
proceedings

Proceedings

Low-Power Pedestrian Detection System on FPGA †

Vinh Ngo * , David Castells-Rufas , Arnau Casadevall, Marc Codina and Jordi Carrabina

Department of Microelectronics and Electronic Systems, School of Engineering,
Autonomous University of Barcelona, 08193 Bellaterra, Spain; david.castells@uab.cat (D.C.-R.);
arnau.casadevall@uab.cat (A.C.); marc.codina@uab.cat (M.C.); jordi.carrabina@uab.cat (J.C.)
* Correspondence: quangvinh.ngo@uab.cat; Tel.: +34-93-581-3082
† Presented at the 13th International Conference on Ubiquitous Computing and Ambient Intelligence UCAmI

2019, Toledo, Spain, 2–5 December 2019.

Published: 20 November 2019
����������
�������

Abstract: Pedestrian detection is one of the key problems in the emerging self-driving car industry.
In addition, the Histogram of Gradients (HOG) algorithm proved to provide good accuracy for
pedestrian detection. Many research works focused on accelerating HOG algorithm on FPGA
(Field-Programmable Gate Array) due to its low-power and high-throughput characteristics. In
this paper, we present an energy-efficient HOG-based implementation for pedestrian detection
system on a low-cost FPGA system-on-chip platform. The hardware accelerator implements the
HOG computation and the Support Vector Machine classifier, the rest of the algorithm is mapped to
software in the embedded processor. The hardware runs at 50 Mhz (lower frequency than previous
works), thus achieving the best pixels processed per clock and the lower power design.
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1. Introduction

Pedestrian detection is a safety-critical application on autonomous cars. There are two main
approaches to implement pedestrian detection systems. On one hand, the detection algorithm relies
on all input image pixels. This approach uses deep learning method and it requires costly computing
platforms with not only many processing cores but also large memory bandwidth and capacity. On
the other hand, only extracted features from the image will input the detection algorithm. This
approach using HOG (Histogram of Gradients) [1] has proven to have good accuracy in detection [2].
While requiring less memory capacity, it is still a computing-intensive algorithm, which needs a low
latency and high-throughput platform. FPGAs (Field-Programmable Gate Arrays), therefore, come as
a suitable solution thanks to its capability in parallel processing. More importantly, FPGAs potentially
have better energy efficiency in comparison with alternative platforms such as CPUs and GPUs. In this
paper, we design and implement a pedestrian detection system, including a HOG feature extractor
and an SVM classifier, on a low-cost FPGA device, targeting at high throughput and low power
consumption. This work is an evolution of our previous works presented in [3,4]. There are several
improvements to help achieving a high-performance design. First, the fixed-point number is used
to represent values other than the integer number, which increases the feature’s accuracy with the
cost of computational complexity. Secondly, a pipeline for normalizing cell features to take advantage
of hardware’s capability in pipeline and parallel execution. Third, instead of buffering full input
images, input pixels coming from the sensor use window pipelines before its processing. Fourth, an
SVM classifier is implemented using FPGA’s programmable logic to further accelerating the detection
system. Finally, we optimize the pipeline design to increase the number of frames processed per
second. The throughput plays an important role in an energy-efficient design. The detection system
works at a clock frequency of 50 MHz with a throughput of 75 fps, and consumes 9 W. This is the
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best-reported power consumption in the state-of-the-art. In addition, our implementation is also the
most efficient in the number of pixels processed in a clock cycle. The paper is outlined as follows.
Section 2 discusses related works regarding FPGA implementations of real-time pedestrian detection
systems. An overview of the original HOG algorithm is described in Section 3. Section 4 presents our
architectural design in detail. The experimental results and discussions are shown in Section 5. Finally,
the conclusions are presented in Section 6.

2. Related Works

To the best of our knowledge, the works in [5,6] presented the first implementations of HOG
extractors on FPGAs. In [5], the HOG extractor has good latency (just 312 µs). However, this design
does not include the normalization module and it simplifies the computational process by using
integer numbers. In [7], the authors proposed to process the pixel data at twice the pixel frequency
and normalize the block histograms using L1-norm so that available resources are efficiently used and
can address parallel computing of multiple scales. With an input image of 1920 × 1080, the design
achieves high speed with a latency of only 150 µs. However, it is not clarified in the paper what this
latency is about. Similarly, the design used some kinds of frame buffer before HOG processing module,
which costs memory. The energy consumption of a HOG-based detection system on FPGA is first
reported in [2]. In this work, the authors try to reduce the bit-width of the fixed-point representation
to boost the performance. With a 640× 480 frame size and a 13-bit fixed-point representation, the
energy efficiency of the HOG extractor module is 0.54 J/Frame. Anyway, the design leverages a
costly hardware system with four FPGA devices and each device has 16 64-bit memory channels. The
memory space for those 4 FPGA devices is 128 GB. Another approach is presented in [8], in which
the authors investigate the cell size and number of histogram bins that provide better performance.
In this implementation, all the process of the detection system is integrated into an FPGA device.
With a negligible loss in accuracy, the best set of parameters provides a frame rate of 42.7 fps and
high energy-efficiency of only 0.451 J/Frame. A detailed description of HOG implementation on
FPGA is presented in [9], which achieves a high processing speed at 40 fps, with 1920 × 1080 input
image size. Interestingly, in [10], HOG algorithm is analyzed on a heterogeneous system, including
CPU, GPU, and FPGA. Based on multiple configuration experiments, the authors concluded that
FPGA is best suited for histogram extraction and classification tasks in the whole detection flow
because it produces a good trade-off between power and speed. Recently, our work (published in [3])
showed how we can simplify the computation with integer numbers. We achieved high throughput
in HOG extracting process by buffering the input image. Besides, a look-up table is used to store the
results of the square root and arctan computations. This approach heavily consumes on-chip memory.
A low-complexity implementation of HOG-based pedestrian detection is presented recently in [11].
Instead of the original HOG, the authors proposed the use of histogram of significant gradients, and the
hardware is, therefore, less complex. In addition, hardware resource usage is optimized by reducing
the number of bits representing the intermediate values during computation processes. Besides, the
authors avoid using complex representation numbers as well as DSP operations by pre-calculated
values and simplification techniques.

3. HOG Overview

The HOG algorithm consists of two main steps: gradient computation and histogram generation.
To compute the gradient of a pixel(x, y), first, we need to calculate the intensity difference of its
two pairs of neighbor pixels in horizontal and vertical directions following Equations (1) and (2)
respectively.

Gx(x, y) = I(x + 1, y)− I(x− 1, y) (1)

Gy(x, y) = I(x, y + 1)− I(x, y− 1) (2)
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Then, the magnitude and the orientation of the gradient at pixel (x, y) are computed by
Equations (3) and (4).

| G(x, y) |=
√

Gx(x, y)2 + Gy(x, y)2 (3)

φ(x, y) = arctan
Gy(x, y)
Gx(x, y)

(4)

The histogram is generated cell by cell with those gradients. Figure 1 describes an example in
detail. HOG feature is calculated cell-wise. Each cell has a size of 8× 8 pixels. Therefore, a cell consists
of 64 pairs of magnitude and orientation gradient values. Depending on its associated orientations,
magnitude gradients are accumulated to the corresponding bins. A cell histogram with nine bins is
illustrated in Figure 1c. Figure 1b describes in detail how the orientation of the gradient is quantized
into a range of 9 bins using the scale from 0 to 180°. The magnitude G, in this example, should be
accumulated to bin 2 because its orientation is approximately 30°. For more accuracy, G could be
accumulated fairly between adjacent bins depending on its orientation.

(a)

(b) (c)
Figure 1. An illustration of how HOG features are generated. (a) Feature is calculated based on a cell
of 8x8 pixel; (b) Each pixel has a magnitude gradient G, and orientation gradient φ ranged from 0 to
180°; (c) Each pixel contributes its magnitude gradient to the appropriate bin among 9 bins to generate
the final HOG feature vector of a cell.

4. Implementation

We implement the whole system in Terasic’s DE1-SOC board. The system block diagram is shown
in Figure 2. It includes hardware components such as the image sensor, the HOG pipeline, the Hard
Processor System (HPS), and other supporting modules.

Images from the sensor, after being filtered by the Bayern Pattern, are transferred directly to both
the HOG Extractor module and the pixel FIFO. The pixel FIFO is necessary for later showing the
original image on the VGA. A custom Avalon master interface is created to get pixels from this FIFO
and write to the 1 GB external SDRAM controlled by the HPS. The image sensor is configured through
an I2C interface for some key parameters such as image size, pixel clock. The Bayer pattern filter
module takes raw input pixels and calculates the three colors pixel values. After that, the grayscale
pixel value is generated to provide the HOG Extractor module and the HPS for real-time visualization.
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The HOG extractor module is a long pipeline that generates the normalized hog features. Our best
implementation in throughput used a 155 stages pipeline.

Figure 2. System diagram.

The normalized HOG features are then read by the SVM Classifier pipeline to detect pedestrians.
The classifier generates the confidence values for all the sliding windows and passes them to the
HPS. The confidence values are written to the external DDR3 SDRAM memory by a custom Avalon
Memory-Mapped Master via the f 2h_axi_slave bridge. Similarly, another custom Avalon bus master
is used to send image pixels to the DDR3 memory. These two memory locations are set to be dedicated
to FPGA. This transfer method provides good performance because data are transmitted in parallel
with the HPS’s CPU execution. Finally, based on a given threshold, a Python code running on the
HPS will draw a bounding box at the window position in which the confidence value is higher than
the threshold.

In the opposite direction, the pixels in the memory and detection results are sent to the VGA
controller for real-time visualization.

4.1. HOG Extractor

The detailed architecture inside the HOG pipeline is presented in Figure 3.
First, luminance differences Gx and Gy (Equations (1) and (2)) are calculated by the DELTAXY

module. These are 9 bit signed integers. We used the vector translate function in CORDIC IP to
compute the magnitude and the orientation gradients. Both of them are fixed-point numbers. To
achieve two digits after the decimal point accuracy, we choose to represent the orientation gradient by
13 fractional bits. Thus, the number of fractional bits for the magnitude gradient is six, according to
the configuring requirement of CORDIC IP. Depending on the orientation gradient, the magnitude
gradient of each pixel will vote to appropriate bins. The AGGREGATE module adds 64 histogram
values of 64 pixels in a cell bin by bin to output the final cell features. Finally, cell features are block-wise
contrast normalized. In this design, each block has four cells and L2 normalization [1] is chosen for the
sake of accuracy and simplicity.
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Figure 3. HOG extractor block diagram.

Figure 4 describes our hardware line buffers that allow the HOG module to compute the luminance
difference Gx and Gy between neighbor pixels in vertical and horizontal directions. This design
supports processing pixels on every clock cycle, which means that the performance of the design can
be boosted if input pixels come at every clock cycle. The depth of each buffer corresponds to the
row size of the input image, in our case 640. The luminance differences, Gx and Gy, at pixel P11 are
calculated using P21 and P01 for the vertical direction, and P10 and P12 for horizontal direction as in
Equations (5) and (6).

Gx(1, 1) = P10 − P12 (5)

Gy(1, 1) = P01 − P21 (6)

Following the original HOG algorithm in [1], the final HOG feature is extracted from every cell of
8× 8 pixel size. In addition, the orientation is divided into 9 bins from 0 to 180°. In our case, with the
640× 480 image size, the final HOG feature is a vector of 80× 60× 9 dimension. The HOG module
processes in a pipeline approach every 8 continuous pixels in a row of a cell. It generates a partial
hog vector with 9 bins aggregating 8 magnitude gradient values. These partial hog vectors are fed
to a line buffer, as shown in Figure 5. Only 80 partial cell hogs are needed to be stored to minimize
memory usage without stalling the pipeline. To generate the full HOG feature for a cell, it is necessary
to aggregate 8 partial cell hogs from 8 different rows. The cell_hog_valid signal will be active only if all
the partial cell hogs are fully collected.

The normalization of the cell histogram is done following the equation in (7). In the equation,
v is the cell hog features in the block, and ‖v‖2 is the L2-normalization of all the cell hog features in
the block. A small constant, ε, is added to avoid dividing by zero. As illustrated in Figure 3, each bin
of the normalized hog feature is represented by 32 bits. This is not the final HOG feature value and
it is represented in floating-point format. We only do the conversion from the fixed-point format to
the floating-point format for the final step. Intermediate results are calculated using either integer or
fixed-point number representations depending on every specific task.

v =
v√

‖v‖2
2 + ε2

(7)

We used the ModelSim simulator and a C golden model of the HOG to verify the HOG
extractor design.
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Figure 4. Pixel line buffers.

Figure 5. Partial cell hog line buffer.

4.2. SVM Classifier

The key factor making an SVM classifier’s execution time quite long in software is the sliding
window task. Figure 6 illustrates the sliding window implemented in our design. To be more specific,
the size of the input image is 640× 480. The HOG feature of an image is organized in blocks. Each
block is a concatenation of four neighboring cells, and a cell is formed by 8× 8 pixels as illustrated in
Figure 7. To improve the detection performance, two consecutive blocks in either horizontal or vertical
direction have two overlapped cells. Therefore, an image of size 640× 480 would have 80× 60 cells
and 79× 59 blocks.

The SVM classifier works with block unit. In Figure 6, the HOG feature of the input image has
59 rows and each row has 79 blocks. The detection window has a size of 7× 15 blocks [1]. Figure 6
shows two detection windows drawn by dash lines with one block sliding step in the horizontal
direction. Therefore, it takes 73 steps to slide horizontally. Similarly, in the vertical direction, there
are 45 detection windows if the sliding step is one block. At each step, all 105 blocks containing
3780 fixed-point numbers in the detection window multiply with the 3780 elements of the weight
vector stored in a ROM memory. Then the sum of all those 3780 products is added to the bias provided
by the pre-trained model to obtain the final confidence value for that specific window. This process is
repeated for 73× 45 detection windows. The detail accelerator of the classifier is presented in Figure 8.
From the hardware point of view, there are two main problems to tackle to speed up the execution
time compared to software implementation. Firstly, since blocks are generated sequentially, it is more
efficient to process every block immediately after its being generated instead of waiting for the whole
105 blocks.
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Figure 6. Sliding a 7 × 15 window over a 79 × 59 HOG frame.

Figure 7. Size of a detection window, a block, and a cell.

Figure 8. SVM classifier hardware block diagram.

In Figure 8, although the hardware design is pipelined for high throughput, the pipeline registers
are not shown for the sake of clarity. Each hardware component will be briefly described in the
following paragraphs.
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• MAIN CONTROLLER: Finite state machine (FSM) that controls the whole design. Once a block is
processed, it will check if a new block is available before fetching it to the pipeline. Knowing the
block position, the FSM can infer at what detection windows belong that block. Besides, the FSM
generates appropriate addresses to access ROM and RAM memory.

• ROM: this memory stores all the elements of the weight vector. If the pre-trained model is
changed, that ROM must be reloaded with the new weight vector set. The size of this ROM
is 3780× 10 bits. It means that each element of the weight vector is represented by a 10-bit
fixed-point, in which 8 bits are fractional bits. To generate the weight vector, we trained and
tested several models with different configurations using the INRIA Person Dataset [1] to achieve
maximum yield in terms of accuracy. We tested our model with INRIA test dataset and with
images coming from a camera sensor to have a more generalized model.

• RAM: there are two RAM instances in Figure 8 to distinguish between the reading and the
writing process. Physically, there is one unique RAM module in the design. The memory, which
has a size of 30× 73× 19 bits, stores temporary sums for final confidence values. Each word
is 19-bit width including a 12-bit partial sum and a 7-bit counter. Each resulting confidence
value of a detection window is a sum of 105 partial sums. Therefore, the counter is used to
signify that the detection window’s confidence value is valid. The win_done signal is active when
105 partial sums of a detection window are fully accumulated. Furthermore, to optimize the
on-chip memory usage, the memory location storing that window’s value will be reused for other
detection windows. Therefore, the design uses only 30× 73 RAM locations to store the temporary
sums of the 45× 73 detection windows.

• MULTIPLY: this module takes a hog block and multiplies it with appropriate elements of the
weight vector stored in the ROM memory. One-cycle multiplication will generate 36 products
because a block contains 36 elements. Depends on the position of the block, it might belong to
multiple detection windows. It would take 105 cycles to finish processing a specific block if that
block belongs to 105 detection windows.

• ADD: This module simply sums up 36 products from the MULTIPLY module.
• ACC.: Since a detection window’s confidence value is the sum of 105 partial values. This module

accumulates the temporary value stored in the RAM memory with the new partial sum.
• BIAS: This module adds the bias value to generate the final confidence value in fixed-point

representation.
• FIX2FLOAT: Fixed-point confidence values are converted to 32-bit floating-point numbers by this

block. From the right side of Figure 8, we can see that each confidence value is accompanied by a
valid signal and an address indicating the position of that detection window in the image. This
coordination is used by the HPS software to draw the rectangular if the confidence value is higher
than the threshold or, in other words, a pedestrian is detected.

4.3. Number Representation

In this work, we used fixed-point numbers for all the calculations to achieve high accuracy in the
detection system. The inputs to the MULTIPLY block are two fixed-point numbers, both have eight
fractional bits. Although the MULTIPLY generates 16-bit fractional fixed-point numbers, only eight
fractional bits are kept and feed the ADD module. This is reasonable since the 16-bit fractional number
representation increases the system resources without adding accuracy. At the end of the pipeline,
final confidence values are converted from fixed-point to floating-point instead of doing it by the HPS
software. Owing to the use of fixed-point numbers, final scores, ranging from 0 to 1, have a 2 decimal
place accuracy compared to the floating-point-based C golden model.
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5. Results

To validate the design, each block is functionally validated against a reference C golden model. The
golden model is implemented using floating-point arithmetic. Our hardware blocks are implemented
using fixed-point arithmetic. Each block was adapted so that the maximum total error rate with
respect to the golden model is 1%, which we validated to have no impact on the detection rate of the
whole system.

Table 1 compares our implementation to the state-of-the-art. Regarding FPGA resources, our
design is optimized for memory (what also affects energy) and therefore consumes the least memory
resource except for the one in [9] which reports zero memory usage. The reason for this is that our
pipeline works on every input pixel and there is not any buffer for input frames. Regarding the number
of LUTs, the implementation in [7] is the most efficient, followed by ours. The reason is that, [7] targets
low resource use by simplifying some computational operations. In the voting part, magnitudes are
voted to only one unique bin without interpolation. To ensure the accuracy, our implementation used
linear interpolation to split a magnitude into two bins unless the orientation is at the exact centre of a
bin. Furthermore, all the calculations use integer numbers in [7]. About DSPs usage, our design is the
second optimized. The best one only uses four DSP blocks [9]. Concerning the number of flip-flops,
our design uses quite a large number of FFs to fulfill the long pipeline.

Table 1. Comparison with the state-of-the-art

Implementation [10] [7] [2] [9] [8] [12] Ours

Year 2013 2013 2015 2015 2015 2018 2019
Hardware Virtex 6 Virtex 5 Virtex 6 XC7Z020 Virtex 7 Cyclone IV Cyclone V

Technology node 40 nm 65 nm 40 nm 28 nm 28 nm 60 nm 28 nm
Freq. (MHz) NA 266 150 82.2 266 150 50
Frame size 1024 × 768 1920 × 1080 640 × 480 1920 × 1080 1920 × 1080 800 × 600 640 × 480

Latency 4.88 ms <150 µs 44 ms 25.2 ms NA NA 13.3 ms
Power (W) 182 NA 37 NA 19 NA 9

Energy (J/frame) 14 NA 0.54 NA 0.45 NA 0.12
FPS 13 64 68.2 40 42.7 162 75

Memory (Kb) 3.744 1.188 13.738 0 4.079 344 317
LUTs 108.518 5.188 184.953 21.297 30.360 16.060 13.464
DSPs 138 49 190 4 364 69 38
FFs 120.576 5.176 208.666 NA 48.576 7.220 17.117

Pixels per clock NA 0.0005 0.0003 0.0009 0.0003 0.0009 0.0010
Energy per pixel 18 NA 1.8 NA 0.22 NA 0.39

(µJ/pixel)
FPS per watt 0.07 NA 1.84 NA 2.25 NA 8.35

In terms of processing speed, our design takes 13.3 ms to detect a frame that correspond to a
real-time throughput of 75 fps. The authors in [12] shown a throughput 2.16× better than ours with
3× faster in clock frequency. When it comes to the number of pixel processed per clock period, our
design achieves the highest efficiency with 0.001 pixels per clock.

With respect to energy efficiency, we consider a resolution-independent metric such as Energy
per pixel. In this case, our work is the second best after [8]. There is a difference in the measurement
method. The authors in [8] used Xilinx Xpower Analyzer software to estimate the power consumption
while we obtain the result from an energy meter model FHT-999. Besides, as stated in [13] some of the
energy efficiency drivers for FPGA designs are the number of resources, the activity rate, and especially
the technology node, which determine the dynamic power consumption. Thus, implementations
on more recent 28 nm nodes benefit from this factor. For a fair comparison, the designs should be
re-evaluated after mapping it to newer devices.
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6. Conclusions

A low-power pedestrian detection system is implemented on a low-cost FPGA device. The power
consumption of the whole system is reported to be the lowest in the state-of-the-art. Fixed-point
representation is employed for achieving high accuracy with optimized resource usage. Despite that,
our design achieves the highest performance in the number of pixels processed per clock. Finally, the
system fulfills the real-time constraint of a pedestrian detection system with a throughput of 75 fps.

Acknowledgments: This project is partly funded by the project 2017SGR1624 from the Catalan Government and
the project RTI2018-095209-B-C22 from the Spanish Government.
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