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Abstract: Matrix completion, the problem of completing missing entries in a data matrix with
low-dimensional structure (such as rank), has seen many fruitful approaches and analyses. Tensor
completion is the tensor analog that attempts to impute missing tensor entries from similar low-rank
type assumptions. In this paper, we study the tensor completion problem when the sampling pattern
is deterministic and possibly non-uniform. We first propose an efficient weighted Higher Order
Singular Value Decomposition (HOSVD) algorithm for the recovery of the underlying low-rank
tensor from noisy observations and then derive the error bounds under a properly weighted metric.
Additionally, the efficiency and accuracy of our algorithm are both tested using synthetic and real
datasets in numerical simulations.

Keywords: HOSVD decomposition; tensor completion; weighted tensor

1. Introduction

In many data-rich domains such as computer vision, neuroscience, and social net-
works, tensors have emerged as a powerful paradigm for handling the data deluge. In
recent years, tensor analysis has gained more and more attention. To a certain degree,
tensors can be viewed as the generalization of matrices to higher dimensions, and thus
multiple questions from matrix analysis extend naturally to tensors. Similar to matrix
decomposition, the problem of tensor decomposition (decomposing an input tensor into
several less complex components) has been widely studied both in theory and applica-
tion (see e.g., [1–3]). Thus far, the problem of low-rank tensor completion, which aims to
complete missing or unobserved entries of a low-rank tensor, is one of the most actively
studied problems (see e.g., [4–7]). It is noteworthy that, as caused by various unpredictable
or unavoidable reasons, multidimensional datasets are commonly raw and incomplete,
and thus often only a small subset of entries of tensors are available. It is, therefore, natural
to address the above issue using tensor completion in modern data-driven applications,
in which data are naturally represented as a tensor, such as image/video inpainting [5,8],
link-prediction [9], and recommendation systems [10], to name a few.

In the past few decades, the matrix completion problem, which is a special case of
tensor completion, has been extensively studied. In matrix completion, there are ma-
ture algorithms [11], theoretical foundations [12–14] and various applications [15–18] that
pave the way for solving the tensor completion problem in high-order tensors. Recently,
Foucart et al. [19] proposed a simple algorithm for matrix completion for general determin-
istic sampling patterns, and raised the following questions: given a deterministic sampling
pattern Ω and corresponding (possibly noisy) observations of the matrix entries, what
type of recovery error can we expect? In what metric? How can we efficiently implement
recovery? These were investigated in [19] by introducing an appropriate weighted error
metric for matrix recovery of the form ‖H � (M̂−M)‖F, where M is the true underlying
low-rank matrix, M̂ refers to the recovered matrix, and H is a best rank-1 matrix approxi-
mation for the sampling pattern Ω. In this regard, similar questions arise for the problem
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of tensor completion with deterministic sampling patterns. Unfortunately, as is often the
case, moving from the matrix setting to the tensor setting presents non-trivial challenges,
and notions such as rank and SVD need to be re-defined and re-evaluated. We address
these extensions for the completion problem here.

Motivated by the matrix case, we propose an appropriate weighted error metric for
tensor recovery of the form ‖H� (T̂ − T )‖F, where T is the true underlying low-rank
tensor, T̂ is the recovered tensor, andH is an appropriate weight tensor. For the existing
work, the error is only limited to the form ‖T̂ − T ‖F, which corresponds to the case that
all the entries ofH are 1, whereH can be considered to be a CP rank-1 tensor. It motivates
us to rephrase the questions mentioned above as follows.

Main questions. Given a sampling pattern Ω, and noisy observations T + Z
on Ω, for what rank-one weight tensor H can we efficiently find a tensor T̂ so that
‖H� (T̂ − T )‖F is small compared to ‖H‖F? And how can we efficiently find such
weight tensorH, or determine that a fixedH has this property?

1.1. Contributions

Our main goal is to provide an algorithmic tool, theoretical analysis, and numerical
results that address the above questions. In this paper, we propose a simple weighted
Higher Order Singular Value Decomposition (HOSVD) method. Before we implement the
weighted HOSVD algorithm, we first appropriately approximate the sampling pattern Ω
with a rank one tensor H. We can achieve high accuracy if ‖H −H(−1) � 1Ω‖F is small,
where H(−1) denotes the element-wise inverse. Finally, we present empirical results on
synthetic and real datasets. The simulation results show that when the sampling pattern is
non-uniform, the use of weights in the weighted HOSVD algorithm is essential, and the
results of the weighted HOSVD algorithm can provide a very good initialization for the
total variation minimization algorithm which can dramatically reduce the iterative steps
without lose the accuracy. In doing so, we extend the weighted matrix completion results
of [19] to the tensor setting.

1.2. Organization

The paper is organized as follows. In Section 2, we give a brief review of related work
and concepts for tensor analysis, instantiate notations, and state the tensor completion
problem under study. Our main results are stated in Section 3 and the proofs are provided
in Appendices A and B. The numerical results are provided and discussed in Section 4.

2. Related Work, Background, and Problem Statement

In this section, we give a brief overview of the works that are related to ours, introduce
some necessary background information about tensors, and finally give a formal statement
of tensor completion problem under study. The related work can be divided into two lines:
that based on matrix completion problems, which leads to a discussion of weighted matrix
completion and related work, and that based on tensor analysis, in which we focus on CP
and Tucker decompositions.

2.1. Matrix Completion

The matrix completion problem is to determine a complete d1 × d2 matrix M from its
partial entries on a subset Ω ⊆ [d1]× [d2]. We use 1Ω to denote the matrix whose entries are
1 on Ω and 0 elsewhere so that the entries of MΩ = 1Ω � M are equal to those of the matrix
M on Ω, and are equal to 0 elsewhere, where � denotes the Hadamard product. There
are various works that aim to understand matrix completion with respect to the sampling
pattern Ω. For example, the works in [20–22] relate the sampling pattern Ω to a graph
whose adjacency matrix is given by 1Ω and show that as long as the sampling pattern Ω
is suitably close to an expander, efficient recovery is possible when the given matrix M
is sufficiently incoherent. Mathematically, the task of understanding when there exists a
unique low-rank matrix M that can complete MΩ as a function of the sampling pattern Ω
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is very important. In [23], the authors give conditions on Ω under which there are only
finitely many low-rank matrices that agree with MΩ, and the work of [24] gives a condition
under which the matrix can be locally uniquely completed. The work in [25] generalized
the results of [23,24] to the setting where there is sparse noise added to the matrix. The
works [26,27] study when rank estimation is possible as a function of a deterministic pattern
Ω. Recently, [28] gave a combinatorial condition on Ω that characterizes when a low-rank
matrix can be recovered up to a small error in the Frobenius norm from observations in
Ω and showed that nuclear minimization will approximately recover M whenever it is
possible, where the nuclear norm of M is defined as ‖M‖∗ := ∑r

i=1 σi with σ1, · · · , σr the
non-zero singular values of M.

All the works mentioned above are in the setting where recovery of the entire matrix is
possible, but in many cases full recovery is impossible. Ref. [29] uses an algebraic approach
to answer the question of when an individual entry can be completed. There are many
works (see e.g., [30,31]) that introduce a weight matrix for capturing the recovery results
of the desired entries. The work [21] shows that, for any weight matrix, H, there is a
deterministic sampling pattern Ω and an algorithm that returns M̂ using the observation
MΩ such that ‖H � (M̂−M)‖F is small. The work [32] generalizes the algorithm in [21] to
find the “simplest” matrix that is correct on the observed entries. Succinctly, their works
give a way of measuring which deterministic sampling patterns, Ω, are “good” with respect
to a weight matrix H. In contrast to these two works, [19] is interested in the problem
of whether one can find a weight matrix H and create an efficient algorithm to find an
estimate M̂ for an underlying low-rank matrix M from a sampling pattern Ω and noisy
samples MΩ + ZΩ such that ‖H � (M̂−M)‖F is small.

In particular, one of our theoretical results is that we generalize the upper bounds for
weighted recovery of low-rank matrices from deterministic sampling patterns in [19] to the
upper bound of tensor weighted recovery. The details of the connection between our result
and the matrix setting result in [19] is discussed in Section 3.

2.2. Tensor Completion Problem

Tensor completion is the problem of filling in the missing elements of partially ob-
served tensors. Similar to the matrix completion problem, low rankness is often a necessary
hypothesis to restrict the degrees of freedom of the missing entries for the tensor comple-
tion problem. Since there are multiple definitions of the rank of a tensor, this completion
problem has several variations.

The most common tensor completion problems [5,33] may be summarized as follows
(we will define the different ranks subsequently, see further on in this section).

Definition 1 (Low-rank tensor completion (LRTC) [7]). Given a low-rank (CP rank, Tucker
rank, or other ranks) tensor T and sampling pattern Ω, the low-rank completion of T is given by
the solution of the following optimization problem:

min
X

rank∗(X )

subject to XΩ = TΩ, (1)

where rank∗ denotes the specific tensor rank assumed at the beginning.

In the literature, there are many variants of LRTC but most of them are based on the
following questions:

(1) What type of the rank should one use (see e.g., [34–36])?
(2) Are there any other restrictions based on the observations that one can assume (see

e.g., [5,37,38])?
(3) Under what conditions can one expect to achieve a unique and exact completion (see

e.g., [34])?
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In the rest of this section, we instantiate some notations and review basic operations
and definitions related to tensors. Then some tensor decomposition-based algorithms
for tensor completion are stated. Finally, a formal problem statement under study will
be presented.

2.2.1. Preliminaries and Notations

Tensors, matrices, vectors, and scalars are denoted in different typeface for clarity
below. In the sequel, calligraphic boldface capital letters are used for tensors, capital letters
are used for matrices, lower boldface letters for vectors, and regular letters for scalars.
The set of the first d natural numbers is denoted by [d] := {1, · · · , d}. Let X ∈ Rd1×···×dn

and α ∈ R, X (α) represents the element-wise power operator, i.e., (X (α))i1···in = X α
i1···in .

1Ω ∈ Rd1×···×dn denotes the tensor with 1 on Ω and 0 otherwise. We use X � 0 to denote
the tensor with Xi1···in > 0 for all i1, · · · , in. Moreover, we say that Ω ∼ W if the entries
of X are sampled randomly with the sampling set Ω such that (i1, · · · , in) ∈ Ω with
probabilityWi1···in . We include here some basic notions relating to tensors, and refer the
reader to e.g., [2] for a more thorough survey.

Definition 2 (Tensor). A tensor is a multidimensional array. The dimension of a tensor is called
the order (also called the mode). The space of real tensors of order n and size d1 × · · · × dn is
denoted as Rd1×···×dn . The elements of a tensor X ∈ Rd1×···×dn are denoted by Xi1···in .

An n-order tensor X can be matricized in n ways by unfolding it along each of the n
modes. The definition for the matricization of a given tensor is stated below.

Definition 3 (Matricization/unfolding of a tensor). The mode-k matricization/unfolding of

tensor X ∈ Rd1×···×dn is the matrix, which is denoted as X(k) ∈ R
dk×∏

j 6=k
dj

, whose columns are
composed of all the vectors obtained from X by fixing all indices except for the k-th dimension. The
mapping X 7→ X(k) is called the mode-k unfolding operator.

Example 1. Let X ∈ R3×4×2 with the following frontal slices:

X1 =

1 4 7 10
2 5 8 11
3 6 9 12

 X2 =

13 16 19 22
14 17 20 23
15 18 21 24

,

then the three mode-n matricizations are

X(1) =

1 4 7 10 13 16 19 22
2 5 8 11 14 17 20 23
3 6 9 12 15 18 21 24

,

X(2) =


1 2 3 13 14 15
4 5 6 16 17 18
7 8 9 19 20 21
10 11 12 22 23 24

,

X(3) =

[
1 2 3 · · · 10 11 12
13 14 15 · · · 22 23 24

]
.

Definition 4 (Folding operator). Suppose that X is a tensor. The mode-k folding operator of a
matrix M = X(k), denoted as foldk(M), is the inverse operator of the unfolding operator.

Definition 5 (∞-norm). Given X ∈ Rd1×···×dn , the norm ‖X ‖∞ is defined as

‖X ‖∞ = max
i1,··· ,in

|Xi1···in |.
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The unit ball under the ∞-norm is denoted by B∞.

Definition 6 (Frobenius norm). The Frobenius norm for a tensor X ∈ Rd1×···×dn is defined as

‖X ‖F =

√
∑

i1,··· ,in
X 2

i1···in .

Definition 7 (Max-norm for matrix). Given X ∈ Rd1×d2 , the max-norm for X is defined as

‖X‖max = min
X=UVT

‖U‖2,∞‖V‖2,∞.

Definition 8 (Product operations).

• Outer product: Let a1 ∈ Rd1 , · · · , an ∈ Rdn . The outer product among these n vectors is a
tensor X ∈ Rd1×···×dn defined as:

X = a1⊗⊗⊗ · · · ⊗⊗⊗ an, Xi1,··· ,in =
n

∏
k=1

ak(ik).

The tensor X ∈ Rd1×···×dn is of rank one if it can be written as the outer product of n vectors.
• Kronecker product of matrices: The Kronecker product of A ∈ RI×J and B ∈ RK×L is denoted

by A⊗ B. The result is a matrix of size (KI)× (JL) defined by

A⊗ B =


A11B A12B · · · A1J B
A21B A22B · · · A2J B

...
...

. . .
...

AI1B AI2B · · · AI J B

.

• Khatri-Rao product: Given matrices A ∈ Rd1×r and B ∈ Rd2×r, their Khatri-Rao product is
denoted by A� B. The result is a matrix of size (d1d2)× r defined by

A� B =
[
a1 ⊗ b1 · · · ar ⊗ br

]
,

where ai and bi stand for the i-th column of A and B respectively.
• Hadamard product: Given X ,Y ∈ Rd1×···×dn , their Hadamard product X �Y ∈ Rd1×···×dn

is defined by element-wise multiplication, i.e.,

(X �Y)i1···in = Xi1···inYi1···in .

• Mode-k product: Let X ∈ Rd1×···×dn and U ∈ Rdk×J , the multiplication between X on its
mode-k with U is denoted as Y = X ×k U with

Yi1,··· ,ik−1,j,ik+1,··· ,in =
dk

∑
s=1
Xi1,··· ,ik−1,s,ik+1,··· ,in Us,j.

Definition 9 (Tensor (CP) rank [1,39]). The (CP) rank of a tensor X , denoted rank(X ), is defined
as the smallest number of rank-1 tensors that generate X as their sum. We use Kr to denote the
cone of rank-r tensors.

Given k M ∈ Rdk×r, we use J1M, · · · , n MK to denote the CP representation of tensor
X , i.e.,

X =
r

∑
j=1

(
1M(:, j)⊗⊗⊗ · · · ⊗⊗⊗ n M(:, j)

)
,

where M(:, j) means the j-th column of the matrix M.
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Different from the case of matrices, the rank of a tensor is not presently well under-
stood. Additionally, the task of computing the rank of a tensor is an NP-hard problem [40].
Next we introduce an alternative definition of the rank of a tensor, which is easy to compute.

Definition 10 (Tensor Tucker rank [39]). Let X ∈ Rd1×···×dn . The tuple (r1, · · · , rn) ∈ Nn is
called the Tucker rank of the tensor X , where rk = rank(X(k)). We use Kr to denote the cone of
tensors with Tucker rank r.

Tensor decompositions are powerful tools for extracting meaningful, latent structures
in heterogeneous, multidimensional data (see e.g., [2]). In this paper, we focus on two
most widely used decomposition methods: CP and HOSVD. For more comprehensive
introduction, readers are referred to [2,41,42].

2.2.2. CP-Based Method for Tensor Completion

The CP decomposition was first proposed by Hitchcock [1] and further discussed
in [43]. The formal definition of the CP decomposition is the following.

Definition 11 (CP decomposition). Given a tensor X ∈ Rd1×···×dn , its CP decomposition is an
approximation of n loading matrices Ak ∈ Rdk×r, k = 1, · · · , n, such that

X ≈ JA1, · · · , AnK =
r

∑
i=1

A1(:, i)⊗⊗⊗ · · · ⊗⊗⊗ An(:, i),

where r is a positive integer denoting an upper bound of the rank of X and Ak(:, i) is the i-th
column of matrix Ak. If we unfold X along its k-th mode, we have

X(k) ≈ Ak(A1 � . . .� Ak−1 � Ak+1 � · · · � An)
T .

Here the ≈ sign means that the algorithm should find an optimal X̂ with the given
rank such that the distance between the low-rank approximation and the original tensor,
‖X − X̂ ‖F, is minimized.

Given an observation set Ω, the main idea to implement tensor completion for a
low-rank tensor T is to conduct imputation based on the equation

X = TΩ + X̂Ωc ,

where X̂ = JA1, · · · , AnK is the interim low-rank approximation based on the CP de-
composition, X is the recovered tensor used in next iteration for decomposition, and
Ωc = {(i1, · · · , in) : 1 ≤ ik ≤ dk} \Ω. For each iteration, we usually estimate the matrices
Ak using the alternating least squares optimization method (see e.g., [44–46]).

2.2.3. HOSVD-Based Method for Tensor Completion

The Tucker decomposition was proposed by Tucker [47] and further developed
in [48,49].

Definition 12 (Tucker decomposition). Given an n-order tensor X , its Tucker decomposition
is defined as an approximation of a core tensor C ∈ Rr1×···×rn multiplied by n factor matrices
Ak ∈ Rdk×rk , k = 1, · · · , n along each mode, such that

X ≈ C ×1 A1 ×2 · · · ×n An = JC; A1, · · · , AnK,

where rk is a positive integer denoting an upper bound of the rank of the matrix X(k).
If we unfold X along its k-th mode, we have

X(k) ≈ AkC(k)(A1 ⊗ · · · ⊗ Ak−1 ⊗ Ak+1 ⊗ · · · ⊗ An)
T
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Tucker decomposition is a widely used tool for tensor completion. To implement
Tucker decomposition, one popular method is called the higher-order SVD (HOSVD) [47].
The main idea of HOSVD is:

1. Unfold X along mode k to obtain matrix X(k);
2. Find the economic SVD decomposition of X(k) =

kUkΣkVT ;
3. Set Ak to be the first rk columns of kU;
4. C = X ×1 AT

1 ×2 · · · ×n AT
n .

If we want to find a Tucker rank r = [r1, · · · , rn] approximation for the tensor X via
HOSVD process, we just replace Ak by the first rk columns of Uk.

2.2.4. Tensor Completion Problem under Study

In our setting, it is supposed that T is an unknown tensor in Kr ∩ βB∞ or Kr ∩ βB∞.
Fix a sampling pattern Ω ⊆ [d1]× · · · × [dn] and the weight tensorW . Our goal is to design
an algorithm that gives provable guarantees for a worst-case T , even if it is adapted to Ω.

In our algorithm, the observed data are TΩ + ZΩ = 1Ω � (T +Z), where Zi1···in ∼
N (0, σ2) are i.i.d. Gaussian random variables. From the observations, the goal is to learn
something about T . In this paper, instead of measuring our recovered results with the
underlying true tensor in a standard Frobenius norm ‖T − T̂ ‖F, we are interested in
learning T using a weighted Frobenius norm, i.e., to develop an efficient algorithm to find
T̂ so that ∥∥∥W (1/2) � (T − T̂ )

∥∥∥
F

is as small as possible for some weight tensorW . When measuring the weighted error, it is
important to normalize appropriately to understand the meaning of the error bounds. In
our results, we always normalize the error bounds by

∥∥∥W (1/2)
∥∥∥

F
. It is noteworthy that∥∥∥W (1/2) � (T − T̂ )

∥∥∥
F∥∥W (1/2)

∥∥
F

=

(
∑

i1,··· ,in

Wi1···in
∑i1,··· ,inWi1,··· ,in

(Ti1···in − T̂i1···in)
2

)1/2

,

which gives a weighted average of the per entry squared error. Generally, our problem can
be formally stated below.

Problem:Weighted Universal Tensor Completion
Parameters:
• Dimensions d1, · · · , dn;
• A sampling pattern Ω ⊆ [d1]× · · · × [dn];
• Parameters σ, β > 0, r or r = [r1 · · · rn];
• A rank-1 weight tensorW ∈ Rd1×···×dn so thatWi1···in > 0 for all i1, · · · , in;
• A set K (e.g., Kr ∩ βB∞ or Kr ∩ βB∞).
Goal: Design an efficient algorithm A with the following guarantees:
• A takes as input entries TΩ +ZΩ so that Zi1···in ∼ N (0, σ2) are i.i.d.;
• A runs in polynomial time;
•With high probability over the choice of Z , A returns an estimate T̂ of T so that∥∥∥W (1/2) � (T − T̂ )

∥∥∥
F∥∥∥W (1/2)

∥∥∥
F

≤ δ

for all T ∈ K, where δ depends on the problem parameters.

Remark 1 (Strictly positiveW). The requirement thatWi1···in is strictly greater than zero is a
generic condition. In fact, ifWi1···in = 0 for some (i1, · · · , in), some mode k with index ik ofW is
zero, then we can reduce the problem to a smaller one by ignoring that mode k with index ik.
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3. Main Results

In this section, we state informal versions of our main results. With fixed sampling pat-
tern Ω and weight tensorW , we can find T̂ by solving the following optimization problem:

T̂ =W (−1/2) � argmin
rank (X )=r

∥∥∥X −W (−1/2) �YΩ

∥∥∥
F
, (2)

or
T̂ =W (−1/2) � argmin

Tucker-rank (X )=r

∥∥∥X −W (−1/2) �YΩ

∥∥∥
F
, (3)

where YΩ ∈ Rd1×···×dn with

YΩ(i1, · · · , in) =

{
Ti1···in +Zi1···in if (i1, · · · , in) ∈ Ω
0 if (i1, · · · , in) 6∈ Ω

.

It is known that solving (2) is NP-hard [40]. However, there are some polynomial
time algorithms to find approximate solutions for (2) such that the approximation is
(empirically) close to the actual solution of (2) in terms of the Frobenius norm. In our
numerical experiments, we solve (2) via the CP-ALS algorithm [43]. To solve (3), we use
the HOSVD process [48]. Assume that T has Tucker rank r = [r1, · · · , rn]. Let

Âi = argmin
rank (A)=ri

∥∥∥A− (W (−1/2) �YΩ)(i)

∥∥∥
2

and set Ûi to be the left singular vector matrix of Âi. Then the estimated tensor is of
the form

T̂ =W (−1/2) � ((W (−1/2) �YΩ)×1 Û1ÛT
1 ×2 · · · ×n ÛnÛT

n .

In the following, we call this the weighted HOSVD algorithm.

3.1. General Upper Bound

Suppose that the optimal solution T̂ for (2) or (3) T̂ can be found, we would like
to give an upper bound estimations for ‖W (1/2) � (T − T̂ )‖F with some proper weight
tensorW .

Theorem 1. LetW = w1⊗⊗⊗ · · · ⊗⊗⊗wn ∈ Rd1×···×dn have strictly positive entries, and fix Ω ⊆
[d1] × · · · × [dn]. Suppose that T ∈ Rd1×···×dn has rank r for problem (2) or Tucker rank
r = [r1, · · · , rn] for problem (3), and let T̂ be the optimal solutions for (2) or (3). Suppose
that Zi1···in ∼ N (0, σ2). Then with probability at least 1− 2−|Ω|/2 over the choice of Z ,∥∥∥W (1/2) � (T − T̂ )

∥∥∥
F
≤ 2‖T ‖∞

∥∥∥W (1/2) −W (−1/2) � 1Ω

∥∥∥
F
+ 4σµ

√
|Ω| log(2),

Recall here, (W (1/2))i1···in =W (1/2)
i1···in and (W (−1/2))i1···in =W (−1/2)

i1···in as defined in Section 2.2.1
and µ2 = max(i1,··· ,in)∈Ω

1
Wi1 ···in

.

Notice that the upper bound in Theorem 1 is for the optimal output T̂ for problems
(2) and (3), which is general. However, the upper bound in Theorem 1 contains no rank in-
formation of the underlying tensor T . To introduce the rank information of the underlying
tensor T , we restrict our analysis for Problem (3) by considering the HOSVD process in
the sequel.

3.2. Results for Weighted HOSVD Algorithm

In this section, we begin by giving a general upper bound for the weighted
HOSVD algorithm.
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3.2.1. General Upper Bound for Weighted HOSVD

Theorem 2 (Informal, see Theorem A1). LetW = w1⊗⊗⊗ · · ·⊗⊗⊗wn ∈ Rd1×···×dn have strictly
positive entries, and fix Ω ⊆ [d1]× · · · × [dn]. Suppose that T ∈ Rd1×···×dn has Tucker rank
r = [r1, · · · , rn]. Suppose that Zi1···in ∼ N (0, σ2) and let T̂ be the estimate of the solution of (3)
via the HOSVD process. Then

∥∥∥W (1/2) � (T − T̂ )
∥∥∥

F
.

 n

∑
k=1

√
rk log(dk + ∏

j 6=k
dj)µk

σ

+

(
n

∑
k=1

rk

∥∥∥(W (−1/2) � 1Ω −W (1/2))(k)

∥∥∥
2

)
‖T ‖∞,

with high probability over the choice of Z , where

µ2
k = max

{
max

ik

(
∑

i1,··· ,ik−1,ik+1,··· ,in

1(i1,i2,··· ,in)∈Ω

Wi1i2···in

)
, max

i1,··· ,ik−1,ik+1,··· ,in

(
∑
ik

1(i1,i2,··· ,in)∈Ω

Wi1i2···in

)}
.

and a . b means that a ≤ cb for some universal constant c > 0.

Remark 2. The upper bound in [19] suggests ‖W(1/2) � (M − M̂)‖F ≤ 2
√

2rλ‖M‖∞
+4
√

2σµ1
√

r log(d1 + d2), where λ = ‖W(1/2) −W(−1/2) ◦ 1Ω‖ and µ2
1 = max(i,j)∈Ω

1
Wij

,

where M̂ is obtained by considering the truncated SVD decompositions. Notice that in our re-
sult, when n = 2, the upper bound becomes 2

√
r log(d1 + d2)µσ + 2r‖W(1/2) −W(−1/2) ◦

1Ω‖‖M‖∞ with µ2 = max{‖1Ω ◦W(−1)‖∞, ‖1Ω ◦W(−1)‖1}. Since µ in our work is much
bigger than the µ1 in [19], the bound in our work is weaker than the one in [19]. The reason is that
in order to obtain a general bound for all tensor, the fact that the optimal approximations M̂ for a
given matrix in the spectral norm and Frobenious norm are the same cannot be applied.

3.2.2. Case Study: When Ω ∼ W
To understand the bounds mentioned above, we also study the case when Ω ∼ W such

that ‖(W (1/2) −W (−1/2) � 1Ω)(k)‖2 is small for k = 1, · · · , n. Even though the samples are
taken randomly in this case, our goal is to understand our upper bounds for deterministic
sampling pattern Ω. To make sure that ‖(W (1/2) −W (−1/2) � 1Ω)(k)‖2 is small, we need
to assume that each entry ofW is not too small. For this case, we have the following main
results.

Theorem 3 (Informal, see Theorems A2 and A7). LetW = w1⊗⊗⊗ · · ·⊗⊗⊗wn ∈ Rd1×···×dn be a
CP rank-1 tensor so that for all (i1, · · · , in) ∈ [d1]× · · · × [dn] we haveWi1···in ∈ [ 1√

d1···dn
, 1].

Suppose that Ω ∼ W .

• Upper bound: Then the following holds with high probability.
For our weighted HOSVD algorithm A, for any Tucker rank-r tensor T with ‖T ‖∞ ≤ β, A
returns T̂ = A(TΩ +ZΩ) so that with high probability over the choice of Z ,∥∥∥W (1/2) � (T − T̂ )

∥∥∥
F∥∥W (1/2)

∥∥
F

.
1√
|Ω|

(
βn2rd

n−1
2 log(d) + σn2r1/2d

n−1
2

)
,

where r = maxk{rk} and d = maxk{dk}.
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• Lower bound: If additionally,W is flat (the entries ofW are close), then for our weighted
HOSVD algorithm A, there exists some T ∈ Kr ∩ βB∞ so that with probability at least 1

2
over the choice of Z ,∥∥∥W (1/2) � (A(TΩ +ZΩ)− T )

∥∥∥
F∥∥W (1/2)

∥∥
F

& min


σ√
|Ω|

(
r̃d̃

d̃ + 2C′2r̃

) n
2

,
σ√
|Ω|

 r̃d̃(√
d̃ +

√
2r̃ log(r̃)C′

)2


n
2

,
β√

n log(d̃)

,

where r̃ = mink{rk}, d̃ = mink{dk}, and C′ is some constant to measure the “flatness"
ofW .

Remark 3. The formal statements in Theorems A2 and A7 are more general than the statements in
Theorem 3.

4. Experiments
4.1. Simulations for Uniform Sampling Pattern

In this section, we test the performance of our weighted HOSVD algorithm when the
sampling pattern arises from uniform random sampling. Consider a tensor T of the form
T = C ×1 U1 ×2 · · · ×n Un, where Ui ∈ Rdi×ri and C ∈ Rr1×···×rn . Let Z be a Gaussian
random tensor with Zi1···in ∈ N (0, σ) and Ω be the sampling pattern set according to
uniform sampling. In this simulation, we compare the results of numerical experiments for
using the HOSVD algorithm to solve

T̂ = argmin
Tucker_rank (X )=r

‖X − YΩ‖F, (4)

T̂ = argmin
Tucker_rank (X )=r

∥∥∥∥X − 1
p
YΩ

∥∥∥∥
F
, (5)

and
T̂ =W (−1/2) � argmin

Tucker_rank (X )=r

∥∥∥X −W (−1/2) �YΩ

∥∥∥
F
, (6)

where p = |Ω|
∏n

k=1 dk
and YΩ = TΩ +ZΩ.

First, we generate a synthetic sampling set Ω with sampling rate SR:= |Ω|
∏n

k=1 dk
= 30%

and find a weight tensorW by solving

W = argmin
X�0,rank(X )=1

‖X − 1Ω‖F (7)

via the alternating least squares method for the non-negative CP decomposition. Next, we
generate synthetic tensors T ∈ Rd1×···×dn of the form C ×1 U1 ×2 · · · ×n Un with n = 3, 4
with rank (T(i)) = r, where i = 1, · · · , n, and r varies from 2 to 10. Then we add mean zero
Gaussion random noise Z with variance σ = 10−2 so that a new tensor is generated, which
is denoted by Y = T +Z . Then we solve the tensor completion problems (4), (5) and (6)
by the HOSVD procedure. For each fixed low-rank tensor, we average over 20 tests. We
measure error using the weighted Frobenius norm. The simulation results are reported
in Figures 1 and 2. Figure 1 shows the results for the tensor of size 100× 100× 100 and
Figure 2 shows the results for the tensor of size 50× 50× 30× 30, where the weighted error

is of the form ‖W (1/2)�(T̂ −T )‖F
‖W (1/2)‖ . These figures demonstrate that using our weighted samples
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performs more efficiently than using the original samples. For the uniform sampling case,
the p weighted samples andW weighted samples exhibit similar performance.

2 4 6 8 10
10

-1

10
0

10
1

10
2

Figure 1. Tensor of size 100× 100× 100 using the uniform sampling pattern: plots the errors of the

form ‖W (1/2)�(T̂ −T )‖F

‖W (1/2)‖F
. The lines labeled as HOSVD, HOSVD-p and HOSVD-w represent the results

for solving (4), (5) and (6), respectively.

2 4 6 8 10
10

-1

10
0

10
1

10
2

10
3

Figure 2. Tensor of size 50× 50× 30× 30 using the uniform sampling pattern: plots the errors of the

form ‖W (1/2)�(T̂ −T )‖F

‖W (1/2)‖F
. The lines labeled as HOSVD, HOSVD-p and HOSVD-w represent the results

for solving (4), (5) and (6), respectively.

4.2. Simulation for Non-Uniform Sampling Pattern

To generate a non-uniform sampling pattern with sampling rate 30%, we first generate
a CP rank 1 tensor of the form H = J1; h1, · · · , hnK, where hi = (ui1ddi/2e, vi1bdi/2c) 0 <
ui, vi ≤ 1. Let Ω ∼ H. Then we repeat the process as in Section 4.1. The simulation results
are shown in Figures 3 and 4. As shown in figures, the results using our proposed weighted
samples perform more efficiently than using the p weighted samples.
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Figure 3. Tensor of size 100× 100× 100 using the non-uniform sampling pattern: plots the errors

of the form ‖W (1/2)�(T̂ −T )‖F

‖W (1/2)‖F
. The lines labeled as HOSVD, HOSVD-p and HOSVD-w represent the

results for solving (4), (5) and (6), respectively.
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Figure 4. Tensor of size 50× 50× 30× 30 using the non-uniform sampling pattern: plots the errors

of the form ‖W (1/2)�(T̂ −T )‖F

‖W (1/2)‖F
. The lines labeled as HOSVD, HOSVD-p and HOSVD-w represent the

results for solving (4), (5) and (6), respectively.

Remark 4. When we use the HOSVD procedure to solve (4), (5), and (6), we need (an estimate of)
the Tucker rank as input. Instead of inputting the real rank of the true tensor, we could also use the
rank that is estimated by considering the decay of the singular values for the unfolded matrices of
the sampled tensor YΩ as the input rank, which we call SV-rank. The simulation results for the
non-uniform sampling pattern with SV-rank as input are reported in Figure 5. The simulation
shows that the weighted HOSVD algorithm performs more efficiently than using the p weighted
samples or the original samples. Comparing Figure 5 with Figure 3, we could observe that using the
estimated rank as input for HOSVD procedure performs even better than using the real rank as
input. This observation motivates a way to find a “good" rank as input for HOSVD procedure.

Remark 5. We only provide guarantees on the performance in the weighted Frobenius norm, (as

we report the weighted error ‖W
(1/2)�(T̂ −T )‖F
‖W (1/2)‖F

), our procedures exhibit good empirical performance
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even in the usual relative error ‖T̂ −T ‖F
‖T ‖F

when the Tucker rank of the tensor is relatively low.
However, we observe that the advantages of weighted HOSVD scheme tend to be diminished in
terms of relative error when the Tucker rank increases. This result is not surprising since the entries
are treated unequally in scheme (6). Therefore we leave the investigation on relative error and the
tensor rank for future work.

2 4 6 8 10
10

-2

10
-1

10
0

10
1

10
2

Figure 5. Tensor of size 100 × 100 × 100 using the non-uniform sampling pattern and with the

SV-rank as the input rank: plots the errors of the form ‖W (1/2)�(T̂ −T )‖F

‖W (1/2)‖F
.

4.3. Test for Real Data

In this section, we test our weighted HOSVD algorithm for tensor completion on three
videos, see [50]. The dataset is the tennis-serve data from an Olympic Sports Dataset [51].
One can download the dataset from http://vision.stanford.edu/Datasets (accessed date
10 May 2021). There are a lot of videos in the zip file and we only choose three of them:
“d2P_zx_JeoQ_00120_00515.seq” (video 1), “gs3sPDfbeg4_00082_00229.seq”(video 2), and
“VADoc-AsyXk_00061_ 0019.seq” (video 3). The three videos are color video. In our
simulation, we use the same setup as the one in [50], and choose 30 frames evenly from
each video. For each frame, the size is scaled to 360× 480× 3, so each video is transformed
into a 4-D tensor data of size 360 × 480 × 3 × 30. The first frame of each video after
preprocessing is illustrated in Figure 6.

(a) Video 1 (b) Video 2 (c) Video 3
Figure 6. The first frame of videos [50].

We implement the experiments for different sampling rates of 10%, 30%, 50%, and 80%
to generate uniform and non-uniform sampling patterns Ω. In our implementation, we use
the SV-rank of TΩ as the input rank. According to the generated sampling pattern, we find
a weight tensorW and find estimates T̂1 and T̂2 by considering (4) and (6) respectively,

http://vision.stanford.edu/Datasets/OlympicSports/
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using the input Tucker rank r. The entries on T1 and T2 are forced to be the observed data.
The Signal to Noise Ratio (SNR)

SNR(T̂ ) = −20 log10

(
‖T̂ − T ‖F
‖T ‖F

)

are computed and the simulation results are reported in Tables 1 and 2. As shown in the
tables, applying HOSVD process to (6) can give a better result than applying HOSVD
process to (4) directly regardless of the uniformity of the sampling pattern.

Table 1. Signal to noise ratio (SNR) and elapsed time (in second) for Higher Order Singular Value Decomposition (HOSVD)
and HOSVD-w on video data with uniform sampling pattern. The HOSVD-w and HOSVD-p behave very similar for
uniform sampling hence we integrate the results into one column.

Video SR Input Rank HOSVD-w+TV HOSVD HOSVD-w/HOSVD-p TVM

10% [7 17 3 5] 13.29 (16.3 s) 1.27 (3.74 s) 10.15 (11.4 s) 13.04 (41.3 s)
30% [18 10 3 6] 16.96 (14.0 s) 4.26 (4.01 s) 12.05 (7.23 s) 17.05 (29.7 s)
50% [26 4 3 11] 19.60 (12.2 s) 8.21 (2.99 s) 14.59 (7.03 s) 19.68 (23.8 s)
80% [47 47 3 22] 24.90 (11.5 s) 17.29 (6.55 s) 19.75 (8.08 s) 25.01 (18.1 s)

10% [28 6 3 7] 10.98 (13.1 s) 1.19 (4.20 s) 7.88 (8.76 s) 10.89 (42.2 s)
30% [34 18 3 15] 14.44 (16.1 s) 4.11 (3.80 s) 10.40 (7.51 s) 14.50 (31.4 s)
50% [35 33 3 9] 16.95 (15.3 s) 7.85 (5.86 s) 12.84 (7.64 s) 16.96 (26.6 s)
80% [56 50 3 21] 22.21 (15.1 s) 16.51 (7.24 s) 18.64 (8.45 s) 22.19 (18.4 s)

10% [12 9 3 10] 12.34 (16.1 s) 1.22 (2.73 s) 8.46 (9.88 s) 12.23 (45.7 s)
30% [20 24 3 11] 17.10 (15.3 s) 4.24 (3.17 s) 11.62 (7.62 s) 17.19 (35.3 s)
50% [25 32 3 14] 20.44 (12.3 s) 8.20 (3.92 s) 14.54 (5.85 s) 20.49 (28.9 s)
80% [50 72 3 30] 26.80 (12.4 s) 18.03 (8.40 s) 21.38 (8.93s) 26.71 (20.9 s)

Table 2. Signal to noise ratio (SNR) for HOSVD and HOSVD-w on video data with non-uniform
sampling pattern.

Video SR Input Rank HOSVD HOSVD-w HOSVD-p

10% [6 13 3 3] 1.09 10.07 5.56
30% [10 28 3 16] 3.74 11.81 7.53
50% [21 41 3 14] 7.05 13.22 10.73
80% [44 57 3 26] 15.76 19.60 17.39

10% [38 11 3 2] 1.13 8.04 4.33
30% [26 19 3 16] 3.79 10.13 6.80
50% [30 27 3 10] 7.15 12.57 10.14
80% [53 50 3 23] 14.81 18.55 16.31

10% [16 11 3 2] 1.09 8.31 4.73
30% [17 23 3 17] 3.76 11.05 6.87
50% [24 38 3 14] 7.18 13.78 9.99
80% [47 69 3 22] 15.88 20.82 16.02

Finally, we test the proposed weighted HOSVD algorithm on real candle video data
named “candle_4_A” [52] (The dataset can be downloaded from the Dynamic Texture
Toolbox in http://www.vision.jhu.edu/code/ (accessed date 10 May 2021). We have tested
the relation between the relative errors and the sampling rates using r = (5, 5, 5) as the
input rank for HOSVD algorithm. The relative errors are presented in Figure 7. The
simulation results also show that the proposed weighted HOSVD algorithm can implement
tensor completion efficiently.

http://www.vision.jhu.edu/code/
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Figure 7. Relation between relative error and sampling rate for the dataset “candle_4_A” using
[5, 5, 5] as the input rank for HOSVD process. The left figure records the relative error for the uniform
sampling pattern and the right figure for the non-uniform sampling pattern. The sampling error
stands for the relative error between the original video and the video with masked entries estimated
to be zeros, hence should approximately equal to

√
1− SR, where SR is the sampling rate.

4.4. The Application of Weighted HOSVD on Total Variation Minimization

As shown in the previous simulations, the weighted HOSVD decomposition can
provide better results for tensor completion by comparing with HOSVD. There are a
bunch of algorithms that are Sensitive to initialization. Additionally, real applications
may have higher requirements for accuracy. Therefore, it is meaningful to combine our
weighted HOSVD with other algorithms in order to further improve the performance. In
this section, we would consider the application of weighted HOSVD decomposition on
the total variation minimization algorithm. As a traditional approach, the total variation
minimization (TVM), is broadly applied in studies about image recovery and denoising.
While the earliest research could trace back to 1992 [53]. The later studies combined TVM
and other low rank approximation algorithms such as Nuclear Norm Minimization (see
e.g., [54–56]) and HOSVD (e.g., [57–59]) in order to achieve better performance in image
and video completion tasks.

Motivated by the matrix TV minimization, we proposed the tensor TV minimization
which is summarized in Algorithm 1. In Algorithm 1, the Laplacian operator computes
the divergence of all-dimension gradients for each entry of the tensor. The shrink operator
simply moves the input towards 0 with distance λ, or formally defined as:

shrink(x, λ) = sign(x) ·max(|x| − λ, 0)

For the initialization of X 0 in Algorithm 1, we assign X 0 to be the output of the result
from HOSVD-w.

Applying the same experiment setting as in Section 4.3, we evaluate the performance
of the cocktail approach as well as the regular HOSVD approach. We report the simulation
results in Table 1 and we measure the performances by considering the signal to noise
ratio(SNR). As shown in Table 1, the total variation minimization could be applied to
further improve the result of (6). Specifically, the TVM with 0 as initialization performs
similar to TVM with HOSVD-w as initialization when the observed rate is high, but the
HOSVD-w initialization could improve the performance of TVM when the observed rate
is very low (e.g., 10%). Additionally, we compared the decay of relative error for using
the weighted HOSVD output as initialization and the default initialization (X 0 = 0). The
iterative results are shown in Figure 8, and it shows that using the result from weighted
HOSVD as an initialization could notably reduce the iterations of TV-minimization for
achieving the convergence threshold (‖X k −X k−1‖F < 10−4).
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Algorithm 1: TV Minimization for Tensor.

Input : Noised tensor T ∈ Rd1×···×dn ; Sampling pattern Ω ∈ {0, 1}d1×···×dn ;
stepsize hk, threshold λ; X 0 ∈ Rd1×···×dn .

Set X 0 = X 0 + (TΩ −X 0
Ω).

for k = 0 : K do
for i = 1 : n do
∇i(X k

α1,...,αn) = X
k
α1,...,αi+1,...,αn

−X k
α1,...αi ,...,αn , (αi = 1, 2, ..., di − 1)

(∇i(·) = 0 when αi = di)
∆i(X k

α1,...,αn) = X
k
α1,...,αi−1,...,αn

+X k
α1,...,αi+1,...,αn

− 2X k
α1,...αi ,...,αn , (αi =

2, 3, ..., di − 1) (∆i(·) = 0 when αi = 1 or di)
end
∆(X k

α1,...,αn) = ∑i ∆i(X k
α1,...,αn)

X k+1
α1,...,αn = X k

α1,...,αn + hk · shrink(
∆(X k

α1,...,αn )√
∑i∇2

i (X
k
α1,...,αn )

, λ)

X k+1
Ω = TΩ

end
Output :X K

(a)
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(b)
Figure 8. Convergence comparison between total variation minimization (TVM) with HOSVD-w, 0,

and HOSVD as initialization on video 1 with SR = 50%: (a) the relative error ‖T̂ −T ‖F
‖T ‖F

vs. number of
iterations. (b) the relative error v.s. total computational CPU time(initialization + completion).

5. Conclusions

In this paper, we propose a simple but efficient algorithm named the weighted HOSVD
algorithm for recovering an underlying low-rank tensor from noisy observations. For this
algorithm, we provide upper and lower error bounds that measure the difference between
the estimates and the true underlying low-rank tensor. The efficiency of our proposed
weighted HOSVD algorithm is also shown by numerical simulations. Additionally, the
result of our weighted HOSVD algorithm can be used as an initialization for the total
variation minimization algorithm, which shows that using our method as an initialization
for the total variation minimization algorithm can increasingly reduce the iterative steps
leading to improved overall performance in reconstruction (see our conference paper [60]).
It would be interesting for future work to combine the weighted HOSVD algorithm with
other algorithms to achieve more accurate results for tensor completion in many settings.
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Appendix A. Proof for Theorem 1

In this appendix, we provide the proof for Theorem 1.

Proof of Theorem 1. Let YΩ = TΩ +ZΩ.∥∥∥W (1/2) � (T − T̂ )
∥∥∥

F

=
∥∥∥W (1/2) � T −W (−1/2) �YΩ +W (−1/2) �YΩ −W (1/2) � T̂

∥∥∥
F

≤
∥∥∥W (1/2) � T −W (−1/2) �YΩ

∥∥∥
F
+
∥∥∥W (−1/2) �YΩ −W (1/2) � T̂

∥∥∥
F

≤ 2
∥∥∥W (1/2) � T −W (−1/2) �YΩ

∥∥∥
F

= 2
∥∥∥W (1/2) � T −W (−1/2) � (TΩ +ZΩ)

∥∥∥
F

≤ 2
∥∥∥W (1/2) � T −W (−1/2) � 1Ω � T

∥∥∥
F
+ 2
∥∥∥W (−1/2) �ZΩ

∥∥∥
F

≤ 2
∥∥∥T � (W (1/2) −W (−1/2) � 1Ω)

∥∥∥
F
+ 2
∥∥∥W (−1/2) �ZΩ

∥∥∥
F

≤ 2‖T ‖∞

∥∥∥W (1/2) −W (−1/2) � 1Ω

∥∥∥
F
+ 2
∥∥∥W (−1/2) �ZΩ

∥∥∥
F
.

Thus, we have that∥∥∥W (1/2) � (T − T̂ )
∥∥∥

F
≤ 2‖T ‖∞

∥∥∥W (1/2) −W (−1/2) � 1Ω

∥∥∥
F
+ 2
∥∥∥W (−1/2) �ZΩ

∥∥∥
F
. (A1)

Next, let’s estimate
∥∥∥W (−1/2) �ZΩ

∥∥∥
F
. Notice that

∥∥∥W−(1/2) �ZΩ

∥∥∥2

F
= ∑

(i1,··· ,in)∈Ω

Z2
i1···in
Wi1···in

P
{∥∥∥W (−1/2) �ZΩ

∥∥∥
F
≥ t
}

= P
{

es‖W (−1/2)�ZΩ‖2
F ≥ est2

}
≤ e−st2E

(
exp

(
s
∥∥∥W (−1/2) �ZΩ

∥∥∥2

F

))
≤ e−st2

∏
(i1,··· ,in)∈Ω

E
(

exp

(
sZ2

i1···in
Wi1···in

))

= e−st2
∏

(i1,··· ,in)∈Ω

 1√
1− 2σ2s/Wi1···in
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Recall that µ2 = max(i1,··· ,in)∈Ω
1

Wi1,··· ,in
. By choosing s = 1

4σ2µ2 , we have that

P
{∥∥∥W−(1/2) ◦ ZΩ

∥∥∥
F
≥ t
}
≤ exp

(
− t2

4σ2µ2

)
2|Ω|/2.

We conclude that with probability at least 1− 2−|Ω|/2,∥∥∥W (−1/2) ◦ ZΩ

∥∥∥
F
≤ 2σµ

√
|Ω| log(2).

Plugging this into (A1) proves the theorem.

Appendix B. Proof of Theorems 2 and 3

In this appendix, we provide the proofs for the results related with the weighted
HOSVD algorithm. The general upper bound for weighted HOSVD in Theorem 2 is
restated in Appendix B.1 and its proof is also presented there. If the sampling pattern Ω is
generated according to the weight tensorW , the related results in Theorem 3 are illustrated
in Appendix B.2.

Appendix B.1. General Upper Bound for Weighted HOSVD Algorithm

Theorem A1. Let W = w1 ⊗⊗⊗ · · · ⊗⊗⊗ wn ∈ Rd1×···×dn have strictly positive entries, and fix
Ω ⊆ [d1]× · · · × [dn]. Suppose that T ∈ Rd1×···×dn has Tucker rank r = [r1 · · · rn]. Suppose
that Zi1···in ∼ N (0, σ2) and let

T̂ =W (−1/2) � ((W (−1/2) �YΩ)×1 Û1ÛT
1 ×2 · · · ×n ÛnÛT

n )

where Û1, · · · , Ûn are obtained by HOSVD approximation process, where YΩ = 1Ω � (T +Z).
Then with probability at least 1−∑n

i=1
1

di+∏j 6=i dj
over the choice of Z ,∥∥∥W (1/2) � (T − T̂ )

∥∥∥
F

≤

 n

∑
k=1

6
√

rk log(dk + ∏
j 6=k

dj)µk

σ +

(
n

∑
k=1

3rk

∥∥∥(W (−1/2) � 1Ω −W (1/2))(k)

∥∥∥
2

)
‖T ‖∞.

where

µ2
k = max

{
max

ik

(
∑

i1,··· ,ik−1,ik+1,··· ,in

1(i1,i2,··· ,in)∈Ω

Wi1i2···in

)
, max

i1,··· ,ik−1,ik+1,··· ,in

(
∑
ik

1(i1,i2,··· ,in)∈Ω

Wi1i2···in

)}
.

Proof. Recall that TΩ = 1Ω �T andZΩ = 1Ω �Z . First we have the following estimations.∥∥∥W (1/2) �
(
T̂ − T

)∥∥∥
F

=
∥∥∥(W (−1/2) �YΩ

)
×1 Û1ÛT

1 ×2 · · · ×n ÛnÛT
n −

(
W (1/2) � T

)
×1 U1UT

1 ×2 · · · ×n UnUT
n

∥∥∥
F

≤
∥∥∥((W (−1/2) �YΩ)×1 Û1ÛT

1 − (W (1/2) � T )×1 U1UT
1

)
×2 Û2ÛT

2 ×3 · · · ×n ÛnÛT
n

∥∥∥
F

+
∥∥∥(W (1/2) � T

)(
×2U2UT

2 ×3 · · · ×n UnUT
n −×2Û2ÛT

2 ×3 · · · ×n ÛnÛT
n

)∥∥∥
F

≤
√

2r1

∥∥∥Û1ÛT
1 (W (−1/2) �YΩ)(1) −U1UT

1 (W (1/2) � T )(1)
∥∥∥

2
+

n

∑
k=2

∥∥∥(W (1/2) � T )

×2Û2ÛT
2 ×3 · · · ×k−1 Ûk−1ÛT

k−1 ×k (UkUT
k − ÛkÛT

k )×k+1 Uk+1UT
k+1 ×k+2 · · · ×n UnUT

n

∥∥∥
F

≤
√

2r1

∥∥∥Û1ÛT
1 (W (−1/2) �YΩ)(1) − (W (1/2) � T )(1)

∥∥∥
2
+

n

∑
k=2

√
rk

∥∥∥(UkUT
k − ÛkÛT

k )(W
(1/2) � T )(k)

∥∥∥
2
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≤
√

2r1

(∥∥∥Û1ÛT
1 (W (−1/2) �YΩ)(1) − (W (−1/2) �YΩ)(1)

∥∥∥
2
+
∥∥∥(W (−1/2) �YΩ)(1) − (W (1/2) � T )(1)

∥∥∥
2

)
+

n

∑
k=2

√
rk

∥∥∥(UkUT
k − ÛkÛT

k )(W
(1/2) � T )(k)

∥∥∥
2

≤ 2
√

2r1

∥∥∥(W (−1/2) �YΩ)(1) − (W (1/2) � T )(1)
∥∥∥

2
+

n

∑
k=2

√
rk

∥∥∥(UkUT
k − ÛkÛT

k )(W
(1/2) � T )(k)

∥∥∥
2
.

Notice that∥∥∥(UkUT
k − ÛkÛT

k

)
(W (1/2) � T )(k)

∥∥∥
2

=
∥∥∥(W (1/2) � T )(k) − ÛkÛT

k (W
(1/2) � T )(k)

∥∥∥
2

≤
∥∥∥(W (1/2) � T )(k) − (W (−1/2) �YΩ)(k)

∥∥∥
2
+
∥∥∥ÛkÛT

k (W
(1/2) � T −W (−1/2) �YΩ)(k)

∥∥∥
2
+∥∥∥(W (−1/2) �YΩ)(k) − ÛkÛT

k (W
(−1/2) �YΩ)(k)

∥∥∥
2

≤ 3
∥∥∥(W (1/2) � T )(k) − (W (−1/2) �YΩ)(k)

∥∥∥
2
.

Therefore, we have∥∥∥W (1/2) � (T̂ − T )
∥∥∥

F
≤

n

∑
k=1

3
√

rk

∥∥∥(W (1/2) � T )(k) − (W (−1/2) �YΩ)(k)

∥∥∥
2
. (A2)

Next, to estimate
∥∥∥(W (−1/2) �YΩ −W (1/2) � T )(k)

∥∥∥
2

for k = 1, · · · , n.
Let us consider the case when k = 1. Other cases can be derived similarly. Using the

fact that T(1) has rank r1 and
∥∥∥T(1)∥∥∥max

≤ √r1

∥∥∥T(1)∥∥∥∞
=
√

r1‖T ‖∞, we conclude that∥∥∥(W (−1/2) �YΩ −W (1/2) � T )(1)
∥∥∥

2

=
∥∥∥(W (−1/2) � TΩ −W (1/2) � T )(1) + (W (−1/2) �ZΩ)(1)

∥∥∥
2

≤
∥∥∥(W (−1/2) � TΩ −W (1/2) � T )(1)

∥∥∥
2
+
∥∥∥(W (−1/2) �ZΩ)(1)

∥∥∥
2

=
∥∥∥(W (−1/2) � 1Ω −W (1/2))(1) � T(1)

∥∥∥
2
+
∥∥∥(W (−1/2) �ZΩ)(1)

∥∥∥
2

≤
∥∥∥T(1)∥∥∥max

∥∥∥(W (−1/2) � 1Ω −W (1/2))(1)

∥∥∥
2
+
∥∥∥(W (−1/2) �ZΩ)(1)

∥∥∥
2

≤
√

r1‖T ‖∞

∥∥∥(W (−1/2) � 1Ω −W (1/2))(1)

∥∥∥
2
+
∥∥∥(W (−1/2) �ZΩ)(1)

∥∥∥
2
.

To bound
∥∥∥(W (−1/2) �ZΩ)(1)

∥∥∥
2
, we consider

(W (−1/2) �ZΩ)(1) = ∑
i1,··· ,in

1(i1,··· ,in)∈ΩZi1···in√
Wi1···in

ei1(ei2 ⊗ · · · ⊗ ein)
T ,

where eik is the ik-th standard basis vector of Rdk .
Please note that

∑
i1,··· ,in

1(i1,··· ,in)∈Ω

Wi1···in
ei1(ei2 ⊗ · · · ⊗ ein)

T(ei2 ⊗ · · · ⊗ ein)ei1
T

= ∑
i1,··· ,in

1(i1,··· ,in)∈Ω

Wi1···in
ei1 ei1

T .
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Therefore, ∥∥∥∥∥ ∑
i1,··· ,in

1(i1,··· ,in)∈Ω

Wi1···in
ei1(ei2 ⊗ · · · ⊗ ein)

T(ei2 ⊗ · · · ⊗ ein)ei1
T

∥∥∥∥∥
2

= max
i1

∑
i2,··· ,in

1(i1,i2,··· ,in)∈Ω

Wi1i2···in
≤ µ2

1.

Similarly, ∥∥∥∥∥ ∑
i1,··· ,in

1(i1,··· ,in)∈Ω

Wi1···in
(ei2 ⊗ · · · ⊗ ein)ei1

Tei1(ei2 ⊗ · · · ⊗ ein)
T

∥∥∥∥∥
2

= max
i2,··· ,in

∑
i1

1(i1,i2,··· ,in)∈Ω

Wi1i2···in
≤ µ2

1.

By ([61] Theorem 1.5), for any t > 0,

P
{∥∥∥(W (−1/2) �ZΩ)(1)

∥∥∥ ≥ t
}
≤
(

d1 + ∏
j 6=1

dj

)
exp

(
− t2

2σ2µ2
1

)
.

We conclude that with probability at least 1− 1
d1+∏j 6=1 dj

, we have

∥∥∥(W (−1/2) �ZΩ)(1)

∥∥∥ ≤ 2σµ1

√
log(d1 + ∏

j 6=1
dj).

Similarly, we have∥∥∥(W (−1/2) �YΩ −W (1/2) � T )(k)
∥∥∥

2

≤ √
rk‖T ‖∞

∥∥∥(W (−1/2) � 1Ω −W (1/2))(k)

∥∥∥
2
+
∥∥∥(W (−1/2) �ZΩ)(k)

∥∥∥
2
,

with ∥∥∥(W (−1/2) �ZΩ)(k)

∥∥∥
2
≤ 2σµk

√
log(dk + ∏

j 6=k
dj)

with probability at least 1− 1
dk+∏j 6=k dj

, for k = 2, · · · , n.

Plugging all these into (A2), we can obtain the bound in our theorem.

Next we are going to study the special case when the sampling set Ω ∼ W .

Appendix B.2. Case Study: Ω ∼ W
In this section, we would provide upper and lower bounds for the weighted

HOSVD algorithm.

Appendix B.2.1. Upper Bound

First, let us understand the bounds λ` and µ` in the case when Ω ∼ W for ` = 1, · · · , n.

Lemma A1. LetW = w1⊗⊗⊗· · ·⊗⊗⊗wn ∈ Rd1×···×dn be a CP rank-1 tensor so that all (i1, · · · , in) ∈

[d1]× · · · × [dn] withWi1···in ∈
[

1√
∏n

j=1 dj
, 1

]
. Suppose that Ω ⊆ [d1]× · · · × [dn] so that for

each i1 ∈ [d1], · · · , in ∈ [dn], (i1, · · · , in) ∈ Ω with probabilityWi1···in , independently for each
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(i1, · · · , in). Then with probability at least 1−∑n
`=1

2
d`+∏j 6=` dj

over the choice of Ω, we have for
` = 1, · · · , n

λ` =
∥∥∥(W (1/2) −W (−1/2) � 1Ω)(`)

∥∥∥
2
≤ 2

√
d` + ∏

k 6=`

dk log

(
d` + ∏

k 6=`

dk

)
, (A3)

and

µ` ≤ 2

√√√√(d` + ∏
k 6=`

dk

)
log

(
d` + ∏

k 6=`

dk

)
. (A4)

Proof. Fix i1 ∈ [d1]. Bernstein’s inequality yields

P
{

∑
i2,··· ,in

1(i1,··· ,in)∈Ω

w1(i1) · · ·wn(in)
−∏

k 6=1
dk ≥ t

}

≤ exp

 −t2/2

∑
i2,··· ,in

(
1

w1(i1)···wn(in)
− 1
)
+ 1

3

√
n
∏

k=1
dkt

.

and

P
{

∑
i1

1(i1,··· ,in)∈Ω

w1(i1) · · ·wn(in)
− d1 ≥ t

}

≤ exp

 −t2/2

∑
i1
(1/(w1(i1) · · ·wn(in))− 1) + 1

3

√
n
∏

k=1
dkt

.

Set t = 2
√

2(d1 + ∏
j 6=1

dj) log(d1 + ∏
j 6=1

dj), then we have

P
{

∑
i2,··· ,in

1(i1,i2,··· ,in)∈Ω

w1(i1) · · ·wn(in)
−∏

k 6=1
dk ≥ 2

√
2

(
d1 + ∏

j 6=1
dj

)
log

(
d1 + ∏

j 6=1
dj

)}

≤ 1

/(
d1 + ∏

j 6=1
dj

)2

and

P
{

∑
i1

1(i1,i2,··· ,in)∈Ω

w1(i1)w2(i2) · · ·wn(in)
− d1 ≥ 2

√
2

(
d1 + ∏

j 6=1
dj

)
log

(
d1 + ∏

j 6=1
dj

)}

≤ 1

/(
d1 + ∏

j 6=1
dj

)2

.

Hence, by taking a union bound,

P
{

max

{
max

i1
∑

i2,··· ,in

1(i1,i2,··· ,in)∈Ω

w1(i1)w2(i2) · · ·wn(in)
, max

i2,··· ,in
∑
i1

1(i1,i2,··· ,in)∈Ω

w1(i1)w2(i2) · · ·wn(in)

}
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≥ 4

(
d1 + ∏

j 6=1
dj

)
log

(
d1 + ∏

j 6=1
dj

)}
≤ 1

d1 + ∏
j 6=1

dj
.

Similarly, we have

P
{

µ2
k ≥ 4

(
dk + ∏

j 6=k
dj

)
log

(
dk + ∏

j 6=k
dj

)}
≤ 1

dk + ∏
j 6=k

dj
, for all k = 2, · · · , n.

Combining all these inequalities above, with probability at least 1−∑n
`=1

1
d`+∏j 6=` dj

,

we have

µ` ≤ 2

√√√√(d` + ∏
k 6=`

dk

)
log

(
d` + ∏

k 6=`

dk

)
, for all ` = 1, · · · , n.

Next we would bound λ` in (A3). First of all, let’s consider ‖(W (1/2) −W (−1/2) �

1Ω)(1)‖2. Set γi1···in =
Wi1 ···in−1(i1,··· ,in)∈Ω√

Wi1 ···in
. Then

(
W (1/2) −W (−1/2) � 1Ω

)
(1)

= ∑
i1,··· ,in

γi1···in ei1(ei2 ⊗ · · · ⊗ ein)
T .

Notice that

∑
i1,··· ,in

E
(

γ2
i1···in ei1(ei2 ⊗ · · · ⊗ ein)

T(ei2 ⊗ · · · ⊗ ein)ei1
T
)

= ∑
i1

(
∑

i2,··· ,in
E(γ2

i1···in)

)
ei1 ei1

T .

Since E(γ2
i1···in) = 1−Wi1···in ≤ 1− 1√

d1···dn
≤ 1, then∥∥∥∥∥ ∑

i1,··· ,in
E(γ2

i1···in ei1(ei2 ⊗ · · · ⊗ ein)
T(ei2 ⊗ · · · ⊗ ein)ei1

T)

∥∥∥∥∥
2

≤∏
j 6=1

dj.

Similarly,∥∥∥∥∥ ∑
i1,··· ,in

E(γ2
i1···in(ei2 ⊗ · · · ⊗ ein)ei1

Tei1(ei2 ⊗ · · · ⊗ ein)
T)

∥∥∥∥∥
2

≤ d1.

In addition,

∥∥∥γi1···in ei1(ei2 ⊗ · · · ⊗ ein)
T
∥∥∥

2
≤
(

n

∏
j=1

dj

)1/4

≤

√
d1 + ∏j 6=1 dj

2
.

Then, the matrix Bernstein Inequality ([61] Theorem 1.4) gives

P
{∥∥∥∥(W (1/2) −W (−1/2) � 1Ω

)
(1)

∥∥∥∥
2
≥ t
}

≤
(

d1 + ∏
j 6=1

dj

)
exp

−
t2/2(

d1 + ∏
j 6=1

dj

)
+ t

3

√√√√(d1 + ∏
j 6=1

dj

)/
2

.
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Let t = 2
√

d1 + ∏j 6=1 dj log
(

d1 + ∏j 6=1 dj

)
, then we have

P


∥∥∥∥(W (1/2) −W (−1/2) � 1Ω

)
(1)

∥∥∥∥
2
≥ 2

√
d1 + ∏

j 6=1
dj log

(
d1 + ∏

j 6=1
dj

) ≤ 1
d1 + ∏

j 6=1
dj

.

Similarly,

P


∥∥∥∥(W (1/2) −W (−1/2) � 1Ω

)
(k)

∥∥∥∥
2
≥ 2

√
dk + ∏

j 6=k
dk log

(
dk + ∏

j 6=k
dj

) ≤ 1
dk + ∏

j 6=k
dj

,

for all k = 2, · · · , n.
Thus, with probability at least 1−∑n

`=1
1

d`+∏j 6=` dj
, we have

∥∥∥(W (1/2) −W (−1/2) � 1Ω)(`)

∥∥∥
2
≤ 2

√
d` + ∏

k 6=`

dk log

(
d` + ∏

k 6=`

dk

)
, for all ` = 1, · · · , n.

By a union of bounds in (A4) and (A3), we could establish the lemma.

Lemma A2. Let m =
∥∥∥W (1/2)

∥∥∥2

F
. Then with probability at least 1− 2 exp(−3m/104), over the

choice of Ω

||Ω| −m| ≤ m
4

.

Proof. Please note that

||Ω| −m| =
∣∣∣∣∣ ∑
i1,··· ,in

(1(i1,··· ,in)∈Ω −Wi1···in)

∣∣∣∣∣ =
∣∣∣∣∣ ∑
i1,··· ,in

(1(i1,··· ,in)∈Ω −E(1(i1,··· ,in)∈Ω)

∣∣∣∣∣,
which is the sum of zero-mean independent random variables. Observe that |1(i1,··· ,in)∈Ω −
E(1(i1,··· ,in)∈Ω)| = |1(i1,··· ,in)∈Ω −Wi1···in | ≤ 1 and

∑
i1,··· ,in

E(1(i1,··· ,in)∈Ω −Wi1···in)
2 = ∑

i1,··· ,in
(Wi1···in −W

2
i1···in) ≤ m.

By Bernstein’s inequality,

P(||Ω| −m| ≥ t) ≤ 2 exp
(
− t2/2

m + t/3

)
.

Set t = m/4, then we have

P(||Ω| −m| ≥ m/4) ≤ 2 exp
(
− m2/32

m + m/12

)
= 2 exp(−3m/104).

Next let us give the formal statement for the upper bounds in Theorem 3.

Theorem A2. Let W = w1 ⊗⊗⊗ · · · ⊗⊗⊗ wn ∈ Rd1×···×dn be a CP rank-1 tensor so that for all
(i1, · · · , in) ∈ [d1]× · · · × [dn] we have Wi1···in ∈

[
1√

d1···dn
, 1
]
. Suppose that we choose each
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(i1, · · · , in) ∈ [d1]× · · · × [dn] independently with probabilityWi1···in to form a set Ω ⊆ [d1]×
· · · × [dn]. Then with probability at least

1− 2 exp

− 3
104

√√√√ n

∏
j=1

dj

− n

∑
k=1

2
dk + ∏j 6=k dj

For the weighted HOSVD Algorithm namedA, A returns T̂ = A(TΩ +ZΩ) for any Tucker
rank r tensor T with ‖T ‖∞ ≤ β so that with probability at least 1− ∑n

k=1
1

dk+∏j 6=k dj
over the

choice of Z ,∥∥∥W (1/2) � (T − T̂ )
∥∥∥

F∥∥W (1/2)
∥∥

F
≤

√
5β√
|Ω|

 n

∑
k=1

3rk

√
dk + ∏

j 6=k
dj log

(
dk + ∏

j 6=k
dj

)
+

√
5σ

|Ω|

 n

∑
k=1

6
√

rk(dk + ∏
j 6=k

dj) log

(
dk + ∏

j 6=k
dj

)
Proof. This is directly from Theorem A1, Lemmas A1 and A2.

Appendix B.2.2. Lower Bound

To deduce the lower bound, we have to construct a finite subset S in the cone Kr so
that we can approximate the minimal distance between two different elements in S. Before
we prove the lower bound, we need the following theorems and lemmas.

Theorem A3 (Hanson-Wright inequality). There is some constant c > 0 so that the following
holds. Let ξ ∈ {0,±1}d be a vector with mean-zero, independent entries, and let F be any matrix
which has zero diagonal. Then

P
{
|ξT Fξ| > t

}
≤ 2 exp

(
−c ·min

{
t2

‖F‖2
F

,
t
‖F‖2

})
.

Theorem A4 (Fano’s Inequality). Let F = { f0, · · · , fn} be a collection of densities on K, and
suppose that A : K → {0, · · · , n}. Suppose there is some β > 0 such that for any i 6= j,
DKL( fi‖ f j) ≤ β. Then

max
i

PK∼ fi{A(K) 6= i} ≥ 1− β + log(2)
log(n)

.

The following lemma specializes Fano’s Inequality to our setting, which is a general-
ization of ([19] Lemma 19). In the following lemma, we show that for any reconstruction
algorithm on a set K ⊆ Rd1×···×dn , with probability no less than 1

2 , there exists some ele-
ments in K such that the weighted reconstruction error is bounded below by some quantity,
where the quantity is independent of the algorithm.

Lemma A3. Let K ⊆ Rd1×···×dn , and let S ⊆ K be a finite subset of K so that |S| > 16. Let
Ω ⊆ [d1]× · · · × [dn] be a sampling pattern. Let σ > 0 and choose

κ ≤ σ
√

log |S|
4 maxT ∈S‖TΩ‖F

,

and suppose that
κS ⊆ K.
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Let Z ∈ Rd1×···×dn be a tensor whose entries Zi1···in are i.i.d., Zi1···in ∼ N (0, σ2). Let
H ⊆ Rd1×···×dn be any weight tensor.

Then for any algorithm A : RΩ → Rd1×···×dn that takes as input TΩ +ZΩ for T ∈ K and
outputs an estimate T̂ to T , there is some X ∈ K so that

‖H� (A(XΩ +ZΩ)−X )‖F ≥
κ

2
min
T 6=T ′∈S

∥∥H� (T − T ′)
∥∥

F (A5)

with probability at least 1
2 .

Proof. Consider the set
S′ = κS = {κT : T ∈ S}

which is a scaled version of S. By our assumption, S′ ⊆ K.
Recall that the Kullback–Leibler (KL) divergence between two multivariate Gaussians

is given by

DKL(N (µ1, Σ1)‖N (µ2, Σ2))

=
1
2

(
log
(

det(Σ2)

det(Σ1)

)
− n + tr(Σ−1

2 Σ1) + 〈Σ−1
2 (µ2 − µ1), µ2 − µ1〉

)
,

where µ1, µ2 ∈ Rn.
Specializing to U ,V ∈ S′, with I = IΩ×Ω

DKL(UΩ +ZΩ‖VΩ +ZΩ) = DKL(N (UΩ, σ2 I)‖N (VΩ, σ2 I))

=
‖UΩ − VΩ‖2

F
2σ2

≤ max
T ∈S′

2‖TΩ‖2
F

σ2 =
2κ2

σ2 max
T ∈S
‖TΩ‖2

F.

Suppose that A is as in the statement of the lemma. Define an algorithm A : RΩ →
Rd1×···×dn so that for any Y ∈ RΩ if there exists T ∈ S′ such that

‖H� (T −A(Y))‖F <
1
2

min
T 6=T ′∈S′

‖H� (T − T ′)‖F :=
ρ

2
,

then set A(Y) = T (notice that if such T exists, then it is unique), otherwise, set
A(Y) = A(Y).

Then by the Fano’s inequality, there is some T ∈ S′ so that

P
{
A(TΩ +ZΩ) 6= T

}
≥ 1−

2 maxT ∈S′ ‖TΩ‖2
F

σ2 log(|S| − 1)
− log(2)

log(|S| − 1)

= 1−
2κ2 maxT ∈S ‖TΩ‖2

F
σ2 log(|S| − 1)

− log(2)
log(|S| − 1)

≥ 1− 1
4
− 1

4
=

1
2

.

If A(TΩ +ZΩ) 6= T , then ‖H� (A(TΩ +ZΩ)− T )‖F > ρ/2, and so

P{‖H� (A(TΩ +ZΩ)− T )‖F ≥ ρ/2} ≥ P
{
A(TΩ +ZΩ) 6= T

}
≥ 1/2.

Finally, we observe that

ρ

2
=

1
2

min
T 6=T ′∈S′

‖H� (T − T ′)‖F =
κ

2
min
T 6=T ′∈S

‖H� (T − T ′)‖F,
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which completes the proof.

To understand the lower bound κ
2 minT 6=T ∈S ‖H� (T − T ′)‖F in (A5), we construct

a specific finite subset S for the cone of Tucker rank r tensors in the following lemma.

Lemma A4. There is some constant c so that the following holds. Let d1, · · · , dn > 0 and
r1, · · · , rn > 0 be sufficiently large. Let K be the cone of Tucker rank r tensors with r = [r1 · · · rn],
H be any CP rank-1 weight tensor, and B be any CP rank-1 tensor with ‖B‖∞ ≤ 1. Write
H = h1⊗⊗⊗ · · · ⊗⊗⊗ hn and B = b1⊗⊗⊗ · · · ⊗⊗⊗ bn, and

w1 = (h1 � b1)
(2), · · · , wn = (hn � bn)

(2).

Let

γ =

√√√√1
2

(
n

∏
k=1

rk

)
log

(
8

n

∏
k=1

dk

)
.

There is a set S ⊆ K ∩ γB∞ so that

1. The set has size |S| ≥ N, for

N = C exp

c ·min


n
∏

k=1
rk(

n
∏

k=1
(2rk(‖wk‖2/‖wk‖1)2 + 1)

)
− 1

,
n

∏
k=1

rk,

n
∏

k=1
rk(

n
∏

k=1
(2‖wk‖2/‖wk‖1

√
rk log(rk) + 2‖wk‖∞/‖wk‖1rk log(rk) + 1)

)
− 1


.

2. ‖TΩ‖F ≤ 2

√
n
∏

k=1
rk‖BΩ‖F for all T ∈ S.

3.
∥∥∥H� (T − T̃ )

∥∥∥
F
≥
√

n
∏

k=1
rk‖H� B‖F for all T 6= T̃ ∈ S.

Proof. Let Ψ ⊆ {±1}r1×···×rn be a set of random ±1-valued tensors chosen uniformly at
random with replacement, of size 4N. Choose iU ∈ {±1}di×ri to be determined below for
all i = 1, · · · , n .

Let
S =

{
B � (C ×1

1U ×2 · · · ×n
nU) : C ∈ Ψ

}
.

First of all, we would estimate ‖TΩ‖F and ‖T ‖∞. Please note that

E‖TΩ‖2
F = E ∑

(i1,··· ,in)∈Ω
B2

i1···in

(
∑

j1,··· ,jn
Cj1···jn

1U(i1, j1) · · · nU(in, jn)

)2

=

(
n

∏
i=1

ri

)
‖BΩ‖2

F,

where the expectation is over the random choice of C. Then by Markov’s inequality,

P
{
‖TΩ‖2

F ≥
(

4
n

∏
i=1

ri

)
‖BΩ‖2

F

}
≤ 1

4
.

We also have

‖T ‖∞ = max
i1,··· ,in

|Bi1···in |
∣∣∣∣∣ ∑

j1,··· ,jn
Cj1···jn

1U(i1, j1) · · · nU(in, jn)

∣∣∣∣∣.
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By Hoeffding’s inequality, we have

P
{∣∣∣∣∣ ∑

j1,··· ,jn
Cj1···jn

1U(i1, j1) · · · nU(in, jn)

∣∣∣∣∣ ≥ t

}
≤ 2 exp

(
− 2t2

∏n
k=1 rk

)
.

Using the fact that |Bi1···in | ≤ 1 and a union bound over all
n
∏

k=1
dk values of i1, · · · , in,

we conclude that

P

‖T ‖∞ ≥

√√√√1
2

(
n

∏
k=1

rk

)
log

(
8

n

∏
k=1

dk

)
≤

(
n

∏
k=1

dk

)
P


∣∣∣∣∣ ∑

j1,··· ,jn
Cj1···jn

1U(i1, j1) · · · nU(in, jn)

∣∣∣∣∣ ≥
√√√√1

2

(
n

∏
k=1

rk

)
log

(
8

n

∏
k=1

dk

)
≤ 1

4
.

Thus, for a tensor T ∈ S, the probability that both of ‖T ‖∞ ≤
√

1
2

(
n
∏

k=1
rk

)
log
(

8
n
∏

k=1
dk

)
and ‖TΩ‖F ≤ 2

√
n
∏

k=1
rk‖BΩ‖F hold is at least 1

2 . Thus, by a Chernoff bound it follows that

with probability at least 1− exp(−CN) for some constant C, there are at least |S|4 tensors
T ∈ S such that all of these hold. Let S̃ ⊆ S be the set of such T ’s. The set guaranteed in
the statement of the lemma will be S̃, which satisfies both item 1 and 2 in the lemma and is
also contained in K ∩ γB∞.

Thus, we consider item 3: we are going to show that this holds for S with high
probability, thus in particularly it will hold for S̃, and this will complete the proof of
the lemma.

Fix T 6= T̃ ∈ S, and write∥∥∥H� (T − T̃ )
∥∥∥2

F

=
∥∥∥H� B � ((C − C̃)×1

1U ×2 · · · ×n
nU)

∥∥∥2

F

= ∑
i1,··· ,in

H2
i1···inB

2
i1···in

(
∑

j1,··· ,jn
(Cj1···jn − C̃j1···jn)

1U(i1, j1) · · · nU(in, jn)

)2

= 4 ∑
i1,··· ,in

H2
i1···inB

2
i1···in

〈
ξ, 1U(i1, :)⊗ · · · ⊗ nU(in, :)

〉2
,

where ξ is the vectorization of 1
2 (C − C̃). Thus, each entry of ξ is independently 0 with

probability 1
2 or ±1 with probability 1

4 each. Rearranging the terms, we have

∥∥∥H� (T − T̃ )
∥∥∥2

F
= 4ξT

(
1U ⊗ · · · ⊗ nU

)T
(D1 ⊗ · · · ⊗ Dn)

(
1U ⊗ · · · ⊗ nU

)
ξ

= 4ξT
((

1UT D1
1U
)
⊗ · · · ⊗

(
nUT Dn

nU
))

ξ

= 4ξT
(
⊗n

k=1

(
kUT Dk

kU
))

ξ, (A6)

where Dk denotes the dk × dk diagonal matrix with wk on the diagonal.
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To understand (A6), we need to understand the matrix⊗n
k=1

(
kUT Dk

kU
)
∈ R

n
∏

k=1
rk×

n
∏

k=1
rk

.

The diagonal of this matrix is
(

n
∏

k=1
‖wk‖1

)
I. We will choose the matrix kU for k = 1, · · · , n

so that the off-diagonal terms are small.

Theorem A5. There are matrices kU ∈ {±1}dk×rk for k = 1, · · · , n such that:

(a)∥∥∥∥∥(⊗n
k=1

(
kUT Dk

kU
))
−
(

n

∏
j=1

∥∥wj
∥∥

1

)
I

∥∥∥∥∥
2

F

≤
(

n

∏
k=1

(
2r2

k‖wk‖2
2 + rk‖wk‖2

1

))
−

n

∏
k=1

(
rk‖wk‖2

1

)
.

(b) ∥∥∥∥∥(⊗n
k=1(

kUT Dk
kU)

)
−
(

n

∏
j=1
‖wj‖1

)
I

∥∥∥∥∥
2

≤ max

{
n

∏
k=1

(2‖wk‖2

√
rk log(rk) + 2‖wk‖∞rk log(rk) + ‖wk‖1)−

n

∏
k=1
‖wk‖1,

n

∏
k=1
‖wk‖1

}
.

Proof. By ([19] Claim 22), there exist matrices kU ∈ {±1}dk×rk such that:

(a)
∥∥∥kUT Dk

kU
∥∥∥2

F
≤ 2r2

k‖wk‖2
2 + rk‖wk‖2

1 and

(b)
∥∥∥kUT Dk

kU
∥∥∥

2
≤ 2‖wk‖2

√
rk log(rk) + 2‖wk‖∞rk log(rk) + ‖wk‖1.

Using (a) and the fact that
∥∥∥⊗n

k=1(
kUT Dk

kU)
∥∥∥2

F
=

n
∏

k=1

∥∥∥kUT Dk
kU
∥∥∥2

F
, we have

∥∥∥∥∥(⊗n
k=1

(
kUT Dk

kU
))
−
(

n

∏
k=1
‖wj‖1

)
I

∥∥∥∥∥
2

F

=
∥∥∥⊗n

k=1

(
kUT Dk

kU
)∥∥∥2

F
−
∥∥∥∥∥
(

n

∏
k=1
‖wj‖1

)
I

∥∥∥∥∥
2

F

≤
(

n

∏
k=1

(
2r2

k‖wk‖2
2 + rk‖wk‖2

1

))
−

n

∏
k=1

(
rk‖wk‖2

1

)
.

By (b) and the fact that
∥∥∥⊗n

k=1(
kUT Dk

kU)
∥∥∥

2
=

n
∏

k=1

∥∥∥kUT Dk
kU
∥∥∥

2
(see [62]), we have

∥∥∥∥∥(⊗n
k=1

(
kUT Dk

kU
))
−
(

n

∏
k=1
‖wk‖1

)
I

∥∥∥∥∥
2

≤ max

{
n

∏
k=1
‖wk‖1,

(
n

∏
k=1

(
2‖wk‖2

√
rk log(rk) + 2‖wk‖∞rk log(rk) + ‖wk‖1

))
−

n

∏
k=1
‖wk‖1

}
.

Having chosen matrices kU for k = 1, · · · , n, we can now analyze the expression (A6).

Theorem A6. There are constants c, c′ so that with probability at least



J. Imaging 2021, 7, 110 29 of 36

1− 2 exp

(
−c′′

n

∏
k=1

rk

)
− 2 exp

−c′ ·min


n
∏

k=1
(rk‖wk‖2

1)

n
∏

k=1
(2rk‖wk‖2

2 + ‖wk‖2
1)−

n
∏

k=1
‖wk‖2

1

,

n

∏
k=1

rk,

n
∏

k=1
(rk‖wk‖1)(

n
∏

k=1
(2‖wk‖2

√
rk log(rk) + 2‖wk‖∞rk log(rk) + ‖wk‖1)

)
−

n
∏

k=1
‖wk‖1


,

we have ∥∥∥∥∥H�
(
T − T̃

) n

∏
k=1
‖wk‖1

∥∥∥∥∥
2

F

≥
n

∏
k=1

(rk‖wk‖1).

Proof. We break
∥∥∥H� (T − T̃ )

∥∥∥2

F
into two terms:

∥∥∥H� (T − T̃ )
∥∥∥2

F

= 4ξT
(
⊗n

k=1
kUT Dk

kU
)

ξ

= 4ξT

(
⊗n

k=1

(
kUT Dk

kU
)
−
(

n

∏
k=1
‖wk‖1

)
I

)
ξ + 4

(
n

∏
k=1
‖wk‖1

)
ξTξ

:= (I) + (I I).

For the first term (I), we will use the Hanson-Wright Inequality (see Theorem A3). In

our case, the matrix F = 4
(
⊗n

k=1

(
kUT Dk

kU
)
−
(

n
∏

k=1
‖wk‖1

)
I
)

. The Frobenius norm of

this matrix is bounded by

‖F‖2
F ≤ 16

(
n

∏
k=1

(
2r2

k‖wk‖2
2 + rk‖wk‖2

1

)
−

n

∏
k=1

(
rk‖wk‖2

1

))
.

The operator norm of F is bounded by

‖F‖2

≤ 4 max

{
n

∏
k=1

(2‖wk‖2

√
rk log(rk) + 2‖wk‖∞rk log(rk) + ‖wk‖1)−

n

∏
k=1
‖wk‖1,

n

∏
k=1
‖wk‖1

}
.

Thus, the Hanson-Wright inequality implies that

P{(I) ≥ t}

≤ 2 exp

−c ·min


t2

16
n
∏

k=1

(
2r2

k‖wk‖2
2 + rk‖wk‖2

1
)
− 16

n
∏

k=1

(
rk‖wk‖2

1
) ,

t

4
n
∏

k=1
‖wk‖1

,

t

4
(

n
∏

k=1
(2‖wk‖2

√
rk log(rk) + 2‖wk‖∞rk log(rk) + ‖wk‖1)−

n
∏

k=1
‖wk‖1

)

.
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Plugging in t = 1
2

n
∏

k=1
rk‖wk‖1, and replacing the constant c with a different constant

c′, we have

P
{
(I) ≥ 1

2

n

∏
k=1

rk‖wk‖1

}

≤ 2 exp

−c′ ·min


n
∏

k=1
rk(

n
∏

k=1
(2rk(‖wk‖2/‖wk‖1)2 + 1)

)
− 1

,
n

∏
k=1

rk, (A7)

n
∏

k=1
rk(

n
∏

k=1
(2‖wk‖2/‖wk‖1

√
rk log(rk) + 2‖wk‖∞/‖wk‖1rk log(rk) + 1)

)
− 1


.

Next we turn to the second term (I I). We write

(I I) = 4

(
n

∏
k=1
‖wk‖1

)
ξTξ = 2

n

∏
k=1

(rk‖wk‖1) + 4

(
n

∏
k=1
‖wk‖1

)(
‖ξ‖2

2 −
1
2

n

∏
k=1

rk

)

and bound the error term 4
(

n
∏

k=1
‖wk‖1

)(
‖ξ‖2

2 −
1
2

n
∏

k=1
rk

)
with high probability. Observe

that ‖ξ‖2
2 −

1
2

n
∏

k=1
rk is a zero-mean subgaussian random variable, and thus satisfies for all

t > 0 that

P
{∣∣∣∣∣‖ξ‖2

2 −
1
2

n

∏
k=1

rk

∣∣∣∣∣ ≥ t

}
≤ 2 exp

−c′′t2

n
∏

k=1
rk


for some constant c′′. Thus, for any t > 0 we have

P
{∣∣∣∣∣4

(
n

∏
k=1
‖wk‖1

)(
‖ξ‖2

2 −
1
2

n

∏
k=1

rk

)∣∣∣∣∣ ≥ t

}
≤ 2 exp

 −c
′′
t2

16
n
∏

k=1
(rk‖wk‖2

1)

.

Thus,

P
{∣∣∣∣∣(I I)− 2

n

∏
k=1

(rk‖wk‖1)

∣∣∣∣∣ ≥ 1
2

n

∏
k=1

rk‖wk‖1

}
≤ 2 exp

(
−c

′′

64

n

∏
k=1

rk

)
. (A8)

Combing (A7) and (A8), we can conclude that with probability at least

1− 2 exp

(
−c

′′ n

∏
k=1

rk

)
− 2 exp

−c′ ·min


n
∏

k=1
rk(

n
∏

k=1
(2rk(‖wk‖2/‖wk‖1)2 + 1)

)
− 1

,

n

∏
k=1

rk,

n
∏

k=1
rk(

n
∏

k=1
(2‖wk‖2/‖wk‖1

√
rk log(rk) + 2‖wk‖∞/‖wk‖1rk log(rk) + 1)

)
− 1


,
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the following holds∥∥∥H�
(
T − T̃

)∥∥∥2

F
= (I) + (I I)

≥ 2
n

∏
k=1

(rk‖wk‖1)− |I I − 2
n

∏
k=1

(rk‖wk‖1)| − (I)

≥
n

∏
k=1

(rk‖wk‖1) =

(
n

∏
k=1

rk

)
‖H� B‖2

F.

By a union of bound over all of the points in S, we establish items 1 and 3 of
the lemma.

Now we are ready to prove the lower bound in Theorem 3. First we give a formal
statement for the lower bound in Theorem 3 by introducing the constant C′ to characterize
the “flatness” ofW .

Theorem A7 (Lower bound for low-rank tensor whenW is flat and Ω ∼ W). LetW =
w1⊗⊗⊗ · · · ⊗⊗⊗wn ∈ Rd1×···×dn be a CP rank-1 tensor so that all (i1, · · · , in) ∈ [d1]× · · · × [dn]
with ‖W‖∞ ≤ 1, so that

max
ik
|wk(ik)| ≤ C′min

ik
|wk(ik)|, for all k = 1, · · · , n.

Suppose that we choose each (i1, · · · , in) ∈ [d1]× · · · × [dn] independently with probability
Wi1···in to form a set Ω ⊆ [d1]× · · · × [dn]. Then with probability at least 1− exp(−C ·m) over
the choice of Ω, the following holds:

Let σ, β > 0 and let Kr ⊆ Rd1×···×dn be the cone of the tensor with Tucker rank r = [r1 · · · rn].
For any algorithm A : RΩ → Rd1×···×dn that takes as input TΩ +ZΩ and outputs a guess T̂ for
T , for T ∈ Kr ∩ βB∞ and Zi1···in ∼ N (0, σ2), then there is some T ∈ Kr ∩ βB∞ so that

‖W (1/2) � (A(TΩ +ZΩ)− T )‖F

‖W (1/2)‖F

≥ c ·min


β√

log(8
n
∏

k=1
dk)

,
σ√
|Ω|

√
n

∏
k=1

rk ·min


√√√√√ 1(

n
∏

k=1
(1 + 2C′2rk/dk)

)
− 1

,

1,

√√√√√ 1(
n
∏

k=1
(2C′

√
rk/dk log(rk) + 2C′rk/dk log(rk) + 1)

)
− 1


,

with probability at least 1
2 over the randomness of A and the choice of Z . Above c, C are constants

which depend only on C′.

Proof. Let m = ‖W (1/2)‖2
F =

n
∏

k=1
‖wk‖1, so that E|Ω| = m.

We instantiate Lemma A4 withH =W (1/2) and B being the tensor whose entries are
all 1. Let S be the set guaranteed by Lemma A4. We have

max
T ∈S
‖T ‖∞ ≤

√√√√1
2

log

(
8

n

∏
k=1

dk

)
n

∏
k=1

rk.
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and

max
T ∈S
‖TΩ‖F ≤ 2

√
n

∏
k=1

rk‖BΩ‖F = 2

√
|Ω|

n

∏
k=1

rk.

We also have

‖W (1/2) � (T − T ′)‖F ≥
√

n

∏
k=1

rk‖W (1/2)‖F =

√
m

n

∏
k=1

rk

for T 6= T ′ ∈ S. Using the assumption that wk are flat, the size of the set S is bigger than
or equal to

N = C exp

c ·min


n
∏

k=1
rk(

n
∏

k=1
(2rk(‖wk‖2/‖wk‖1)2 + 1)

)
− 1

,
n

∏
k=1

rk,

n
∏

k=1
rk(

n
∏

k=1
(2‖wk‖2/‖wk‖1

√
rk log(rk) + 2‖wk‖∞/‖wk‖1rk log(rk) + 1)

)
− 1




≥ C exp

c ·min


n
∏

k=1
rk(

n
∏

k=1
(2C′2rk/dk + 1)

)
− 1

,
n

∏
k=1

rk,

n
∏

k=1
rk(

n
∏

k=1
(2C′

√
rk log(rk)/dk + 2C′rk log(rk)/dk + 1)

)
− 1




≥ exp

C′′ ·min


n
∏

k=1
rk(

n
∏

k=1
(2C′2rk/dk + 1)

)
− 1

,
n

∏
k=1

rk,

n
∏

k=1
rk(

n
∏

k=1
(2C′

√
rk log(rk)/dk + 2C′rk log(rk)/dk + 1)

)
− 1


,

where C′′ depends on c and C. Set

κ = min


β√

1
2 log(8

n
∏

k=1
dk)

n
∏

k=1
rk

,
σ
√

C′′

8
√
|Ω|

√√√√√√√
n
∏

k=1
dk

(
n
∏

k=1
(dk + 2C′2rk))−

n
∏

k=1
dk

,
σ
√

C′′

8
√
|Ω|

,

σ
√

C′′

8
√
|Ω|

√√√√√√√
n
∏

k=1
dk

(
n
∏

k=1
(2C′

√
dkrk log(rk) + 2C′rk log(rk) + dk))−

n
∏

k=1
dk

.
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Observe that σ
√

log |S|
4 maxT ∈S ‖TΩ‖F

≥ σ
√

log(N)

4 maxT ∈S ‖TΩ‖F
and

σ
√

log(N)

4 maxT ∈S ‖TΩ‖F

≥ σ
√

C′′

8

√
|Ω|

n
∏

k=1
rk

·min


n
∏

k=1
rk(

n
∏

k=1
(2C′2rk/dk + 1)

)
− 1

,
n

∏
k=1

rk,

n
∏

k=1
rk(

n
∏

k=1
(2C′

√
rk log(rk)/dk + 2C′rk log(rk)/dk + 1)

)
− 1


=

σ
√

C′′

8
√
|Ω|
·min


√√√√√√√

n
∏

k=1
dk

(
n
∏

k=1
(dk + 2C′2rk))−

n
∏

k=1
dk

, 1,

√√√√√√√
n
∏

k=1
dk

(
n
∏

k=1
(2C′

√
dkrk log(rk) + 2C′rk log(rk) + dk))−

n
∏

k=1
dk

 ≥ κ,

so this is a legitimate choice of κ in Lemma A3. Next, we verify that κS ⊆ K ∩ βB∞. Indeed,
we have

κ max
S
‖T ‖∞ ≤ κ

√
1
2

log(8
n

∏
k=1

dk)
n

∏
k=1

rk ≤ β,

so κS ⊆ βB∞, and every element of S has Tucker rank r by construction.
Then Lemma A3 concludes that if A works on Kr ∩ βB∞, then there is a tensor

T ∈ Kr ∩ βB∞ so that

‖W (1/2) � (A(TΩ +ZΩ)− T )‖F

≥ κ

2
min
T 6=T ′∈S

‖W (1/2) � (T − T ′)‖F

≥ 1
2

min


β√

1
2 log(8

n
∏

k=1
dk)

n
∏

k=1
rk

,
σ
√

C′′

8
√
|Ω|

√√√√√√√
n
∏

k=1
dk

(
n
∏

k=1
(dk + 2C′2rk))−

n
∏

k=1
dk

,
σ
√

C′′

8
√
|Ω|

,

σ
√

C′′

8
√
|Ω|

√√√√√√√
n
∏

k=1
dk

(
n
∏

k=1
(2C′

√
dkrk log(rk) + 2C′rk log(rk) + dk))−

n
∏

k=1
dk


√

m
n

∏
k=1

rk

= min


β
√

m√
2 log(8

n
∏

k=1
dk)

,
σ
√

C′′m
16
√
|Ω|

√
n

∏
k=1

rk ·min


1√(

n
∏

k=1
(1 + 2C′2rk/dk)

)
− 1

,
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1,
1√(

n
∏

k=1
(2C′

√
rk/dk log(rk) + 2C′rk/dk log(rk) + 1)

)
− 1



.

Additionally, by Lemma A2, we conclude that

‖W (1/2) � (A(TΩ +ZΩ)− T )‖F

‖W (1/2)‖F

≥ c̃ ·min


β√

log(8
n
∏

k=1
dk)

,
σ√
|Ω|

√
n

∏
k=1

rk ·min


1√(

n
∏

k=1
(1 + 2C′2rk/dk)

)
− 1

,

1,
1√(

n
∏

k=1
(2C′

√
rk/dk log(rk) + 2C′rk/dk log(rk) + 1)

)
− 1



,

where c̃ depends on the above constants.

Remark A1. Consider the special case when T ∈ Rd1×d2 with d1 ≤ d2. Then we can consider
the reconstruction of S in Lemma A4 withH =W (1/2), B being the tensor whose entries are all
1, C ∈ {±1}r×d2 , 1U ∈ {±1}d1×r and 2U ∈ {±1}d2×d2 which implies that r1 = r and r2 = d2.
Thus, we have

‖W (1/2) � (A(TΩ +ZΩ)− T )‖F

‖W (1/2)‖F
≥ c̃ ·min

{
σ√
|Ω|

√
rd2,

β√
log(8d1d2)

}
,

which has the same bound as the one in ([19] Lemma 28).
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