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Abstract: Thanks to the advances of the Internet of Things (IoTs), more and more wireless sensor
networks applications have been realized. One of the fundamental but crucial applications is the
continuous monitoring of environmental factors including temperature, humidity, illumination, etc.
We develop a nonlinear regression model which takes spatial and temporal information into account
to construct a globally three-dimensional heat map for a closed space based on very sparse sensor
deployment. However, fitting the whole-space heat map with a very limited number of sensor
observations gives a very poor estimation when we use a nonlinear model. We call it the coverage
hole problem. We utilize the uniform experimental design which is well known in industrial statistics
to allocate the synthetic sensors. We estimate those synthetic sensor readings on the basis of linear
model locally. We then apply ε-SSVR, a nonlinear support vector regression model to fit the globally
three-dimensional heat map by combining real sensor and synthetic sensor readings. The numerical
results demonstrate our proposed model can enhance the accuracy significantly.

Keywords: smooth support vector regression; coverage hole problem; inverse distance weighting;
uniform design

1. Introduction

Thanks to the advances of the Internet of Things (IoTs), wireless sensing networks (WSNs) are
widely used in many fields such as medical, military, industry, agriculture, intelligent transportation,
etc. [1–5]. Specifically, the application of WSN continuous monitoring of environmental factors (such
as temperature, humidity, etc.) for the entire region in the domain of greenhouse cultivation has been
gradually noticed [6,7]. The dynamic responses of equipment (e.g., irrigation system, ventilation
system, etc.) to the monitoring results enable farmers to grow high-quality and high-yielding crops.

We would like to develop a nonlinear regression model taking spatial and temporal information
into account to construct a globally three-dimensional (3-D) heat map (e.g., temperature in our
experiment) for a closed space based on sensor deployment. In reality, the larger cost of sensor
deployment has limited the amount of sensors being able to be installed in the greenhouse, resulting
in coverage hole problems [8,9]. What is worse, fitting the whole-space heat map with very limited
number of sensor observations will give a very poor estimation when we use a nonlinear model. In
order to solve this problem, the most widely used method is to insert a value at a position where
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there is no sensor (i.e., to found synthetic sensors). The traditional method includes Inverse Distance
Weighting (IDW) and Ordinary Kriging (OK) [10,11]. However, the interpolated values of the above
methods will fall between the minimum and maximum reading values, which might cause a great
monitoring error especially in a variable environment.

As a result, here we introduce the Uniform Experimental Design (UD) method [12] to decide
the positions of synthetic sensors in the greenhouse space. For interpolating the virtual sensing
points, we develop a method based on IDW and OK to deal with the stratospheric characteristics of
environmental factors in greenhouse. We then apply the data from the real as well as the synthetic
sensors to a nonlinear ε-Smooth Support Vector Regression model (ε-SSVR or SSVR for short) [13–15],
in order to construct a globally 3-D heat map of each environmental factor for the greenhouse. The
ultimate goal is to control the related equipment according to monitoring results, as shown in Figure 1.

The main advantage of ε-SSVR model is the capability to adjust the objective ε-insensitive loss
function based on real and synthetic sensors, where ε-insensitive loss function indicates that only the
absolute error between the estimated and the observed values of an instance larger than ε value will
be accounted for. Since the readings of synthetic sensors are interpolated, which may reflect higher
measurement errors than those of real sensors, we give real sensors with smaller ε, while synthetic
sensors with larger one.

Figure 1. Continuous Monitoring and Decision Process.

2. Related Work

The related research topics for our experiment are divided into three categories: (1) coverage hole
problem, (2) interpolation method for globally 3-D heat map, and (3) monitoring model.

The coverage hole problem is common for sensor deployment and is discussed in many studies of
WSNs. To deal with such problem, we have to first define a coverage model for the sensor. Boudaren
et al. [16] mentioned three kinds of coverage models. Deterministic coverage models classify a point
to be either certainly within a specific region (i.e., covered by a sensor) or not. Probabilistic models
represent the probability of a point being covered. The longer the distance between the point and the
sensor, the less likely it is for the point to be covered. At last, Evidential sensing models are designed
to handle the uncertainties by taking into account the reliability of the sensors. Note that the coverage
models do not have to be in a circular shape. Some coverage hole problems are due to abnormalities in
the values recovered by the sensors.

Since it is impossible to arrange full sensing points in space, and the sensors in most cases
are sparse, the interpolation method becomes very important for those positions without sensors.
The study of Li and Heap [17] divides the interpolation methods into three categories and briefly
describes more than 40 spatial interpolation methods. They also discuss the factors that affect the
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performance [18]; there are a total of 25 classifications of common methods according to characteristics
of the interpolation models. Finally, a decision tree that selects the appropriate method from these
25 methods is developed. The study of Bargaoui and Chebbi [19] uses a cross-validation scheme to
compare the accuracy of two kriging methods (2-D, 3-D). The 3-D kriging method derived from the
rainfall data leads to a significantly lower prediction error than the classic 2-D kriging method. In the
study of Zhang et al. [20], rainfall data from the agro-ecological monitoring network was assessed,
and four spatial interpolation methods were used to generate a map of the total monthly rainfall in
Sri Lanka.

In regards to monitoring models, the study of Danielsen et al. [21] integrates various monitoring
methods to monitor natural resources for the habitats of the species in order to assist conservation
biologists in identifying and establishing monitoring systems that are most relevant to specific
environmental protection. Hu et al. [22] use a support vector regression model to monitor air pollution
and obtain results that are more accurate than those from artificial neural network models. Obviously,
monitoring is widely used for different purposes. The research of Shen et al. [23] is related to our
goal, which monitors the 2-D plane of greenhouse and has proposed a distributed anomaly detection
mechanism to report the abnormal information. Based on the data from the greenhouse of the Martens
Greenhouse Research Foundation in western Finland [7], it is possible to detect local differences caused
by various disturbances in greenhouse climate. In our research, we are going to combine either spatial
and/or temporal features to build a monitoring model and output continuous 3-D heat maps.

3. Coverage Hole Problem

3.1. Virtual Sensors via Uniform Design Sampling

To solve the coverage hole problem (Figure 2), here we introduce a method called “uniform design
(UD)” which is popular in the industrial experimental design [24]. In ANOVA-based experiment design
model, there are s factors with q levels for each, resulting in a total of qs experimental combinations
for testing the main and interaction effects among all factors. Obviously, the number of experiments
increases exponentially with the number of factors as well as levels. Therefore, the objective is to utilize
a few experiments instead of all while maintaining a good parameter estimation.

UD can effectively reduce the number of experiments (say, from qs to n) with better design
flexibility and uniformity, which reduces time consumption effectively in industrial experiments and
has a good estimate of nonlinear models [12]. The n experimental combination is symbolized as Un(qs)

in the uniform design table referred to [25].

Figure 2. Coverage Hole Problem. The orange circle is the sensing range of the sensor. It shows that
the range of each sensor is limited, so it cannot cover the entire plane.

In our research, we use UD in the following two applications: (1) positioning of the synthetic
sensors and (2) parameter tuning for our monitoring model (i.e., ε-SSVR) instead of the grid search.

In application of positioning the synthetic sensors in 2-D space, the factors represent the length
and width of the plane (i.e., s = 2), and each factor has q = 30 levels (hence we can position n = 30
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synthetic sensors on the plane). We then can refer to UD U30302 for the coordinate of each synthetic
sensor. An illustration of all synthetic sensors is shown in Figure 3.

Figure 3. Uniform design showing the positions of synthetic sensors with: (a) n = 15; (b) n = 30 points.

3.2. Interpolation Method

After positioning the synthetic sensors, the next important task is to estimate the readings of each
sensor at any time point, which is an interpolation problem. The commonly used local linear models
for interpolation are IDW and OK, which can be referred to [10,11,26,27]. By “local” it means only the
nearest k neighboring sensor readings are used for calculation. In our experiment, we consistently set
k = 3 for all interpolation.

In addition, we notice empirically that the readings (e.g., temperature in our case) in the vertical
direction change more drastically than those in the horizontal direction. More specifically, the
temperature reading becomes higher along with greater height; while temperature readings from the
same horizontal plane have subtle changes. This causes issues when using ordinary OK and IDW in
our research domain, such as over-estimation for synthetic sensor values on smaller height (z-axis)
and under-estimation on larger height, showing the unreasonable influence of z-axis. We thus develop
a two-step new interpolation method, that is, the variants of IDW and OK (called zIDW and zOK).

Operationally, we treat the information from xy-plane differently from z-axis. More specifically,
given any synthetic sensor point at position (x0, y0, z0), we first project it vertically to all non-redundant
planes where real sensors locate (i.e., Lr = {(x0, y0, zr)|r ∈ {1, · · ·m0}}, m0 ≥ 2, which means the
number of non-redundant planes). We then locally interpolate each projected location in Lr either by
IDW or OK based solely on their horizontal real sensors and hence derive a vertical line of interpolated
values along (x0, y0). At last, we can apply these m0 interpolations to again interpolate the target
synthetic sensor at (x0, y0, z0) linearly or nonlinearly (according to the scatter of interpolations of Lr ).
Notice that if m0 = 2, only linear interpolation model can be used as the case in our experiment.

4. Monitoring Model via ε-SSVR

4.1. ε-Smooth Support Vector Regression Model

Let S = {(xi, yi)|xi ∈ Rn, yi ∈ R}m
i=1 be a training dataset. In traditional ordinary regression, the

objective is to find a hyperplane f (x) with the least-squared method so as to best fit the dataset S. SVR
can be regarded as a generalization from ordinary regression, which adds a tolerance parameter ε to
discard small errors when fitting the training points. As shown in Figure 4, the loss function of each
instance i ∈ 1, · · · , m given ε parameter can be written as:

|ξi|ε = max(0, | f (xi)− yi)| − ε) (1)

That is, if the absolute discrepancy between predicted value and the observed value is less than a
given ε value (i.e., | f (xi)− yi)| < ε), then the loss value of such instance is regarded as 0.
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Figure 4. ε-insensitive loss function.

The objective of linear SVR is to find a hyperplane f (x) = wTx + b of which the constrained
minimization problem is generally formulated as follows:

min
(w,b,ξ,ξ∗)∈Rn+1+2m

1
2
‖w‖2

2 + C
m

∑
i=1

(ξi + ξ∗i ) (2)

subjet to


yi − (wTxi + b) ≤ ε + ξ∗i
−yi + (wTxi + b) ≤ ε + ξi i = 1, 2 · · · , m

ξ, ξ∗ ≥ 0

where ‖w‖2
2 is a regularization term applied for improving the generalization ability, C is a positive

constant that represents the tradeoff between the flatness of the model and fitting errors of the function
f (x), η is called a slack variable, and ε is the insensitive zone.

In linear ε-SSVR [13,14], the above Equation (2) can be reformulated into an unconstrained
minimization problem is as the following [13]:

min
(w,b)∈Rn+1

1
2
(‖w‖2

2 + b2) +
C
2

m

∑
i=1
|wTxi + b− yi|2ε (3)

Furthermore, to make the objective function twice differentiable, which can be quickly solved
by Newton’s method, Lee et al. [13] used the smooth p-function (i.e., p2

ε ) tuned by a smoothing
parameter β to replace the error term (|xT

i w + b− yi|2ε ) of SVR (i.e., β controls how much the error
term be approximated by p-function). Thus, the minimization problem is then reformulated into the
following (refer to [13] for more detail):

min
(w,b)∈Rn+1

1
2
(‖w‖2

2 + b2) +
C
2

m

∑
i=1

p2
ε (w

Txi + b− yi, β) (4)

Notice that synthetic sensors have a larger tolerance values εv than that of real sensors εr in our
experiment, which shows:

min
(w,b)∈Rn+1

1
2
(‖w‖2

2 + b2) +
C
2
(∑

i∈Iv

p2
εv(w

Txi + b− yi, β) + ∑
i∈Ir

p2
εr (w

Txi + b− yi, β)) (5)

where Iv and Ir are the index sets of synthetic and real sensors, respectively, s. t. |Iv|+ |Ir| = m.

4.2. Nonlinear ε-Smooth Support Vector Regression

We can extend linear case to nonlinear case through the dual formulation of minimization
problem [13]. In order to achieve this, we employ a kernel function K(x, z) = 〈φ(x), φ(z)〉 which
represents the dot product of two training points in a higher dimensional space. In general, there are
many forms of kernels, and the Gaussian kernel (also known as radical basis function (RBF) kernel) is
one of the commonly used as defined in Equation (6), which is also used in our experiment:

K(xi, xj) = e−γ‖xi−xj‖2
(6)
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where γ is a tuning parameter determining how far the influence of squared Euclidean distances
between the two feature vectors reaches.

4.3. Spatial and Temporal Features

Usually, the sensor information includes ID, location, measurement (i.e., temperature in our case),
and timestamp. Thus, to predict the temperature at any unmeasured location at timestamp t (Yt), we
incorporate spatial (S) as well as temporal (T) features, and introduce four ε-SSVR related models.

For spatial model (SSVR (S)), features include 3-D sensor location (i.e., xi = (Loc.X, Loc.Y, Loc.Z)
for each sensor case i), of which the training data is illustrated in Table 1 with, say, m = 10
sensors at timestamp t. For temporal model (SSVR (T)), features include the past h values of
temperature (i.e., xi = (yt−1

i , yt−2
i , · · · , yt−h

i )), of which the training data is illustrated in Table 2
with h = 3 (which is also the value we set for temporal model in our experiment). In the
same manner, the spatial and temporal model (SSVR (S&T)) includes aforementioned features
(i.e., xi = (Loc.X, Loc.Y, Loc.Z, Yt−1

i , Yt−2
i , · · · , Yt−h

i ), of which the training data can be formed by
concatenating Tables 1 and 2. Notice that if we incorporate synthetic sensors for model training, it
follows the exact rationale. The only difference is that the training data size is expanded by containing
cases of both real and synthetic sensors (e.g., m = 40 with 10 real sensors and 30 synthetic sensors).

Table 1. The form of training data for spatial model at timestamp t.

Sensor ID Loc.X Loc.Y Loc.Z Temperature (hY t)

1 375 300 150 28.29
2 125 300 150 29.93
...

...
...

...
...

9 375 900 350 34.03
10 125 900 350 34.16

Table 2. The form of training data for temporal model at timestamp t.

Sensor ID Y t−3 Y t−2 Y t−1 Temperature (Y t)

1 27.77 27.66 28.28 28.29
2 28.12 28.38 29.31 29.93
...

...
...

...
...

9 33.79 34.45 33.94 34.03
10 34.70 34.78 34.29 34.16

Beyond these models, we also combine SSVR (S) and SSVR (T) models to strengthen our prediction
(named SSVR (S + T) for convenience); this is to deal with the scenario that, when the temperature has
a sharp rise or falls along the time, the temporal model will be overestimated or underestimated. We
then design the model as below:

sS+T
0 (t) =

{
αsS

0 (t) + (1− α)sT
0 (t), |sS

0 (t)− sT
0 (t)| ≤ η

sS
0 (t), |sS

0 (t)− sT
0 (t)| > η

(7)

where sS
0 (t) and sT

0 (t) represent the temperatures estimated by the spatial and temporal models,
respectively, at timestamp t; α is a weighting parameter ∈ [0, 1]; η is to limit the difference of
temperatures from the spatial and temporal models. That is to say, if the difference is larger than η, then
we only consider the estimated values from spatial model; otherwise, we derive a weighted average.
sS+T

0 (t) is thus the estimated temperature from a combination of the spatial and temporal models.
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4.4. Architecture

The continuous monitoring architecture to build a globally 3-D heat map at any timestamp t is
shown in Figure 5. There are two steps. The first step is to reduce the coverage hole problem due to
sparsity of the sensor deployment. We thus apply UD to generate multiple synthetic sensors deployed
in 3-D space, of which the readings are interpolated by local linear model (e.g, IDW, OK, ...). The
second step is then to apply the ε-SSVR models (as introduced previously) to fit the globally monitoring
model by combining real and synthetic sensor readings. At last, the output is a consecutive 3-D heat
map for any timestamp t.

Figure 5. Continuous Monitoring Architecture.

5. Experiments

5.1. Data Description

Our smart greenhouse field is in Wufeng District, Taichung—a rectangular parallelepiped with
(length (X), width (Y), height (Z)) = (500, 1200, 400) (scale: cm), which could monitor the growth
conditions of cherry tomatoes. In smart greenhouse, there are 2 horizontal layers (i.e., Loc.Z = 150 and
350 cm), each having 5 E-type thermometers deployed (red points in Figure 6. The frequency of each
sensor data is one reading per ten minutes. The sensors are coded from 1 to 5 on Loc.Z = 150, and 6 to
10 on Loc.Z = 350. For either layer of Z, the corresponding (Loc.X, Loc.Y) = { (375, 300), (125, 300), (250,
600), (375, 900), (125, 900)}.

Figure 6. Smart Green House Architecture.

5.2. Experimental Process and Parameter Tuning

We evaluate our nonlinearly extended models—SSVR(S), SSVR(T), SSVR(S&T), and SSVR(S+T)
under the condition either with or without synthetic sensors, to compare the marginal effect of synthetic
sensors; we also compare our method with OK and IDW as baseline models. To validate our methods,
the leave-one-out (LOO) strategy is used to each of real sensors where we can calculate our error rate
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by comparing the actual value and the predicted value. More specifically, for i-th real sensor being
tested (i = 1, · · · , 10) at time t, the training data would be composed of the rest of sensor information
(either with or without synthetic sensors) at time t. We can thus estimate the values of i-th real sensor
for any time t (t = 1, · · · , T). As a result, for each trial of real sensor, the evaluation metrics can be
calculated by Mean Absolute Error (MAE) and Root Mean Square Error (RMSE):

MAEi =
1
T

T

∑
t=1
|yt

i − ŷt
i | (8)

RMSEi =

√√√√ 1
T

T

∑
t=1

(yt
i − ŷt

i)
2 (9)

where yt
i and ŷt

i represent the actual and predicted values of real sensor i at time t, respectively.
In regard to parameter tuning for each of our nonlinear models, we use the aforesaid LOO strategy

on the whole sample, and the set of parameters with the lowest averaged MAE as well as averaged
RMSE across all trials of real sensors is determined as the best solution (refer to Table 3). Except
for SSVR (S&T) model, we incorporate 30 synthetic sensors by UD method (i.e., (U30303)) during
parameter tuning process. The reason for SSVR (S&T) model will be explained at the latter section.
Notice that the error tolerance εv of synthetic sensors is larger than that of the real sensors (εr), thus the
parameter values tuned for the former are mostly larger than that of the latter (i.e., [0.1, 2] v.s. [0.01,
0.2]), and the results of mean and standard deviation (STD) of MAE and RMSE with the optimum
parameter setting are displayed in the following section, which can be regarded as the best-case
scenario for each model incorporating synthetic sensors.

Table 3. Parameter setting.

Parameter Tuning Range Spatial (S + T)

Spatial (S) Temporal (T) Spatial (S&T)

C [50, 400] 387.93 134.48 267.24
γ [10−5, 0.05] 0.0207 0.000177 0.00121
εr [0.01, 0.2] 0.0493 0.0427 0.0755
εv [0.1, 2] 0.0782 0.2068 -
α [0, 1] 0.52 -
η [0, 1] 0.27 -

6. Results

Our experimental results are presented in two ways: (i) numerical results and (ii) output of 3-D
heat maps. The results of such experiments can indicate whether there is an improvement in model
accuracy and a solution to the coverage hole problem.

6.1. Numerical Results

Table 4 shows the results under the existence of coverage hole problem (i.e., without synthetic
sensors), which are derived from traditional spatial models such as IDW and OK, as well as
regression-based nonlinear ε-SSVR models introduced previously. It can be found that the accuracy of
the ε-SSVR models is better than that of traditional ones. Among ε-SSVR models, SSVR (S + T) has the
best performance, while SSVR (T) the worst.
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Table 4. Results under the coverage hole setting (without synthetic sensors).

Method MAE MAE (STD) RMSE RMSE (STD)

IDW 0.5990 0.0791 1.0920 0.0740
OK 0.5943 0.0834 1.0874 0.0787

SSVR (S) 0.3458 0.1378 0.8163 0.1588
SSVR (T) 0.5892 0.0835 1.0827 0.0783

SSVR (S&T) 0.5733 0.1058 1.0664 0.0973
SSVR (S + T) 0.3095 0.1519 0.7656 0.1812

Next we show the results of adding synthetic sensors in Table 5. Notice that the SSVR(S&T) model
is not included since it does not improve much from SSVR (S) and SSVR (T) models (thus there is
no tuning parameter εv). It is found that no matter which interpolation method (zIDW or zOK) we
used, the accuracy was improved by reducing MAE and RMSE by about 0.03 to 0.3, indicating a good
marginal effect of incorporating synthetic sensors. Again, SSVR(S + T) has the best performance (with
zIDW + SSVR (S + T) slightly better than zOK + SSVR (S + T)), while SSVR (T) the worst.

Table 5. Results with synthetic sensors.

Method MAE MAE (STD) RMSE RMSE (STD)

zIDW + SSVR (S) 0.1364 0.0373 0.5167 0.0760
zIDW + SSVR (T) 0.5512 0.1808 1.0337 0.1838

zIDW +SSVR (S+T) 0.1268 0.0309 0.4997 0.0633

zOK + SSVR (S) 0.1286 0.0333 0.5028 0.0666
zOK + SSVR (T) 0.5540 0.1817 1.0365 0.1839

zOK + SSVR (S+T) 0.1195 0.0258 0.4862 0.0524

In both conditions above, spatial information contributes more than temporal information, which
uses only h = 3 past values as features. An interesting observation is that, after adding synthetic
sensors, the STD of MAE and RMSE from SSVR(T) model increase significantly, whereas that from
SSVR(S) decreases also significantly, although they all improve MAE and RMSE in average. That means
the spatial interpolation methods diverge from the predictions of the temporal model (SSVR(T)) but
narrow them down for the spatial model (SSVR(S)). Accordingly, it is suggested that an interpolation
method using temporal clues be introduced for improving the temporal model.

6.2. Output of 3-D Heat Maps

We also examine the results by heat maps. Here we compare the heat maps from four
models—SSVR (S), SSVR (S + T), zIDW + SSVR (S), and zIDW + SSVR (S + T) illustrated in Figure 7.
The lighter the color is, the lower the temperature becomes; and it is obvious for models without
synthetic sensors (i.e., without zIDW interpolation) that they have mis-predicted values at the eight
corners of the greenhouse (like a darker football crammed in a light-colored container), while models
with synthetic sensors have less of such issues. On the whole, adding synthetic sensors improves
model performance, and zIDW + SSVR (S + T) model has more realistic results than other models.



Proceedings 2019, 31, 63 10 of 12

Figure 7. Heat maps comparison with four continuous monitoring models of temperature.

7. Conclusions and Future Work

In this thesis, we can see from the experimental results that using the ε-SSVR model to construct a
global monitoring model has better performance than the traditional interpolation method IDW and
OK. Moreover, the coverage hole problem can be solved by incorporating synthetic sensors through
the following procedure: (i) adding virtual points in space by using uniform design, (ii) applying
interpolation method (e.g., zIDW or zOK in our case) for synthetic data generation, (iii) combining
real and synthetic sensor data (spatial and temporal) for ε-SSVR model buildup. The above effectively
improve the estimation accuracy of continuous monitoring model.

It is worth noting that in our experiment, spatial clues contribute more to the model performance
than temporal clues of only h = 3 past points. The possible suggestion is to add more past points (i.e.,
greater h) to the temporal model in future work. Furthermore, the interpolation method including
temporal clues may also be considered to improve the quality of the data.

While the current model verification uses LOO strategy to each sensor, it is preferred, for the
future experiment, to launch an automatic drone equipped with sensors to patrol the greenhouse field,
from which the collected data (i.e., testing set) can be directed used for model validation. The drone
can collect more thorough ambient data than those of the fixed-point sensors, thus providing more
complete evaluation of the models.

In future applications, the 3-D monitoring model of ambient factors (e.g., temperature, humidity,
etc.) can be integrated into the automated control system of the greenhouse; for heat management,
as an instance, it is crucial when and where to open the widows or fans under current estimation of
heat map. Furthermore, to improve the estimation of greenhouse environment, we can also combine
the meteorological data from a local micro-weather station [28,29] such as wind speed, solar radiation
[30], and so on. Other factors might include ambient conditions, for example, the state of ventilation
equipment (windows or fans on or off ), endothermic processes from crop transpiration, and soil
evaporation.

In addition, greenhouse environmental factors are mostly modeled and monitored by the
computational fluid dynamics (CFD) field. However, in the modeling process of CFD, the setting of
environmental parameters is often an important task. As a result, we can also apply ε-SSVR global
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monitoring model to help decide parameter values such as greenhouse transparency, air thermal
conductivity and aerodynamic viscosity for the fluid mechanics.
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