
proceedings

Proceedings

Real-Time Primitives for CoAP: Extending the Use of
IoT for Time Constraint Applications for
Social Good †

Gabriel M. Eggly 1 ID , Mariano Finochietto 2,3, Emmanouil Dimogerontakis 4 ID ,
Rodrigo M. Santos 1 ID , Javier Orozco 1 and Roc Meseguer 4 ID

1 Department of Electrical and Computers, Universidad Nacional del Sur, CONICET, Bahía Blanca 8000,
Argentina; gmeggly@gmail.com (G.M.E.); ierms@uns.edu.ar (R.M.S.); jadorozco@gmail.com (J.O.)

2 GIDI, Department of Information Technology, Universidad Nacional de Mar del Plata, Mar del Plata 7600,
Argentina; mariano.fino@gmail.com

3 SpinalCom, Orsay 91400, France
4 Department of Computer Architecture, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain;

edimoger@ac.upc.edu (E.D.); meseguer@ac.upc.edu (R.M.)
* Correspondence: ierms@uns.edu.ar; Tel.: +54-291-4595101 (ext. 3304)
† Presented at the 12th International Conference on Ubiquitous Computing and Ambient Intelligence

(UCAmI 2018), Punta Cana, Dominican Republic, 4–7 December 2018.

Published: 24 October 2018

Abstract: Internet of Things (IoT) have become a hot topic since the official introduction of IPv6.
Research on Wireless Sensors Networks (WSN) move towards IoT as the communication platform and
support provided by the TCP/UDP/IP stack provides a wide variety of services. The communication
protocols need to be designed in such a way that even simple microcontrollers with small amount
of memory and processing speed can be interconnected in a network. For this different protocols
have been proposed. The most extended ones, MQTT and CoAP, represent two different paradigms.
In this paper, we present a CoAP extension to support soft real-time communications among sensors,
actuators and users. The extension facilitates the instrumentation of applications oriented to improve
the quality of life of vulnerable communities contributing to the social good.

Keywords: IoT; communication protocols; CoAP; real-time

1. Introduction

Internet of Things (IoT) has become a dominant subject in the last years as wireless connectivity
has become common and with it, the possibility of interconnecting different sensors and actuators in
a collaborative and intelligent environment irrespective of the communication means. Objects make
themselves readable, locatable, addressable, recognizable and they obtain intelligence by making
or enabling context related decisions thanks to the fact that they can communicate information
about themselves. This information is obtained processing their own environment data and/or in
collaboration with other objects [1].

Today, places and things have intelligence and provide users with different degrees of
technological support in several areas from domestic issues to more complex ones like health care or
security. Sensors and actuators constitute a digital ecosystem in which communication protocols are
one of the main issues to solve.

In developing countries, there are strong difficulties that come from societies with an important
degree of inequality. Even among developing countries there are major differences. We can mention
the earthquakes in Haiti and Chile to show how a natural disaster of equivalent strength has severe
consequences in one case while in the other not. In the same line, tsunami effects in Indonesia were

Proceedings 2018, 2, 1257; doi:10.3390/proceedings2191257 www.mdpi.com/journal/proceedings

http://www.mdpi.com/journal/proceedings
http://www.mdpi.com/journal/proceedings
http://www.mdpi.com
https://orcid.org/0000-0002-4328-0183
https://orcid.org/0000-0003-0910-3404
https://orcid.org/0000-0003-0382-477X
https://orcid.org/0000-0002-9414-646X
http://dx.doi.org/10.3390/proceedings2191257
http://www.mdpi.com/journal/proceedings


Proceedings 2018, 2, 1257 2 of 10

completely different to those that happen in Japan some years later. Bridging the digital gap in these
situations may introduce new alternatives and provide more secure responses in extreme situations
like the ones previously mentioned. However, the possibility of counting with digital support in daily
life improves also the economic development in areas such as agriculture, health-care or transport
among others. IoT has a huge potential in social good but to have a positive impact it needs to be
able to operate with time constraints. To achieve this, protocols should differentiate traffic to provide
real-time quality-of-service.

The IoT interaction among end-devices assumes a machine to machine (M2M) communication
paradigm. For this, in the client-server model, two different approaches were adopted. The first one
is the publish-subscribe protocol and the second the request-response. Both have been implemented
in simple protocols executing between the transport and application layers within the Internet Layer
Model. In the first case, in general, there is no direct connection between the producer and the
consumer of information. In fact, both ends connect to a broker that acts as a relay between both ends.
MQTT is the protocol that implements this approach [2]. In the second case, there is a direct connection
between the producer and the consumer that works on demand. The Constrained Application Protocol
(CoAP) [3] describes this interaction. In any case, there are no time constraints considerations and
the communication is based on a best effort approach. While these protocols provide solutions to
a wide variety of applications they are not able to satisfy the real-time quality of service requirement.
In applications were time constraints are present, the behavior of the protocol without real-time
handling is unpredictable because they work on a best-effort context.

In this paper, we present an extension of the CoAP protocol that can process messages with time
restrictions. Based on the original implementation, the proposal introduces a set of primitives that
allow both the consumer and the producer to determine if the information can be processed on time.
An application scenario in the scope of the workshop is discussed in 5 to provide support for the ideas
here introduced. In developing countries the public transport is usually chaotic and disordered. This
introduces large travel times and with this a waste of resources as people spends a lot of time travelling
in bad conditions reducing productivity at work and incrementing the number of traffic accidents.

The rest of the paper is organized in the following way. In Section 2 related papers are discussed
and the main differences to our proposal are remark in each case. In Section 3 CoAP protocol is
described with some details so the reader can understand the contribution we introduced in the
following Section 4. Finally in Section 5 a discussion on the properties of the approach is presented
and in Section 7 conclusions and future work are presented.

2. Previous Work

IP based communication is being adopted for IoT applications as it simplifies the network
management. There are several approaches like the Device Profile for Web Services (DPWS) [4],
but being based in HTTP makes it hard to implement in constrained devices. CoAP and MQTT [2,3]
are being used in the case of M2M applications as they provide the possibility of implementing the
protocols in low resolution processors with limited memory.

In the IoT world, machines exchange data with machines without the direct participation of
people. In this intent, data producers and consumers exchange roles continuously. In the literature
there is a large list of applications already thought that use IoT. Virtually everything can find support
in the IoT paradigm. It is for this that in [5] the authors highlight the need to extend our knowledge of
WSN and Cloud computing as instruments that support IoT software applications, and also understand
the role played by big data, information sharing and collaboration for IoT-based service provision.
Particularly, information sharing and collaboration on these infrastructures impose several challenges
to the systems designers. Depending on the service to be provided, real-time interaction support can
be or not required. From aided robotics [6] with time constraints in dedicated networks to the design
of a low cost wireless marshalling module for industrial environments[7]. In any case, the model is
extended to provide support to the data producers using the Internet to store the data in the cloud for



Proceedings 2018, 2, 1257 3 of 10

later processing and use [8] but in this case no considerations are provided for the timely behavior of
the system. In [9], the same idea is exploited but in this case to retrieve sensitive health information.
What differences these approaches from the one presented in this paper is that in all cases, data is
transferred on an stable network.

After conducting an extensive survey on real-time data processing technologies and models for
IoT applications, Yasumoto et al. [10] found no protocol or implementation capable of providing
real-time QoS when working with open Internet. However, the literature reports several interesting
works that can be used to support the definition or analysis of communication proposals in such
a study domain. For instance, in [11,12] the authors introduce a temporal analysis of the CoAP [3],
that allows to measure the latency or delay in the data transmission. This is useful to determine the
performance of a particular protocol or link, however it is not enough to guarantee real-time constraints
or QoS. In [12], the authors introduce an extension for the CoAP protocol. However, in that paper,
the authors proposed the modification of the Ethernet protocol to transform it in a TDMA one with
time synchronization based on a clock server. They are not working with LPWA network protocol
so it is not really necessary to use a constrained protocol and the communication channel is private
to the sensors and not public like in th case proposed here. In [12], the authors introduce a flexible
binding between sensors and actuators to provide certain autonomy within CoAP implementations.
They named the new entity as RESTlets. These count with inputs and certain functions that conditioned
the output. In this way they can model different kind of scenario interactions. The proposal does not
work with real-time deadlines. Another approach is proposed in RFC 7641 [13] in which using CoAP a
registration primitive of the client within the server is allowed in such a way, that when there is an
update in the value of the requested parameter, the server sends a message to the client with the new
value. With this procedure it is not possible to know if the server is down or there is no modification in
the sensor.

3. CoAP Overview

CoAP is described in the RFC 7252 [3]. It proposes a simple and light protocol to be used in
lossy networks with constrained nodes usually based on low-power, 8 bit micro-controllers with
little memory both in RAM and ROM. The protocol implements a request/response interaction
model between application end-points, includes a built-in resource and devices discovery service and
provides concepts associated to Internet such as URIs and Internet media types.

The Representational State Transfer (REST) architecture of the web is based on a set of principles
that describe how networked resources are defined and addressed [14]. The architecture distributes
functionality among resources and uses a reduced set of commands to address them. The architecture
is layered and stateless and supports caching. In the scenario discussed here, in which networks operat
with low throughput, low bandwidth like 6LoWPAN, [15] and nodes based on limited processors,
we work with Constrained RESTful Environments (CoRE).

CoAP is a protocol that fulfills the M2M requirements in constrained environments. As transport
protocol it uses UDP with optional support for unicast and multicast requests. The messages are
transferred in asynchronous mode which provides an important flexibility while keeping a low
overhead to reduce the complexity. It implements URIs ad content type support and has very simple
proxy and caching capabilities. The protocol presents a stateless HTTP mapping, that allows proxies
to be built providing access to CoAP resources via HTTP in a uniform way or to implement a simple
HTTP interface over CoAP. The protocol relies security in the transport layer through DTLS [16].

The interaction model implemented in CoAP is like the HTTP Client/Server. However, as it is
M2M protocol it usually finishes with both ends acting alternatively as client and server. The model
is described more accurately as request/response. There are four types of messages: Confirmable,
Non-confirmable, Acknowledgment and Reset. The protocol is located between the transport and
application layers of the Internet Model.



Proceedings 2018, 2, 1257 4 of 10

Messages have a short fixed-length binary header composed of four bytes optionally followed
with a set of compact binary options and payload. It has an identification (ID) that is used to
detect duplications and to provide optional reliability. Messages marked as Confirmable (CON)
should be Acknowledge (ACK). If they are not, the sender will retransmit them using timeout and
exponential back-off algorithms until it receives the ACK. In the case the recipient is not able to process
a CON message it should end the communication with a RST message. Messages non-confirmable
(NON), do not require an ACK response. In this case, the message still has the ID field to detect
duplicate messages.

Messages have a very simple frame format. The first two bits indicate the version of the protocol,
right now these bits are always 01. The second field is the Type bits and these represent 0 for
a Confirmable, 1 Non-confirmable, 2 Acknowledge and 3 for Reset. The third field in the header is TKL
and indicates the length of the token which is variable between 0 an 8 bytes. The next field is the code
and indicates in the classic HTTP way the kind of answer. There are three bits for the first part and 5
for the second which are used to identify a particular subclass. The next field is the Message Id and has
16 bits. Then the Token and the Option fields follow and finally, if exists, the Payload of the message.

The protocol defines several parameters that are used to determine if the network is operating
within reasonable bounds and for repeating when necessary Confirmable messages. However, there
is no time guards for messages with real-time requirements. In the next section, an extension to the
protocol is proposed using the Options field to introduce this.

4. CoAP Soft Real-Time Extension

Real-time systems are those that have to produce correct results from an arithmetic-logic point
of view before a certain instant named deadline [17]. When missing a deadline has catastrophic
consequences the system is said to be hard and it is named soft if some deadlines may be missed.
The main characteristic of a real-time system is its predictability. Hard real-time systems are related to
specific areas like military, avionics, space or controllers for power-engines, industrial processes and so
on. There are many other areas in which a timely behavior is required but in which the eventual miss
of deadlines is not critical. Among these we can mention environmental monitoring, weather forecasts
or multimedia streaming. IoT applications sharing the network with all the other Internet traffic are
not hard real-time since the network delay is unbounded in the open Internet.

It can be argue that Confirmable messages are preferred for real-time traffic as they should be
acknowledge and with this the client is aware of the reception of the message by the server and
its processing, while the response can be piggybacked in the ACK message. We think that while
CON-ACK messages may be used, the non confirmable messages are useful too in the real-time scene.
In fact, if the network is overloaded, the ACK messages even in the case of not complying the deadline
of the request contributes to the congestion and provides no useful data. In any case, the client should
wait for a valid on-time response and if this is not receive a new request should be issue, repeating it
up to a limit. Periodic updates of data from sensors consumes bandwidth and in some cases it only
repeats an old value. An update upon change would be a better option. However, if managed correctly
they can be used to keep updated both data and sensor state without overloading the network traffic.
The request for a periodic response from the server should be made in the terms of a registration
like [13] but instead of updating upon changes, it should update upon expiration of the period. This
procedure is necessary because CoAP uses UDP as transport protocol.

4.1. Description of the Client

In Figure 1, a finite sate machine (FSM) is presented for the client and in Table 1 the transitions
are described. The FSM represents the actions associated to the verification of the time constraints.



Proceedings 2018, 2, 1257 5 of 10

Figure 1. Finite State Machine for the Client/Requester.

Table 1. Description of the Client Transitions.

Transition Conditions Action

I
App_Data_Req(Resource, D, P) Fail = 0

A = TStampR
Snd_Data_Req(Resource, A, D, P)

II (P > 0) && Fail ++
(act_time ≥ A + D) A = A + P

III
(P > 0) && Process_Data(Resource, Data, TStampS)

(act_time < A + D) && A = A + P
Receive_Data(Resource, Data, TStampS)

IV act_time ≥ A null

V
(P == 0) && Fail ++

(act_time ≥ A + D) A = TStampR
Snd_Data_Req(Resource, A, D, P)

VI (P == 0) && Process_Data(Resource, Data, TStampS)Receive_Data(Resource, Data, TStampS)

VII Fail ≥ Limit Error(errorcode)

In the initial state, IDLE, it is waiting for a demand from the application. Once the application
makes a request for a particular Resource, App_Data_Req(Resource, D, P), the client changes its state to
Wait_Data and initializes the Fail variable with zero and the time accumulator A with the time at which
the request is made to keep record of the elapsed time, then sends a Snd_Data_Req(Resource, A, D, P)
message to the Server. The message has four fields. The first one indicates the kind of data that is
requested (Temperature, Pressure, Traffic state, etc); the next two parameters are the actual time of the
request and the relative deadline respectively and the last parameter is the period. In the case that the
request is not periodic, we define P = 0. In transition II, there is no message from the server and the
deadline has expired, so Fail is incremented and the client passes to state Wait_Period. In transition
III, the client moves to this state too, but in this case it sends to the application the data received as
it is within time, Process_Data(Resource, Data, TStampS). In transition IV, the period is reached thus
a new reception from the server is expected so the client moves to Wait Data state. Transition V is
followed in the case of a non-periodic request and when the deadline is expired without reception of
data from the server. In this case the event is registered by incrementing Fail. Transition VI represents
the case of a non-periodic message that receives on time the data from the server and passes it to
the application like in transition III. In the case, Fail ≥ Limit, where Limit is defined by the client,
it informs the application of the presence of an error with a certain code, transition VII.

4.2. Description of the Server

In Figure 2 the FSM for the server is shown and in Table 2 the transitions are described. Like in
the case of the client, only the transitions associated to the real-time behavior are presented. In this
case, the server is IDLE while there is no Request from the client. When a valid request is received,
Rec_Data_Req(Resource, TStampR, D, P), it goes to state SEND. The first thing is to inform the server



Proceedings 2018, 2, 1257 6 of 10

application that a request for a particular Resource has been received, generated at TStampR with a
certaint deadline D and period P. Like in the client case, the server uses variable A to keep record
of the accumulated time to check the period and keep updated the deadline. The server remains in
the SEND state if the request is periodic. Transition II shows how the server updates the variables and
sends to the client the resource requested, Snd_Data(Resource, TStampS). Transition III describes the
conditions and actions when the request is not periodic, P = 0. Data is sent to the client if it is within
the deadline and it returns to the IDLE state. If the reception of the request is beyond its deadline or
the resource is not available, the request is discarded as shown in transition IV and it informs the client
with an error code.

Figure 2. Finite State Machine for the Server/Responder.

Table 2. Description of the Server Transitions.

Transition Conditions Action

I Rec_Data_Req(Resource, TStampR, D, P) Req_Proc(Resource, TStampR, D, P)
A = TStampR

II
(P > 0) && A = A + P

(A < act_time ≤ A + D) TStampS = act_time
Snd_Data(Resource, TStampS)

III (P == 0) && TStampS = act_time
(act_time ≤ A + D) Snd_Data(Resource, TStampS)

IV Resource_unavailable ‖ (act_time > A + D) Error(errorcode)

5. Discussion

The extension presented in the previous section is proposed to deal with real-time messages.
As the network is not controlled by the end-devices (clients and servers), the protocol restricts the traffic
when there is no possibility of meeting the deadlines. The protocol can be easily implemented using
the Options field in the header of the messages. Both Confirmable and Non-Confirmable messages
may be used to do this. However, the first ones provide more reliability for the application at the cost
of incrementing the traffic in the network.

It is important to remark that the modification we introduce, does not affect the CoAP functioning.
By incorporating time stamps to the messages, both ends are aware of the actual delay in the network
so they can determine the quality of the link and the feasibility of sending and receiving messages with
time constraints. As the supported systems are soft real-time deadline misses are tolerated. There is
an advantage in using the real-time control extension as messages with no possibility of arriving to
destination before their deadlines are not sent. This reduces the bandwidth demand reducing the traffic
and allowing other messages to reach destination on time. Besides an energy reduction is achieved at
the same time because messages are not sent. A common problem in using the open Internet network
is that in some situations the links and routers may be overflowed by messages. As the messages are
not acknowledged, there is a new request that contributes to increment the demand on the collapsed



Proceedings 2018, 2, 1257 7 of 10

link. By introducing the time-stamps and deadline control at the server, the traffic is eventually lessen
and the network can recover its real-time throughput.

In Figure 3 the exchange of messages between the client and the server for a Non Confirmable
message and not periodic request of a specific resource is shown. The exchange is very simple and with
a low footprint can be implemented in any low cost microcontroller like the ATMega328P or similar.

Figure 3. Send_Data_Req() and Send_Data() primitives as CoAP Request/Response messages.

IoT is gaining momentum every day and new challenges arise continuously. One of the main
issues is related to the traffic quality of service as the limited bandwidth will act as bottleneck for the
development. In this line, the possibility of providing real-time quality of service control becomes
important. In the actual context, an IoT end-device can only modulate the message transmission based
on the worst-case expected transmission delay avoiding the transmission in the cases that deadlines
are not met. This is the main point of the extension presented in this paper. We argue that reducing
the traffic of messages that would with a high probability arrived outdated will improve the general
throughput of the open network.

Developing countries with vulnerable communities have difficulties in accessing reliable wide
band Internet. In these countries however, the possibilities of using IoT systems to improve the
quality of life is remarkable as there is a poor digitalization of services. The introduction of simple
protocols to handle IoT traffic with time restrictions constitutes an interesting option that requires a low
investment. In the next section, we discuss with details an scenario in which information provided
with real-time constraints may improve considerably the quality-of-life in cities with informal public
transport, organizing not only vehicular traffic but allowing passengers to save both time and money.

6. Application Scenario

Public transport within vulnerable communities or development countries represent an important
handicap as people waste too many hours moving in the cities. While in more advanced countries buses,
trains, underground trains or even taxies are regulated, follow strict circuits and have a predictable
timetable, in vulnerable communities small vans named “combis” circled the cities in search of clients
and adapt their route dynamically. Besides there are “colectivos” that are taxis taken by several clients
in a similar way to “combis” but with less passengers. Cities like Arequipa in Peru organize their
public transport around this kind of “cooperative” systems and an important amount of small single
client taxis that arrange the price of the trip at the moment of taking it in the street. Arequipa is a very
important city in Peru, so there are also regular buses following strict circuits. Anyway, “combis”,
“colectivos”, and taxis seem to dominate the market as they are cheap.

The “combis” go through announcing the general direction of the trip by shouting the successive
stops. However, this destination is not fixed but adaptive and changes according to the passengers
aboard. So a client may pick up one or the other according to how close or how much it may deviate
the route to satisfy its own demand. However, the client is not aware that one block away in the next



Proceedings 2018, 2, 1257 8 of 10

corner, there may be another “combi” with a closer route to his/her destination. So people may waste
time and money by picking not the best transport.

Figure 4 shows in a picture the presence of a regular bus in the background, a combi and
a colectivo behind.

Figure 4. Bus, combi, colectivo.

The scenario we propose in this paper is used to identify both “combis” and “colectivos” with
a particular identification within an IoT scenario. Each one, should have a GPS to provide its exact
location, the number of available places, the planned route with intermediary stops and even the
price of the trip per distance for example. This kind of equipment may be deployed also in more
traditional taxis. The transport vehicle is identified with a resource name in a particular URI. Table 3
represents possible naming according to the categories of the public transport. In the URI, the name
identifies the kind of transport (bus, combi, colectivo or taxi). To distinguish among the different ones,
buses incorporate the Line Identification (Line_ID), that is probably a number combined with letters
like 519A. After that, the vehicle as such is identified with a particular plaque that has a unique set of
letters and numbers. As combis, colectivos and taxis do not have a fixed circuit they are not identified
with a Line_ID but they have a particular identification number (ID) that is also unique.

Table 3. URIs for the Public Transport.

Bus http://www.bus_LineID_bus_ID.com/ position
empty seats
next stops
min price

Combi http://www.combi_combi_ID.com/ position
empty seats
next stops
min price

Colectivo http://www.colectivo_colectivo_ID.com/ position
empty seats
next stops
min price

Taxi http://www.taxi_taxi_ID.com/ available
min price

As the system proposed is oriented to work with vulnerable communities or in developing
countries an important issue is to provide a low cost technological solution. If this solution is expensive,
nobody will adopt it.

As explained before, each vehicle counts with a computational equipment. These need to be
connected to the Internet and addressable from any point to request the necessary information. At this
point we adopt the LoRA communication standard that provides transmission ranges over several

http://www.bus_LineID_bus_ID.com/
http://www.combi_combi_ID.com/
http://www.colectivo_colectivo_ID.com/
http://www.taxi_taxi_ID.com/


Proceedings 2018, 2, 1257 9 of 10

hundred meters with low power, low bandwidth, operates in the non licensed spectrum and a radio
system can be obtained in the market for less than 40 dollars. The whole set will be around 100 dollars
per vehicle and this is affordable even in very challenged communities.

The system should be completed with special totems deployed along the city that request
information periodically to vehicles in their radio. These totems provide potential clients with a list of
the available options in their proximity. Clients may poll the vehicles directly too. But in this case, they
should known beforehand the URIs they are looking for. Both the totems and the vehicles operate with
the extended CoAP protocol. In the case of the vehicles, they always act like servers that respond to
the demand of totems or end-users. The totems have a double function as they request data to vehicles
(client) and respond to users (servers). A totem is identified with URIs according to Table 4. The totem
collects data from vehicles in the system and save it ordered.

Table 4. URIs for Totem.

bus http://www.totem_totemID.com/buses/list.bus
combi http://www.totem_totemID.com/combis/list.combi

colectivo http://www.totem_totemID.com/colectivos/list.colectivo
taxi http://www.totem_totemID.com/taxis/list.taxis

As CoAP is a RESTful protocol, it can be polled by an HTTP application through a proxy as
stated in Section 3. This may be implemented in low cost smartphones that can be acquired by less
than 100 dollars. Even for developing countries and vulnerable communities, these are technological
solutions that are already being used worldwide. In this way, a potential client checks with the
smartphone the availability of transport towards a particular destination. The data should be updated
with real-time constraints upon demand.

7. Conclusions

In this paper we have presented an extension to CoAP. The extension covers some primitives to
be used in the case that messages should count with certainty on the moment at which the information
was requested/produced by the client and the server. In this case, what the extension provides is
a way in which messages that will not verified the deadlines are not send and with this the traffic in
the network is reduced. The modifications proposed can be easily implemented in the option field
of the CoAP header message and requires a simple verification of the time stamps associated with
each request and possible response. As the application scenario, we propose the implementation of
a transport public aware system in which the informal transport vehicles get an ID and can promote
upon request their routes and fees. This application impacts on the quality of life of thousands of
people that have to move in big cities within development countries. The improvement contributes to
what is commonly known as social good.

Funding: This research was funded by the EU Horizon 2020 Framework Program project netCommons
(H2020-688768), by the EMJD-DC program, by the Spanish Government under contract TIN2016-77836-C2-2-R,
and by the Generalitat de Catalunya as Consolidated Research Group 2017-SGR-990.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Patel, K. Internet of Things-IOT: Definition, characteristics, architecture, enabling technologies, application
& future challenges. Int. J. Eng. Sci. Comput. 2016, 6, 6122–6131, doi:10.4010/2016.1482.

2. Banks, A.G.R. MQTT Version 3.1.1. 2014. Available online: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/
csprd02/mqtt-v3.1.1-csprd02.pdf (accessed on 1 June 2018).

3. Shelby, Z.; Hartke, K.; Bormann, C. The Constrained Application Protocol (CoAP). RFC 7252. 2014. Available
online: http://www.rfc-editor.org/info/rfc7252 (accessed on 1 June 2018).

http://www.totem_totemID.com/buses/list.bus
http://www.totem_totemID.com/combis/list.combi
http://www.totem_totemID.com/colectivos/list.colectivo
http://www.totem_totemID.com/taxis/list.taxis
https://doi.org/10.4010/2016.1482
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/csprd02/mqtt-v3.1.1-csprd02.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/csprd02/mqtt-v3.1.1-csprd02.pdf
http://www.rfc-editor.org/info/rfc7252


Proceedings 2018, 2, 1257 10 of 10

4. Nixon, T.; Mensch, A. Devices Profile for Web Services Version 1.1. 2009. Available online: http://ws4d.org/
2009/public-review-of-ws-dd-specifications/ (accessed on 1 June 2018).

5. Lee, I.; Lee, K. The Internet of Things (IoT): Applications, investments, and challenges for enterprises.
Bus. Horiz. 2015, 58, 431–440.

6. Grieco, L.; Rizzo, A.; Colucci, S.; Sicari, S.; Piro, G.; Paola, D.D.; Boggia, G. IoT-aided robotics applications:
Technological implications, target domains and open issues. Comput. Commun. 2014, 54, 32–47.

7. Han, S.; Lin, T.; Chen, D.; Nixon, M. WirelessCHARM: An open system low cost wireless marshalling
module for industrial environments. In Proceedings of the 2014 IEEE World Forum on Internet of Things
(WF-IoT), Seoul, Korea, 6–8 March 2014; pp. 502–505, doi:10.1109/WF-IoT.2014.6803218.

8. Distefano, S.; Merlino, G.; Puliafito, A. A utility paradigm for IoT: The sensing Cloud. Pervasive Mob. Comput.
2015, 20, 127–144, doi:10.1016/j.pmcj.2014.09.006.

9. Xu, B.; Xu, L.D.; Cai, H.; Xie, C.; Hu, J.; Bu, F. Ubiquitous Data Accessing Method in IoT-Based Information
System for Emergency Medical Services. IEEE Trans. Ind. Inf. 2014, 10, 1578–1586, doi:10.1109/TII.2014.
2306382.

10. Yasumoto, K.; Yamaguchi, H.; Shigeno, H. Survey of real-time processing technologies of IoT data streams.
J. Inf. Process. 2016, 24, 195–202, doi:10.2197/ipsjjip.24.195.

11. Konieczek, B.; Rethfeldt, M.; Golatowski, F.; Timmermann, D. Real-Time Communication for the Internet of
Things Using jCoAP. In Proceedings of the 2015 IEEE 18th International Symposium on Real-Time Distributed
Computing, Auckland, New Zealand, 13–17 April 2015; pp. 134–141, doi:10.1109/ISORC.2015.35.

12. Konieczek, B.; Rethfeldt, M.; Golatowski, F.; Timmermann, D. A Distributed Time Server for the Real-Time
Extension of CoAP. In Proceedings of the 2016 IEEE 19th International Symposium on Real-Time Distributed
Computing (ISORC), York, UK, 17–20 May 2016; pp. 84–91, doi:10.1109/ISORC.2016.21.

13. Hartke, K. Observing Resources in the Constrained Application Protocol (CoAP). RFC 7641. Available
online: http://www.rfc-editor.org/info/rfc7641 (accessed on 1 June 2018).

14. Fielding, R.T. REST: Architectural Styles and the Design of Network-Based Software Architectures.
Ph.D. Thesis, University of California, Irvine, CA, USA, 2000.

15. Montenegro, G.; Kushalnagar, N.; Hui, J.; Culler, D. Transmission of IPv6 Packets over IEEE 802.15.4
Networks. RFC 4944. Available online: http://www.rfc-editor.org/info/rfc4944 (accessed on 1 June 2018).

16. Rescorla, E.; N., M. Datagram Transport Layer Security Version 1.2. RFC 6347. Available online: http:
//www.rfc-editor.org/info/rfc6347 (accessed on 1 June 2018).

17. Stankovic, J.A. Misconceptions about Real-Time Computing. IEEE Comput. 1988, 21, 10–19.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://ws4d.org/2009/public-review-of-ws-dd-specifications/
http://ws4d.org/2009/public-review-of-ws-dd-specifications/
https://doi.org/10.1109/WF-IoT.2014.6803218
https://doi.org/10.1109/TII.2014.2306382
https://doi.org/10.1109/TII.2014.2306382
https://doi.org/10.2197/ipsjjip.24.195]
https://doi.org/10.1109/ISORC.2015.35
https://doi.org/10.1109/ISORC.2016.21
http://www.rfc-editor.org/info/rfc7641
http://www.rfc-editor.org/info/rfc4944
http://www.rfc-editor.org/info/rfc6347
http://www.rfc-editor.org/info/rfc6347
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Previous Work
	CoAP Overview
	CoAP Soft Real-Time Extension
	Description of the Client
	Description of the Server

	Discussion
	Application Scenario
	Conclusions
	References

