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Abstract: The Internet of things (IoT) is characterized by billions of heterogeneous, distributed, and 
intelligent objects—both from the digital and the physical worlds—running applications and 
services. Objects are connected through heterogeneous platforms providing support for the 
collection and management of data that need to be understood. Since IoT systems are composed by 
a variety of objects and services, a key aspect for engineering them is their architecture. The new 
paradigm called Internet of people (IoP) is not unaware of this need. In IoP, humans play an 
important role so that design considering aspects as context becomes critical for making the most of 
these applications. This work presents a context-aware, serverless, microservice-based, and cloud-
centric framework for the Internet of things and people (IoT-P) applications that extends the three-
layer classic IoT reference architecture. It integrates most of the aspects considered by the 
architecture of IoT solutions emerging from different perspectives, being also domain independent. 
This work focuses on the application paradigm of IoT neglected by most proposals. This framework, 
combined with a previous work, offers a higher separation of concerns (SoC) degree than other 
proposals, by splitting the application layer into different sublayers or subsystems based on their 
responsibilities and tracing atomic components to serverless microservices, to facilitate the design, 
development, and deployment of IoT-P applications. An IoT-P application in the healthcare domain 
is presented to illustrate how this framework can be put into practice. 

Keywords: software architecture; layer; microservice; serverless; cloud; context-aware; Internet of 
things; Internet of people 

 

1. Introduction 

Internet of things (IoT), also known as Internet of everything or cyber-physical systems [1], can 
be considered a new computing paradigm [2–4] that encompasses a great amount of technologies 
that promotes its vision [2] in a disruptive way [5]. IoT can lead to a modern society where people 
and things are virtually integrated with information systems via wireless sensors [3]. It offers a great 
potential for improving not only the efficiency of a wide diversity of industrial processes, but also 
the quality of human beings with application scenarios such as e-health or assisted living. Therefore, 
IoT could contribute invaluably to economic development having social implications as well [4]. A 
new paradigm, Internet of people (IoP) [6], emerges as an evolution of IoT and cyber-physical social 
systems (CPSSs), so that the social nature of the human beings is now considered for the development 
of these systems. In this IoP proposal, a human being has a myriad of connection possibilities through 
the Internet by self-organizing networks of users as well as of physical devices through IoT. 
Moreover, in IoP, devices could become representatives of their owner that can act on their behalf 
[7]. This new paradigm not only does not compete or substitute IoT infrastructures but it uses its 
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infrastructures and enlarge its capabilities. Thus, human and devices create a complex socio-technical 
ecosystem [8]. 

However, there are many issues and challenges that limit the effectiveness and performance of 
the IoT [1,4], such as scalability, amount of data to be managed, real-time processing, etc., which are 
related to the software architecture (SA) [1]. With the rapid increase in the number of smart devices, 
existing IoT architectures are not, anymore, fully applicable to provide ideal services [4]. Moreover, 
there is no a standard accepted architecture that guides their development, as stated in [4]. Most of 
the approaches propose a field- or domain-specific architecture. Therefore, it is necessary to define a 
set of design patterns that may be used to provide end-user applications with self-adaptive [9] and 
context-aware properties [2], and a reference IoT architecture fulfilling all the IoT needs in different 
domains [10]. 

The aim of this work is to identify requirements and open issues of IoT architectures that should 
be addressed by a suitable domain-independent IoT architectural solution. This study not only 
considers IoT needs but also consider the new features that IoP may introduce in the proposed 
architecture. In order to tackle this goal, this work summarizes the most important aspects regarding 
IoT architectures, identifies certain issues associated to IoT architectures that should be addressed, 
and presents a context-aware, microservice-based, and domain-independent architectural 
framework for IoT applications. The proposal addresses many of the identified problems focusing on 
the application paradigm of IoT neglected by most proposals. The remainder of this paper is 
organized as follows: Section 2 gives an overview of related work about IoT architectures. Section 3 
presents the core of our architectural proposal highlighting the way in which the separation of 
concerns (SoC) degree is achieved by splitting the application layer into different sublayers or 
subsystems based on their responsibilities. Section 4 presents how our proposal is based on 
microservice and serverless aspects. Section 5 describes how our proposal has been put into practice 
within an IoT system prototype in the healthcare domain. Finally, Section 6 draws our conclusions 
and lays out our future work.  

2. Related Work 

In this section, a review about IoT architectures is presented highlighting which issues should 
be considered by an IoT architectural proposal. As claimed in [1,4], most of the architectural 
specifications used at the initial stages of IoT research were structured into three layers, each layer 
being related to one of the three main IoT paradigms or perspectives [5]: 

 Application (or presentation or semantic) layer: It employs intelligent computing technologies (e.g., 
data mining, cloud computing) to extract valuable information for processing a huge amount of 
data [4]. Data received are then analyzed to provide users with services and make decisions [1], 
offering an interface between users and IoT [4]. 

 Transport (or network) layer: It deals with network operations [4]. This layer is responsible for the 
transmission of gathered information [1]. 

 Sensing (or perception or hardware or physical) layer: It is responsible for collecting information [4].  

In these initial approaches, the user should be considered in a paramount way and the SA should 
enable the use of data and the infrastructure to develop new applications [10], connecting all 
perspectives. However, most proposals were focused just on the generic aspects of the network and, 
especially, on those aspects related to sensoring [5,10]. Therefore, such proposals neglect the application 
domain and data presentation aspects that enable the creation of valuable knowledge for business or use cases 
[5] (Issue 1). 

Normally, a traditional application-based approach that connects sensors directly to 
applications becomes unfeasible and results as inefficient [2]. For this reason, existing IoT 
architectures need to be scaled up. Regarding flexibility, as stated in [3], autonomous services needed 
by IoT users can be supported by constructing an adaptive, context-aware, and reconfigurable service 
architecture able to handle applications according to its requirements. These features are especially 
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relevant to IoP applications, as the context and the needs of adaptation are a must for their 
development. As Lagerspetz et al. pointed out [7], for IoP applications, “devices also need to obtain 
information about the social context they are operating in, so they can share resources as their owners 
would”. 

In order to address the problems exhibited by those approaches and the requirements of IoT, 
such as scalability, flexibility, interoperability, quality of service (QoS), and security among others 
[3], several middleware solutions were introduced as an abstraction layer between the transport and 
the application layers. However, those middleware solutions focus just on some of the mentioned 
aspects as stated by [2,11]. Therefore, an ideal middleware solution or architectural framework that addresses 
all the aspects required by the IoT is yet to be designed [2] (Issue 2). 

Most of the middleware solutions, such as [4,9], proposed for architecting IoT follow a service-
oriented architecture (SOA) approach. Despite its advantages for IoT solutions, SOA may become too 
heavy for being deployed on resource-constrained devices when the system is finally developed as a 
monolith difficult to be scaled up and evolved. It should be considered that an appropriate SoC degree 
can ease the traceability between middleware or framework abstractions and components or services (Issue 3). 
Furthermore, some of the existing IoT SOA-based middleware solutions rely on several layers that 
consider support to object abstraction, service management, and service composition [4]. However, the 
definition of specific data models and representations is not properly addressed by such proposals. 
Consequently, new methods are necessary to adapt SOA concepts to IoT needs [9] (Issue 4). All the 
mentioned aspects are paramount for context information management [1], as a proposal able to both 
process the huge amount of data that are continuously generated and decide how to process them in order to 
obtain valuable information [2] (Issue 5) is necessary, because gathering, modelling, reasoning, and 
distribution of context plays a critical aspect for IoT. Such context information management is also 
paramount in IoP, as pointed out in [12]. 

Context-aware computing allows context information linked to sensor data to be stored, so that 
the processing and interpretation can be done more easily and meaningfully. However, many IoT 
middleware and framework solutions do not provide context-awareness support or the context-
aware support they offer do not satisfy other important requirements that IoT demands, such as self-
adaptation aspects [2]. An example is the Context Toolkit [13] (CTK). It satisfies common features 
required by context-aware applications as well as the requirements to deal with context in a 
successful way, such as a proper SoC. The CTK defines a set of abstractions to support the design and 
can be applied to any application domain. A key aspect of those abstractions is that physical objects 
or software components, people, and places, as well as their interactions, are properly managed, 
offering a more complete template for architectural design and implementation [10]. The CTK also 
provides support for resource discovery, but it only provides partial support to self-adaptation [14]. 

Self-adaptive systems [15] are able to adapt themselves according to both external and internal 
changes of their execution environment in order to continue achieving their goals. They have been 
used for the development of context-aware systems [16]. Their main constituent parts are the 
following: (i) Managed subsystem, that comprises the application logic that provides the system 
domain functionality; and (ii) managing subsystem, that provides the adaptation logic that deals with 
one or more concerns for managing the managed subsystem. In some works, such as [15], the 
managed subsystem maps to the system layer and the managing subsystem to the architecture layer. 
Then, the managed subsystem can be decomposed into another managing and managed subsystems 
providing an additional SoC between the adaptation and the application logic. Similarly, the 
managing subsystem can get a higher SoC degree by following a MAPE-K (monitor–analyze–plan–
execute plus knowledge) loop [17]. Normally, the self-adaptive approach requires the coding of an 
“intelligent” self-management logic in order to satisfy the adaptation requirements necessary for the 
system-to-be, which prevents developers from focusing on the application domain exclusively. In 
order to avoid that, it would be desirable to minimize the coding efforts of the adaptation logic delegating 
those aspects to the architectural support (Issue 6). Furthermore, regarding IoP, devices and system 
components should act proactively without requiring users’ actions, as mentioned in [11]. 
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Another approach that is quite frequently used for the development of IoT applications is cloud 
computing [2], because of its promises of high reliability, autonomy to provide ubiquitous access, 
dynamic resource discovery, as well as the composability required for the next generation of IoT 
applications. Cloud resource management and scheduling systems are able to dynamically prioritize 
requests and provision resources so that critical requests may be served in real time [10]. Moreover, 
cloud brings added scalability to context management in the IoT, since it offers significant amounts 
of processing and storage capabilities. Furthermore, cloud computing allows all parties to share 
sensor data based on a financial model [2]. Adaptation offered by cloud computing is, therefore, 
powerful. Nevertheless, the cloud computing platform to be adopted should support a wide variety of devices, 
environments, scenarios, processing patterns, and standards in a scalable and secured manner [1] (Issue 7). 

3. An Enhanced Integrated Proposal for IoT Architecting 

A conclusion that can be drawn from Section 2 is that it is necessary to define an IoT design 
framework (integrating a reference architecture, a set of patterns, etc.), with built-in context-aware 
and self-adaptive capabilities among other aspects. This framework should be able to satisfy IoT-
specific requirements and address challenges like scalability, flexibility, security, etc., as well as all 
the issues highlighted in the previous Section. This is the aim of this work, to describe such an IoT 
architectural framework. 

3.1. Previous Results 

Recently, in [18], some of the most well-known architectural approaches used in the design of 
context-aware and self-adaptive systems were analyzed. Their common aspects were also identified, 
such as the close relation between the MAPE-K loop and the CTK in terms of their elements’ 
responsibilities, and a new proposal was presented based on such common aspects using the CTK as 
the foundation of the proposal. The resulting proposal offered a modified set of abstractions or 
components, namely (i) widgets, that exposed data received from sensors when the datum is atomic, 
or from other widgets when the datum is composed; (ii) aggregators, that receive data from widgets 
to collect all the data that define an entity context; (iii) interpreters, responsible of simple inference or 
derivation, and (iv) reasoners, responsible of complex inference or reasoning, that derive or generate 
new information from that provided by widgets, aggregators, or applications; (v) actions, that are 
carried out on the system or on the environment, triggered by widgets, aggregators, or applications; 
and (vi) discoverers, that receive notifications from other abstractions, as well as from their sub-
discoverers in the hierarchy, and record information about the components available in the system. 
All these components make up what is called the context architecture [13]. This architecture supports 
the context life cycle, that is, the context information acquisition, its delivery to the interested 
application(s), and the execution of actions related to the context that must be supported directly by 
the architecture.  

Another common concept in context-awareness, also considered in [18], is situation. A situation 
is defined as the state of the current and past context in a certain region of the space and a concrete 
interval of time that are relevant to identify what is happening in the environment [19]. Situations 
can be considered complex events that affect entities related to the environment [13]. In order to 
detect different situations, the context architecture can be decomposed in different situation context 
architectures or subsystems, each of them supporting a concrete situation. Situation subsystems, or 
its components in isolation, could be reused by several applications, as pointed out by [13]. All the 
abstractions, as well as the concepts presented in this Section, are integrated into our new proposal 
described in the following. 

3.2. A Framework for Architecting the Application Layer in IoT Applications 

With the goal of offering architectural support to adaptation aspects, in the new proposal, the 
application layer presented in the initial three-layer architecture is now split into two different main 
subsystems matching the self-adaptive architecture (see Figure 1). These subsystems are named 
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adaptation subsystem (equivalent to managing subsystem) and domain functionality subsystem 
(equivalent to managed subsystem). Moreover, the domain functionality subsystem is also structured 
into two subsystems to establish a clearer separation between the adaptation concerns of the system 
and the domain application logic: One equivalent to another managing subsystem and another 
equivalent to another managed subsystem. Bearing in mind the equivalence between MAPE-K and 
the CTK, in terms of responsibilities previously indicated, the new two subsystems are: global context 
subsystem, which is equivalent to the new managing subsystem; and domain application(s) logic, 
which is equivalent to the new managed subsystem. Furthermore, the global context subsystem is 
structured into different situation context subsystems that are specified using the abstractions and 
concepts previously indicated (see Figure 1). Finally, as in other solutions, the domain logic of the 
application(s) to be developed for every system-to-be is out of the architecture specification here 
defined. However, it is worth noting that our proposal facilitates the definition of different aspects of 
the application layer that other proposals neglect, as it will be explained in more detail in the 
following sections. The other elements of the three-layer architecture remain unchanged.  

 
Figure 1. The proposed framework for developing Internet of Things (IoT) applications is made up of 
the adaptation subsystem and the global context subsystem. The latter is made up of different 
situation context subsystems, which are specified using the abstractions defined in [18]. 

In the two following subsections, the most relevant subsystems of the proposal, global context 
subsystem, and adaptation subsystem, that support the IoT required context-awareness and self-
adaptation capabilities respectively, are described. It is also summarized how some of the issues 
identified in Section 2 are addressed and how certain elements like cloud computing [20] have been 
exploited in order to obtain an integrated architectural approach. 

3.2.1. Global Context Subsystem 

In order to increase the required SoC, the global context subsystem is specified as a hierarchical 
structure based on the domain-driven design notion of bounded context [20]. This notion is used to 
split a complex domain into multiple bounded contexts matching business or user goals that should 
be satisfied by the application. Specifically, bounded contexts establish different subsystems around 
the concept of situation: Each bonded context corresponds to a subsystem related to a situation, that 
is, a situation context subsystem. A situation context subsystem supports the management of a 
concrete situation by using the results of our previous work [18].  

As introduced, each situation context subsystem is specified using the abstractions described in 
Section 3.1 and composed using the data flow of the context life cycle (see Figure 2 for an example). 
These abstractions are then traced to services, being their interactions carried out according to the 
relations described in Section 3.1. Therefore, the situation context subsystems trace to system goals 
or use cases of a situation. This facilitates the definition of different aspects of the application layer 
that other proposals neglect, addressing Issue 1—neglection of the application domain and data 
presentation aspects that enable the creation of valuable knowledge for business or use cases. In a similar way, 
that definition facilitates the system capability to take proactive steps according to a user’s situation 
and expectations minimizing user explicit intervention, as it is desirable in IoP applications. 
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Situations management is required to understand the context. In order to enable the detection 
of situations and their associated subevents, it is necessary to previously define the required data as 
well as their related rules or patterns. Therefore, data drive the selection of sensors to be used. The 
abstractions included in this proposal, from widgets to actions, support not only the gathering of 
context information by means of sensors but the whole context life cycle including the reasoning 
needed to detect situations. Concretely, widgets and aggregators model and store simple data and 
entities data respectively, which is fundamental in data processing. These aspects address Issue 5—
gathered data need to be understood and it is required to decide what data need to be processed in order to obtain 
valuable information. 

Abstractions included in the proposal have well-defined responsibilities and their implementation 
as software components is highly cohesive around those concerns. This aspect facilitates abstractions 
traceability to the services that made up the global context subsystem. These aspects tackle Issue 3—
appropriate SoC degree to ease the matching between middleware abstractions and components or services. 

3.2.2. Adaptation Subsystem 

As mentioned, adaptation subsystem (which is equivalent to a managing subsystem) is one of 
the main subsystems of our proposal. As indicated in [18], the MAPE-K loop, the common approach 
to structure managing subsystems, can be considered equivalent to the CTK in terms of their 
elements’ responsibilities. Consequently, the adaptation subsystem could also be designed using 
such abstractions. However, instead of designing and developing the adaptation logic for IoT systems 
in a traditional way, it is possible to adopt a cloud-based approach. In this sense, some companies 
offer different cloud-based architectural solutions integrated by certain services that are supposed to 
be the backend for IoT applications [1].  

Cloud computing promises high reliability, scalability, and autonomy to provide ubiquitous 
access, dynamic resource discovery, and composability required for IoT applications [10]. 
Furthermore, the integration of cloud with IoT offers a viable approach to facilitate application 
development [3] as developers can focus on application domain aspects rather than on infrastructure 
aspects. Cloud-based architectures are also commonly adopted in IoP [12]. For these reasons, the 
architectural proposal is combined with the adoption of a public cloud platform, as will be detailed 
in the following. Thus, cloud computing will support adaptation capabilities, as it will be explained 
in Section 5. This adoption address Issue 6—desirable to minimize the coding efforts of the adaptation logic 
delegating those aspects to the architectural support. 

4. A Microservice-Based Framework for Developing IoT-P Applications 

In the previous section, the structure of a new context-aware framework for IoT applications, 
considering self-adaptive capabilities has been introduced. The architectural framework has different 
enhancements regarding the original three-layer architecture. It establishes different conceptual 
layers and subsystems that have different and well-defined responsibilities. Since the extension of 
the domain-independent conceptual framework CTK presented in [18] is used as its foundation, the 
proposal is also applicable to any domain. As aforementioned, the framework proposed has been 
combined with certain elements like cloud computing and also with microservices’ architectural style 
[21] or serverless computing [22]. The purpose of such combination is to tackle Issue 2—ideal 
middleware solution or architectural framework addressing all the aspects required by the IoT is yet to be 
designed. The proposal could also be used in the development of IoP applications due to IoT and IoP 
common basis [12]. In the following, the integration of such elements is described in more detail, 
summarizing how most of the rest of the identified issues are addressed by the presented proposal. 
Moreover, the trace between the abstractions proposed in [18] and cloud computing services or 
elements that can be used to implement them is also presented. 

The abstractions defined in [18] used in this work can facilitate not only the virtualization of 
objects but also the componentization of the global context architecture and, even, of the adaptation 
subsystem following the microservices architectural style. Microservices style refers to an approach 
for developing a single application as a suite of small services, each running in its own process, being 
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independently deployable, communicating with lightweight mechanisms, and minimizing the 
coupling [23]. Some of the main characteristics of microservice style is the organization around 
business capabilities or goals (following the bounded context notion), their decentralized governance 
and data management, their “intelligent” endpoints releasing the services of the corresponding 
management concerns, and their design for failure. Moreover, microservices style does not require a 
high level of resource discovering capabilities. It is worth highlighting that decentralized data 
management usual in microservices facilitates the definition of specific data models. Thus, as widgets 
and aggregators are traced to microservices, they will be responsible for the management of their 
own data and those data will be well-defined around the concerns of such abstractions (sense or 
gathered data will be stored along with some convenient metadata). This offers a standard method 
to derive data models (or context models [13]) from the architecture specification, an aspect especially 
neglected by the SOA approach [9]. Furthermore, microservices’ decentralized governance facilitate 
the use of different technologies per microservice as appropriate [21].  

In a similar way, the global context subsystem and, specifically, their situation context 
subsystems or architectures can be designed as a serverless architecture [24]. This means that 
microservices’ code will run in managed, ephemeral containers offered by the platform, which is 
suitable because the abstractions are highly cohesive and microservices do not require a high level of 
resource discovering capabilities. This approach addresses also Issue 6, because it reduces the 
operational cost, complexity, and engineering lead time. Then, microservices and serverless address 
Issue 4—new lightweight methods needed to adapt SOA concepts to IoT needs. However, the adoption of a 
serverless microservices approach has some common drawbacks like the reliance on vendor 
dependencies and immature supporting services. 

As aforementioned, there exist different cloud-based architectural solutions integrated by 
certain services that are supposed to serve as the backend for IoT applications. Considering the 
adoption of diverse cloud platforms, the traceability from the abstractions here used (see Figure 2) to 
cloud computing services that can be suitable to implement them is explained in the following. The 
most popular public cloud platforms are Amazon AWS, Microsoft Azure, IBM Cloud, and Google 
Cloud Platform. All of them offer a kind of platform as a service (PaaS) “polyglot” service able to run 
lightweight and highly-cohesive code, scale automatically on demand in response to events, as well 
as exploit a serverless architecture with a pay-per-use consumption model. A serverless service is 
called function in Azure Functions [25] or in Google Cloud Functions, action in IBM Cloud Functions, 
or lambda-function in AWS. No matter their name be functions, lambdas, or actions, serverless 
services are exposed by means of representational state transfer (REST) application programming 
interfaces (API) that define the way in which the different registered services can be invoked. Each 
defined API can group functions associated, so that, in this proposal, each situation context 
subsystem is described as an API that can expose all the situations’ functions. Functions—or lambdas, 
or actions—are then used to implement every abstraction presented in Section 3.1. Table 1 
summarizes the identified traceability from the architectural abstractions here proposed to the 
services or resources available in each cloud platform. However, there are certain exceptions.  

The first exception is related to the implementation of discoverers. Functions do not seem to be 
the best approach since discoverer abstractions are responsible for certain adaptation aspects, and 
those aspects should be delegated to the architecture as much as possible, that is, to the adaptation 
subsystem. The adaptation subsystem has been traced to the cloud infrastructure. All cloud platforms 
considered offer, at least, a kind of service inspired in the API gateway pattern [26] that, in 
microservice architecture style, allows application clients to interact with more than one front-end 
service. API gateways offer information that applications may use to “know” what endpoints can be 
called based on an API definition. This facilitates the introduction of new services or the 
refactorization of existing ones, the management of authentication and security aspects, as well as 
other adaptation concerns. It is worth highlighting that some API gateway services allow services 
from other platforms to be integrated as well. Consequently, an API gateway service emerges as the 
best approach to implement the general discoverer of the system-to-be. API gateways manage the 
APIs defined for each group of functions for each situation. An API defined for a group of functions 
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or situation context subsystem would be equivalent to a situation discoverer. Both API gateway 
service and situation API, equivalent to discoverers, are integrated, establishing a hierarchy of 
different discoverers in the system.  

The second exception is related to the fact that inference or reasoning needed for a specific 
reasoner could be too complex to be implemented as a function. Thus, the use of artificial intelligence 
(AI) services, such as Azure AI, Google Cloud AI, or Amazon AI, for example, could be more suitable. 
All these AI services offer different facilities that could be used to develop specific services according 
to the reasoning to be carried out (e.g., machine learning, deep learning, etc.). 

Besides the indicated cloud platforms, there are other open-source platforms that offer most of 
the kinds of services aforementioned; Apache OpenWhisk [27] or StackStorm [28] being some of the 
most popular ones. Both open-source platforms offer serverless functions, equivalent to those 
indicated above, that are officially called actions. Furthermore, both platforms also offer support to 
implement REST APIs to expose such actions. OpenWhisk offers a kind of API gateway service while 
StackStorm allows the defined APIs to be managed by means of a self-service portal and other 
orchestration services. Regarding AI services, OpenWhisk allows a type of AI action to be created 
that can include some AI frameworks and libs, such as the Google ML Engine, etc. However, 
StackStorm does not offer this kind of service up to date. It is worth highlighting that Table 1 also 
shows the traceability to OpenWhisk and StackStorm. This highlights that the proposal here 
presented may be applied to the design of IoT applications independent of the cloud platform(s) 
selected. In order to show how the proposal may be put into practice, the design and development of 
an IoT system prototype in the healthcare domain is presented in the following Section. 

Table 1. Traceability from the architectural abstractions to cloud platform services or resources. 

Arch. Abstractions Amazon AWS 
Microsoft 

Azure 
Google 
Cloud 

IBM 
Cloud 

OpenWhisk StackStorm 

Context Widget Lambda Function Function Action Action Action  
Aggregator Lambda Function Function Action Action Action  
Interpreter Lambda Function Function Action Action Action  

Reasoner 
Lambda Function Function Action Action Action  

AI Service AI Service AI Service AI Service AI Action --- 
Action Lambda Function Function Action Action Action  

Situation Discoverer 
REST API Function App REST API REST API REST API REST API 

--- REST API --- --- --- --- 

Global Discoverer 
API Gateway 

API 
Management 

API 
Management 

API 
Gateway 

API 
Gateway 

Self-service user 
portal 

--- 
Application 

Gateway 
--- --- --- 

Other orchestrator 
services 

REST: Representational State Transfer; API: Application Programming Interface. 

5. Case Study 

An important application of IoT is in the smart healthcare domain [4]. IoT offers a perfect 
approach to support ubiquitous healthcare using body area sensors, closely related to the IoP 
paradigm, as well as other devices for monitoring and IoT back-ends to upload data to servers [10]. 

The architectural framework proposed was applied to the development of an IoT system in the 
healthcare domain that detects, using contextual information gathered by sensors, different 
emergency or illness situations that may affect users. The system also generates alarm warnings and 
carries out other similar actions based on user preferences, their contacts, or their geographical 
proximity among others. Thus, this application considers relevant aspects related to human, their 
relationship with others, and the use of wearables to control some physiological signals, that is, it is 
a classic example of an IoP application. The system includes monitoring applications that allows 
relatives, caregivers, or general physicians, for example, to access health information. One of the 
situations or complex events this system should react to is whether a user has been under a high level 
of stress for a long time. Biomedical signals to be considered to determine such situation are heart 
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rate (HR), galvanic skin response (GSR), and body temperature (BT) [18]. Due to space constrains, 
only the stress situation was tackled in the following. 

To detail the system prototype implementation, the extended three-layer architecture could be 
used as a guide following a top-down approach. In this case, we focused on the subsystems 
equivalent to the original application layer (see Figure 2), that is, subsystems that belong to the 
proposed framework and application(s)-specific logic. As indicated in Section 3.2, application(s)-
specific logic was designed and implemented without using the architectural proposal specification. 
For that reason, details about users’ applications, that correspond mainly to user interfaces, were not 
provided in the following. 

 
Figure 2. Stress situation context subsystem (adapted from [18]) of the global context subsystem as 
part of the redefined application layer by the proposed framework. BT: Body Temperature; HR: Heart 
Rate; GSR: Galvanic Skin Response. 

The global context subsystem was structured into two situation context subsystems. One of them 
is the stress situation context subsystem that was designed following the proposal, as shown in Figure 
2. Its design was carried out applying the composition rules, which are based on the abstractions’ 
responsibilities as well as their possible interrelations following the context life cycle, as depicted in 
Section 3.1. As can be seen, those data needed to process a stress situation, BT, HR, and GSR are 
specified.  

The implementation of the global context subsystem for this example was carried out using 
Microsoft Azure. As stated in [1], Azure offers important characteristics and possibilities for IoT, with 
respect to other platforms, and its services have proved to be reliable and more mature. Azure’s 
multi-technology supports microservices’ decentralized governance and facilitates the use of 
different technologies per microservice as appropriate. The selection of Azure facilitates tackling Issue 
7—support for a wide variety of devices, environments, scenarios, processing patterns, and standards. 

All the abstractions that make up the stress situation context subsystem, except for the 
discoverers, were implemented as serverless microservices using Azure Functions, as shown in 
Figure 3. As indicated, these functions facilitate the exploitation of the microservice architecture style. 
Concretely, every function was well-defined and cohesive around the matching abstraction concerns. 
Every function was also linked to a Cosmos DB [29] (an Azure Not only SQL -NoSQL- database) 
scheme based on the needed data. Concretely, the resulting data models associated to the specified 
widgets and aggregator satisfied the statements made in the previous Section (i.e., the BT Widget 
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stores BT values plus the sensing time, the sensor id, and the sensor precision; and the User (under 
stress) Aggregator stores tuples of BT, HR, and GSR values plus the gathering time and the associated 
user id). Each data scheme was managed and could be only accessed by the corresponding function. 
Every function was also serverless since Azure Functions act as containers offering automatic 
resource provisioning, as well as other adaptive capabilities supported by the cloud platform 
previously indicated. 

 
Figure 3. Detail of the prototype’s deployment in Microsoft Azure using its serverless functions and 
services (only the stress situation context subsystem implementation is detailed). 

To implement the stress situation context subsystem, a Function App service [25] that groups 
several functions was used. A template of the API that exposed the functions of the situation, that is, 
the situation discoverer, was generated using an option of the Function App service. This facility as 
well as some other managing options and capabilities are separated from functions code or logic. The 
configuration and adaptation aspects were supported by the cloud platform and belong to the 
adaptation subsystem identified in Figures 2 and 3, since they allow service operation information to 
be collected, to configure some security parameters, as well as to change and add triggers and outputs 
to the corresponding function. As Figure 3 shows, the global discover was implemented by using the 
Azure API Management service [30] as part of the adaptation subsystem. In this way, responsibilities 
of the discoverer abstraction were delegated from the context architecture to the system layer 
underneath. Therefore, the adaptation subsystem, along with the other self-adaptive capabilities, may 
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be offered by Azure. This facilitates the coding effort needed to implement the discoverers to be 
significantly reduced, since it is only needed to configure certain parameters of Azure. 

Data needed to detect situations drove the selection of the sensors or devices to be used, as 
previously stated. In this example, Microsoft Band 2 [31] was used: a popular smart wristband 
supported by all the main smartphone operating systems available, includes sensors that can measure 
all the above-mentioned signals, as well as others. This wristband can be connected to users’ 
smartphones. It is worth highlighting that details about protocols, communication mechanisms, etc., 
are outside of the focus of this work. 

It is worth considering that all frameworks, patterns, architectural styles, etc., integrated into the 
architectural framework here proposed, have been validated and are widely accepted. For this 
reason, an in-depth evaluation of the proposed integrated framework will be carried out in a future 
work. As a preliminary sort of validation of the proposal, certain aspects of the performance of the 
system designed and developed using the framework were analyzed. Concretely, the system 
response time values offered by the Azure Analytics service regarding the global discoverer, which 
was implemented as an API Management service, were checked. During the monitored period, all 
the performed requests (one per second and device) were successful and the response time of each 
one varied between 0.25 and 4.5 s, 1.61 s being the average response time.  

As the preliminary validation data suggested, the proposed cloud-centric approach could result 
inefficient if the transmission of great amounts of data to the cloud platform is required. The reason 
is that the cloud platform services are responsible for processing the data received and for analyzing 
them. That analysis is needed to executing actions on the system itself, or on the environment as part 
of the situation detection process. That requirement involves a great server-side bandwidth and 
increases client latency (and/or response time). That is why this approach could result inefficient 
when devices used are smart enough, but they are not used to analyze the data, relying on the cloud 
infrastructure instead [32]. For this reason, the cloud computing approach should be extended in order to 
improve data management and processing efficiency (Issue 8). 

6. Conclusions and Future Work 

The computing paradigm Internet of things and people (IoT-P) facilitates the connection of both 
virtual and physical generic everyday things or objects, invisibly embedded in our environment, and 
people by means of existing and new Internet aspects and network enhancements. IoT-P is related to 
the growth of the ubiquitous infrastructure in which those objects, some of them on behalf of people, 
flood the Internet with a high amount of new data that need to be understood. As has been stated, 
there are lot of issues and challenges that limit the effectiveness and performance of the IoT-P, 
particularly those related to the IoT reference architectures used that usually focus on sensors and 
network aspects, neglecting the application domain, information presentation aspects, and other 
relevant features of IoP. 

This work presents a context-aware serverless microservice-based and cloud-centric 
architectural framework for IoT-P applications in order to fulfil their demands. The proposal extends 
the IoT three-layer classic architecture, focusing on the neglected application paradigm of IoT, and 
integrates most of the aspects considered by the existing IoT-P solutions (Issue 2). Concretely, the 
proposal allows a more fine-grained architectural definition that makes the design and development 
of IoT-P applications straightforward, by splitting the application layer into different sublayers or 
subsystems based on their responsibilities. These subsystems can, in turn, be componentized 
matching the abstractions defined in our previous work. This facilitates the definition of specific 
models and representations usually neglected by other proposals (Issue 1). Abstractions, 
implemented as serverless functions, enable a loosely-coupled plugin architecture in which each 
service or component is independently deployable. As a summary, the proposal tackles some other 
open issues remarked in this work such as the need to decide which data should be processed among 
the enormous amounts of data generated (Issue 5), an appropriate SoC degree that matches the 
middleware abstractions and the components or services (Issue 3), new lightweight methods to adapt 
SOA concepts to IoT and IoP peculiarities (Issue 4), the reduction of the development effort of the 
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adaptation logic by means of the architectural support (Issue 6), and the support for a wide variety 
of devices, social environments, scenarios, processing patterns, and standards in a secure manner 
(Issue 7). Moreover, the proposal is technology independent and can be used in any IoT-P domain. 

The proposal was applied to the design and development of an IoT-P system, in the smart 
healthcare domain, able to detect certain health risk situations affecting users who wear a smart 
wristband linked to their smartphones, exemplifying a common IoP problem. As seen, the design 
and development were easily carried out since the components are created as serverless, cohesive, 
containerized cloud services and the required adaptive aspects are managed autonomously by them 
or by the cloud platform. The specification shows the division between adaptation and context 
management concerns and provides a high detail of the context architecture, while the specific 
application(s) logic design remains out of the proposal.  

Despite the architectural benefits, that impact the system quality, the proposed cloud-centric 
approach could result inefficient in some cases and should be extended (Issue 8). As next steps, we 
plan to analyze the performance, throughput, costs, etc., of the alternative deployments (e.g., 
containers compared to functions, incorporating fog and edge computing aspects, etc.), in order 
validate and to extract conclusions useful to improve and extend the proposal. Moreover, we are 
developing a tool for the design of IoT-P systems using this approach as well as for the automatic 
generation of IoT-P systems. 
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