridSearchCV GridSearch Cross-Validation
SSA Sub-Saharan Africa
SA South Africa
NCR South African National Cancer Registry
NHLS National Health Laboratory Service
ML Machine Learning
ID Identification
SGD Stochastic Gradient Descent
SVM Support Vector Machine
AB Adaptive Boosting
GNB Gaussian Naïve Bayes
LR Logistic Regression
DT Decision Trees
KNN K-Nearest Neighbor
RF Random Forest
TF Term Frequency
TF-IDF Term Frequency Inverse Document Frequency
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SVD Singular Value Decomposition
LSA Latent Sematic Analysis
BGD Batch Gradient Descent
CM Confusion Matrix
ROC Receiver Operating Characteristics
AUC Area Under Curve
TP True Positive
TN True Negative
FP False Positive
FN False Negative
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