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Abstract: The study of cognitive responses and processes while using applications is a critical field 
in human–computer interaction. This paper aims to determine the mental effort required for 
different typical tasks with smartphones. Mental effort is typically associated with the concept of 
cognitive load, and has been studied by analyzing electroencephalography (EEG) signals. Thus, this 
paper shows the results of analyzing the cognitive load of a set of characteristic tasks on 
smartphones. To determine the set of tasks to analyze, this paper proposes a taxonomy of 
smartphone-based actions defined after considering the related proposals in the literature and 
identifying the significant characteristics of the tasks to classify them. The EEG data was obtained 
through an experiment with real users doing tasks from the aforementioned taxonomy. The results 
show significant differences in the cognitive load of each task category and identify those tasks that 
involve a higher degree of mental effort. The results will be the starting point of the M4S project that 
aims to contribute to the early diagnosis of mild cognitive impairment through monitoring everyday 
dual-tasking in terms of interaction with smartphones. 

Keywords: electroencephalography; mobile computing; cognitive load; mental effort; human-
computer interaction 

 

1. Introduction 

The widespread use of smartphones and mobile devices today allows us to provide applications 
and services to address many issues, such as those in healthcare. The smartphone is a great source of 
information; its sensors provide us with data about location, movement, voice, battery, and 
application use, among others; this is being used to assess the behavioral aspects of users in their 
daily life [1]. Concerning health, for example, the analysis of smartphone use allows us to track GPS 
locations and trajectories followed by users and can be used, for example, to measure anxiety levels 
as a prelude to mental health problems [2]. Additionally, data coming from the interaction between 
users and their own mobile devices provide us with valuable information related to human behavior. 
In fact, the smartphone can be an ally for diagnostic purposes [3], although it should serve a 
complementary role in the doctor–patient relationship. Particularly, in dementia, Blanka Klimova [4] 
evidenced the potential of mobile apps for diagnosis support, minimizing examiner bias, increasing 
patient independence, cutting hospitalization costs, and improving the overall quality of life of elders. 
As we can see, analyses of interactions (explicit or implicit) with smartphones can be invaluable in 
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the field of human–computer interactions, as well as in the field of health, with diagnosis and 
treatment purposes. 

This paper is part of the project “Mobile computing-based Multitasking for Mild cognitive 
impairment Monitoring and early Screening (M4S)” that aims to contribute to the early diagnosis of 
mild cognitive impairment through monitoring everyday dual-tasking in terms of interactions with 
smartphones on the move. An initial stage of this project is to determine the cognitive load required 
for various, typical tasks performed on a mobile device, i.e., the main objective of this paper. The 
findings of this paper not only contribute to the aforementioned project, but also to the research 
community in the field, giving rise to a better understanding of cognitive processes which are 
associated with the use of mobile devices. 

In order to analyze the cognitive load (i.e., the amount of working memory resources or “mental 
effort” associated with a specific task, concepts explored in depth in Section 2.1), we analyzed the 
EEG activity of users performing a set of typical tasks with a smartphone. The fundamentals of the 
EEG-based cognitive load analysis are also described in Section 2.1. To determine the set of tasks to 
analyze, this paper proposes a taxonomy of smartphone-based actions. We considered the related 
proposals in the literature (Section 2.2), and identified the significant characteristics of the tasks to 
classify them, in order to propose the HuSBIT-10 taxonomy: Human-Smartphone Basic Interactions 
Taxonomy for 10-s tasks (Section 3). An experiment with real users was conducted with the dual 
objective of (i) studying the cognitive load of different typical tasks with the smartphone, and (ii) 
validating the classification made in the taxonomy in terms of the mental effort associated with the 
identified task categories. The protocol, material, and methods of the experiment are explained in 
Section 4, and the obtained results are presented in Section 5. Finally, Section 6 concludes the paper. 

2. Fundamentals and Background 

2.1. Cognitive Load 

2.1.1. Cognitive Load Fundamentals 

Each person has a specific way of responding to external stimulus, but the brain processes this 
information following a common pattern for most people. One similar point is usually the mental 
effort and cognitive load, which are closely-related but different concepts; the first occurs in 
interactions between the characteristics of a task and the characteristics of the subject. Each task has 
a different load, i.e., it can be more complex or simple (depending on the steps or the level of precision 
required in order to perform the action), and each subject processes it differently, according to their 
skills and aptitudes [5]. On the other hand, mental effort is related to the cognitive resources we use 
to undertake a specific task. 

With these basic concepts in mind, we can mention the Sweller’s [6] theory of cognitive load, 
which focuses on working memory, and specifically, on Mayer’s [7] theory of multimedia learning. 
These theories are part of the cognitive sciences that seek to improve multimedia environments [8] 
within the information processing paradigm, taking it as a “natural information processing system” 
[9]. 

In our work, tasks with smartphones have different mental burdens and are related to some 
external stimulus, therefore the tasks are translated into cognitive information. For this, we use 
several sensitive channels. In our case, the auditory and visual channels trigger working memory. 
The processing of information in working memory is related to the activity we are consciously 
carrying out [10]. In addition, recent research has shown that working memory is divided into three 
processors or channels [8]. The information processed in this memory is distributed between two 
partially independent processors, i.e., the auditory and the visual, which manipulate verbal and 
pictorial information, respectively. Additionally, there is a third processor known as the central-
executive, which is responsible for coordinating the processing of information that enters and leaves 
the working memory. 
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For this reason, we must consider the presentation of information to avoid overloading these 
channels. In addition, it is critical to consider whether the information is new, so that it can be 
acquired only if the subject’s mental activity can relate it to mental schemes previously stored in long-
term memory [7,11]. The difference here is that if a person has done a task repeatedly, their processing 
is different because they have response patterns associated with that task and the execution is faster 
or easier to do. This is achieved with practice time and depends on the intuitiveness of the tasks, 
which has been considered in the development of our work. 

All the previous fundamentals are considered in this paper to define the taxonomy tasks with 
smartphone and to define the experiment protocol, as we describe in next sections. 

2.1.2. EEG-Based Cognitive Load Analysis 

Attending to the EEG activity, four main areas of the brain have been discussed in the literature 
to study neurological activity: parietal, occipital, temporal and frontal [4,12]. This neurological 
activity has been observed to produce a range of electrical waves per second at different frequencies 
with greater or lesser level of coverage that depends on the task being performed. 

A clear example of the differences that occur in the electrical response of the brain associated 
with neurological activity can be seen in the electrical oscillations emitted during sleep compared to 
those made when awake. The brain produces very low-frequency electrical waves (<1 Hz) in the 
electroencephalogram (EEG) of sleep stages, between the 0.55–0.95 Hz range and with peaks at 0.7–
0.8 Hz in the frequency band known as delta [13]. On the other hand, higher frequencies and faster 
waves predominate in waking conditions, where bands oscillate between 0.5–40 Hz. The intervals 
that correspond to each band are as follows: 0.5–4 Hz (delta band), 4–8 Hz (theta band), 8–13 Hz 
(alpha band), 13–30 (beta band), and finally 30–40 Hz (gamma band). As stated before, the 
composition of the electrical response strongly depends on the cognitive task. 

EEG techniques can capture the electrical response of the brain by means of electrodes placed 
on the scalp. These electrical signals are generated by ionic movements in and around neurons during 
the activation and deactivation of neurons involved in a cognitive task. EEG measures the fluctuating 
voltages in these electrical signals. There is not a straightforward way to estimate cognitive load from 
EEG electrical signals, however, some approaches can be found in the literature. The three most 
commonly used analysis techniques are: (i) event-related desynchronization (ERD), (ii) theta-alpha 
ratio (TAR) and (iii) those techniques based on machine learning. In relation to detecting changes in 
cognitive load using the ERD technique, Klismech found that the spectral power in the theta band 
increases while the spectral power in the alpha band decreases [14]. Further relevant contributions 
have studied the use of ERD from alpha and theta bands to measure cognitive load. For example, 
Antonenko et al. have applied ERD technique in two different case studies related to the learning 
context [15]. 

On the other hand, some recent studies have explored the use of TAR technique as a measure of 
cognitive load [16–18]. In particular, Trammell at el. have found associations between age and 
estimated cognitive load by using this technique. TAR is obtained by dividing the spectral power of 
theta band in the middle frontal area (Fz) by the spectral power of alpha band in central parietal area 
(Pz). 

Other novel and powerful approaches to estimate cognitive load are those based on machine 
learning. There are many research works using these techniques for this particular purpose [19] 
which uses Naïve-Bayes, and [20], which uses deep convolutional neural networks. Through machine 
learning models, robust and useful metrics can be extracted from EEG signals, although they have 
some problems related to the sample size and data gathered from the acquisition trials. Specifically, 
(i) it takes a large number of participants to adequately train a classifier or fit a regression model that 
can be able to work properly on EEG data from anyone; (ii) the studies found are mostly based on 
supervised learning, therefore, a big labeled dataset is required to train the model. Such 
considerations have made us discard machine learning techniques as a method for this work. 
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2.2. Mobile-Device Interaction Background 

Interaction with mobile devices has been widely studied in the literature. Today, many projects 
and research apply a user-centered design and development, highlighting the role of usability and 
user experience in terms of mobile device interactions. According to Hoober [21], users interact with 
their mobile devices in three different ways: (1) using only one hand, (2) using both hands, and (3) in 
a passive manner. Likewise, this study also indicates three types of human-device interactions: active 
use passive use, and talking, as well as the body posture that the users have when they interact with 
their mobile phones: walking, standing and sitting. 

In 2005, Karam and Shraefel carried out a broad study leading to the creation of a general 
taxonomy of gestures in human computer interactions [22]. In this work, authors also presented a 
review of possible interactions with any device, not just mobile. Focusing on mobile phones, the most 
common inputs were: camera, touch surface and sensors-on-body (e.g., accelerometer, GPS). The last 
input is considered as a pervasive or implicit way of interaction with the mobile device. In case of 
interaction with touch screens, Wroblewski [23] proposed a reference guide very popular as 
standardized guide about gestures in these kind of displays. 

Furthermore, there is a vast amount of works which are focused on analyzing user-Smartphone 
interactions in different domains, using a variety of measurement mechanisms, and facing multiple 
purposes. Today, works such as the one presented by Hinckley et al. [3] show new ways to detect 
interaction with smartphone screens before it happens. which is referred to as “pre-touch sensing”. 
Cameras and vision-based systems are also useful to analyze interactions with mobile applications. 
Authors such as Souza [4] and Chang [5] highlight the importance of eye-tracking data for usability 
studies, comparing them with traditional techniques. 

The analysis of population behaviors can also be studied by observing interactions between 
users and their mobile phones. In this regard, new usage and behavioral patterns can be found [6], 
as well as different types of smartphone users [7]. In the field of psychology, Harari et al. [8] 
determine that the use of smartphones is an important observation tool in psychological science, 
considering all data provided by these mobile devices. Measuring and analyzing patterns for 
smartphone addiction is also possible by interacting with the mobile phone [9,10]. 

All interactions with mobile phones occur at different levels. We can study these interactions 
with the operating system, built-in sensors, and physical device buttons, as well as with the installed 
applications. Given our objectives, and considering the related work, in which we did not find 
research regarding the classification of smartphone tasts on a cognitive level, we propose a specific 
taxonomy of basic tasks related to the most common types of interaction with mobile phones in the 
following section. 

3. Proposed Taxonomy: HuSBIT-10 

According to the objectives of our study, we need to define a set of usual tasks focused on the 
user-smartphone interaction. Thesetasks are quick and simple tasks that require less than 10 s. The 
name of the taxonomy is HuSBIT-10: Human-Smartphone Basic Interactions Taxonomy for 10-s tasks. 

First, we have identified four types of interactions that a user could carry out with his mobile 
phone: (τ) touch, (ι) look, (ς) speak, and (η) hear. All of them are closely related to human senses, 
critical to analyze the cognitive load and information processing [8]. In addition, considering some 
approaches from the literature, the interaction types can be classified in two categories: (α) active and 
(ρ) passive, depending on whether the user explicitly interacts with the device or not. With this, we 
can determine if a specific interaction type from the first four types previously mentioned is active or 
passive. 

Moreover, any interaction task with the mobile phone could employ one or several types of 
interaction from the above. Hence, we have defined AMPEC-10 as a term to group the five types of 
tasks that a user can carry out with the smartphone in a maximum time of 10 s (limit obtained 
experimentally), making use of the four interaction types. According to the acronym AMPEC-10, the 
tasks have been grouped into the following types: 
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 (A) Automated. This represents the tasks with or without a minimal cognitive effort that we 
typically perform automatically or unconsciously. 

 (M) psychoMotor. This kind of task requires a quick or direct interaction with the smartphone, 
where the main difficulty is to perform a touching interaction carefully or with proper accuracy. 

 (P) Production. It includes tasks which require basic content creation, requiring creative skills to 
produce new content. 

 (E) Exploration. This kind of tasks requires the analysis of a set of data to obtain specific 
information. 

 (C) Consumption. It defines the tasks that require content consumption. 

The prevalence of interaction types (touch, look, speak, and hear) on these task types is another 
factor to consider. A first approach reveals that touch and look interaction types are the most common 
interactions between user and smartphone. Likewise, as we saw in Section 2.2, speak and hear occur 
less often. This fact confirms what other studies in the literature, as studied in [24,25]. 

With these assumptions, we have modeled a new taxonomy approach from scratch, called 
HuSBIT-10 to classify any task with a duration under 10 s, that users perform with their smartphones. 
In Table 1, an overview of identified tasks (classified by task type) and some examples are shown. 

Table 1. AMPEC-10 tasks classification according to HuSBIT-10 approach. 

Task Category Id Task Type Characteristics Examples 

Automated 

A1 
Query an 

item 
(α) (τ, ι) 

Check time/Check if there are notifications/Check if I have 
WiFi 

A2 
Action on 

any physical 
button 

(α) (τ) Turn on-off device/Turn up-down Volume 

psychoMotor 

M1 Pattern (α) (τ, ι) Device unlock (with unlock pattern) 
M2 Move (α) (τ, ι) Add and move a shortcut 
M3 Dismiss (α) (τ, ι) Close opened apps, Close notification preview 
M4 Copy & Paste (α) (τ, ι) Share information among applications 
M5 Select (α) (τ, ι) Select a part of a text 

Production 

P1 
Text 

Production 
(α) (τ, ι) 

Add a new contact/Set an alarm/Write a 
message/Reminder 

P2 
Voice 

Production 
(α) (τ, ς) Make a call/Make a voice command/Create voice message 

P3 
Visual 

Production 
(α) (τ, ι) Take a photo 

Exploration 

E1 
Search on a 
textual set 

(α) (τ, ι) 
Search for a contact/Search for a song/Search for date in 

the calendar/Last call made to someone 

E2 Search on a 
visual set 

(α) (τ, ι) Search for a specific application/Browse images/Change 
direct-access settings (e.g., airplane mode) 

E3 
Analysis of 

textual 
contents 

(α) (τ, ι) 
Change settings details (e.g., data roaming)/Do a search in 

an Internet Browser 

E4 
Analysis of 

visual 
contents 

(α) (τ, ι) Search for a route/site on a map 

Consumption 

C1 
Text 

Consumption (ρ) (ι) View/Read notifications, Read a text message 

C2 
Audio 

Consumption 
(ρ) (η) Listen to an audio message/Listen to a podcast 

C3 
Media 

Consumption 
(ρ) (ι, η) Watch a video 

The aim of HusBIT-10 approach is to provide support to classify the AMPEC-10 tasks in terms 
of planning and cognitive load from a bidimensional perspective, as well as promoting replicability 
in other trials and experiments. 
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4. Experiment: Cognitive Load in Smartphone Interactions 

4.1. Experiment Protocol and Method 

The study was conducted in the MAmI research lab at the University of Castilla–La Mancha, a 
group focused on health informatics and human-computer interaction (http://mami.uclm.es). The 
participants were informed about the scope and goals of this research and about the collected data. 
The work was conducted with six participants, from 22 to 31 years old who received and signed the 
information sheet and consent form, which provided detailed information about the study’s 
objective, procedures, and types of data to be collected. All participants had the opportunity to 
consider their participation before making a final decision. Thereby, the preservation of the dignity 
and autonomy of the end-users was ensured by their voluntary participation and the fact that they 
could leave the study at any time without any consequences. 

This study followed the empirical method for gathering evidence regarding EEG data while user 
interact with a smartphone. The followed protocol can be summarized as follows: (1) all participants 
received an instruction sheet with the actions to do with the smartphone and ensuring they fully 
understood it (Figure 1d). The actions were randomly sorted for each participant; (2) all participants 
were wearing the EEG headset (Figure 1a) and sat at a desk with the smartphone (Figure 1c); (3) 
participants were required to perform the EEG calibration with the Xavier TechBench SoftwareTM 
(www.emotiv.com/product/emotivpro/) (Figure 1b); (4) the participants, without receiving any 
additional instruction, performed all the tasks of the sheet. This entire process for each participant 
took approximately 25 min. 

 

Figure 1. Experiment setup with the following materials: (a) Emotiv Epoc + EEG headset; (b) Laptop 
with the required software: Xavier TechBench SoftwareTM to collect raw data and eeglib to process 
and analyze; (c) Mobile phone Samsung J6 with Android 9.0 Pie; (d) task sheet with the experiment 
instructions and the consent form. 

4.2. Material 

The cognitive load is studied using a device for capturing EEG signals for scientific purposes, 
model Emotiv EPOC+. This device has 14 EEG channels and two references for positioning and 
accurate spatial resolution. These channels have eight frontal electrodes (AF3, F7, F8 and FC5 on the 
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left hemisphere, and FC6, F4, F8 and AF4 on the right hemisphere), two temporal electrodes (T7 and 
T8), two occipital electrodes (O1 and O2) and two parietal electrodes (P7 and P8). The headset uses a 
sequential sampling method at a rate of 128 samples per second. To collect the EEG raw data, we 
used the Xavier TechBench SoftwareTM. For the EEG data processing, there is a specialized software 
developed to process EEG data, called eeglib, which can also applied to other kind of data sources 
[26,27]. eeglib is actually a Python-based library for EEG processing that provides some data 
structures to help for that purpose. This library can load CSV and EDF files that are typical formats 
in which EEG is stored, and allows the user to import the data from Python and NumPy data 
structures. It can apply three different pre-processing techniques to the signals: bandpass filtering, z-
scores normalization and Independent Component Analysis. It also includes a set of processing 
techniques to extract features from data: FFT, Higuchi Fractal Dimension, Petrosian Fractal 
Dimension, Hjorth parameters, Detrended Fluctuation Analysis, Lempel-Ziv Complexity, Multiscale 
Sample Entropy, Synchronization Likelihood, and Pearson Cross Correlation Coefficient. The library 
includes a tool to generate datasets (in pandas DataFrame format) that can be used easily to apply 
machine learning techniques or to perform statistical analysis. 

The smartphone used in the experiment was a Samsung J6 with the operating system Android 
9.0 Pie. The list of specific tasks to perform is shown in Table 2. There are three tasks per category, 
omitting the category Automated due to the very low cognitive load associated to unconscious or 
mechanic tasks. Thus, the total number of evaluated tasks were 12. The design of the list of tasks 
follows the considerations and fundamentals about cognitive load in Section 2.1. 

Table 2. List of tasks performed in the experiment according to HuSBIT-10 taxonomy. 

Task Category Task Type Specific Task in the Experiment  

Consumption 
C1 Read a message that contains a poem by Espronceda 
C2 Listen to a podcast from the daily news 
C3 Watch a video 

Exploration 

E1 Search for a given date in the calendar  
E3 Switch off the data roaming in the device settings  

E4 Search how to reach a given place (about 500 m away) in the 
map from the current location 

psychoMotor 

M2 Add and move an app shortcut (2 times) 
M4 Copy a message into the browser search box (Google widget) 

M5 Select one word, then two and, finally, two and a half words in a 
Wikipedia article 

Production 

P1 Write down the places where you would go in a zombie 
apocalypse 

P2 
Create a voice message with the list of objects you would collect 

in a zombie apocalypse 
P3 Take an artistic photo of one object around you 

4.3. EEG Data Processing 

Participants performed all the tasks described in Table 2, specifically, three defined tasks per 
category considered in the HuSBIT-10 proposed taxonomy. EEG activity was recorded during each 
task for a 10-s interval (EEG segment). The recorded EEG data can be found in the link in Section 
Supplementary Material. 

The EEG segments, denoted as <Participant_Id, Task Type>, were then analyzed to estimate 
cognitive load in accordance with the following procedure: first (i), each EEG segment was 
preprocessed applying a 2–15 Hz bandpass filter to remove frequencies that were not under analysis 
(neither alpha nor theta band were removed); then (ii), zScore normalization was performed on the 
filtered EEG signals to made possible relative comparisons across EEG segments for all the 
participants in the next steps. After pre-processing (iii), each normalized EEG segment was split into 
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1-s windows with 50% overlapping; later (iv), a variation of the TAR index was computed for each 
analysis window within the EEG segment, as indicated below: 

TAR = (thetaF3 + thetaF4)/(alphaP7 + alphaP8) (1) 

where thetaF3 and thetaF4 were the spectral power of the theta band in the F3 and F4 electrodes (frontal 
area in both brain hemispheres); and alphaP7 and alphaP8 the spectral power of the alpha band in the 
P7 and P8 electrodes (parietal area in both brain hemispheres). Once theta-alpha ratio values were 
obtained for each analysis window (v), the TAR index was averaged for the entire EEG segment that 
enclosed them all. This average TAR index (for the current EEG segment) was considered as a 
cognitive load estimation for a particular task performed by one participant (<Participant_Id, Task 
Type>). If the average TAR indices across all participants are grouped by task and again averaged, 
cognitive load estimations for each particular task will be obtained. 

4.4. Result 

The experiment results show differences among the cognitive load associated with each of the 
categories of smartphone tasks. These finding should be considered preliminary due to the reduced 
number of subjects in the experiment, the slight differences, and the wide standard deviation of the 
data, as shown in Table 3. This table summarizes the average cognitive load data for each category, 
considering all the users. It can be observed that the tasks with the highest cognitive load are those 
of the Exploration category with a significant difference, followed by Production. The ones that show 
the least cognitive load are the psychoMotor and Consumption tasks, with very similar cognitive 
load measures. 

Table 3. Results of cognitive load in each task performed in the experiment according to HuSBIT-10 
taxonomy. 

Task Category Averaged 
Cog. Load 

Standard 
Deviation 

Task 
Types 

Averaged 
Cog. Load 

Consumption 
  C1 1.206 

1.253 0.251 C2 1.273 
  C3 1.280 

Exploration 
  E1 1.097 

1.394 0.247 E3 1.597 
  E4 1.488 

psychoMotor 
  M2 1.224 

1.247 0.297 M4 1.241 
  M5 1.277 

Production 
  P1 1.287 

1.284 0.255 P2 1.240 
  P3 1.324 

Observing the average value obtained in each of the 12 evaluated tasks, we see two cases of tasks 
that have a significantly higher cognitive load than the rest of tasks: analysis of textual contents (E3) 
and analysis of visual content (E4). The task regarding analysis of textual contents has been carried 
out by means of asking to switch off the data roaming in the device settings. This task is complex 
because users must navigate into the numerous categories in the smartphone setting and localize one 
element through understanding the setting organization. The second case regarding analysis of 
visual content corresponds to the search for a route in a map, a more complex exploration task than 
the search for an element as a whole. The lowest cognitive load is observed in the task about searching 
into a set of textual elements, in the experiment case, to search for a given date in the calendar. Figure 
2 shows the graphical representation of the average values of each task. 
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Figure 2. Graphical representation of averaged cognitive load for the 12 evaluated tasks. 

5. Conclusions 

The present work is the beginning of a new research line that aims to help in the evaluation of 
cognitive abilities and contribute to the early diagnosis of mild cognitive impairment through the 
continuous analysis of the interaction with smartphones. The first steps have focused on two aspects 
that correspond to the main contributions of this article: the taxonomy of tasks with smartphones 
named HuSBIT-10, and the analysis of the cognitive load of typical tasks. The taxonomy is based on 
similar classifications focused on other devices found in the literature, as well as on the cognitive 
components related to each of the tasks. This taxonomy can support researchers in human-computer 
interaction to have a model that classifies the types of interactions with smartphones. Secondly, the 
data obtained after the experiment to analyze the cognitive load of different tasks provides us with 
information about the associated mental effort of each one. It will serve as a starting framework to 
evaluate their performance over time and associate it with cognitive impairment. It is important to 
notice that the EEG headset used in this study has no medical or scientific purpose, so, although it is 
reliable, its accuracy is not very high. Also, the population used in this experiment can be insufficient 
to be statistically significant. Future work will focus on improving this experiment, both with a more 
accurate EEG measuring devices, and by increasing the population and the set of tasks to be 
performed. Moreover, future work will involve analyzing cognitive load when interacting with 
specific mobile application for people with special needs. Examples of this are augmented reality for 
guiding people with dementia [28,29], mobile-based biomedical signals measurement [30], and 
avatar-based apps for emotion management [31]. 

Supplementary Materials: The EEG dataset generated and analyzed for this study can be found in 
www.esi.uclm.es/www/mami/web/index.php/datasets. 
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