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Abstract: Deep learning methods have been used to extract buildings from remote sensing images and
have achieved state-of-the-art performance. Most previous work has emphasized the multi-scale fusion
of features or the enhancement of more receptive fields to achieve global features rather than focusing on
low-level details such as the edges. In this work, we propose a novel end-to-end edge-aware network,
the EANet, and an edge-aware loss for getting accurate buildings from aerial images. Specifically,
the architecture is composed of image segmentation networks and edge perception networks that,
respectively, take charge of building prediction and edge investigation. The International Society for
Photogrammetry and Remote Sensing (ISPRS) Potsdam segmentation benchmark and the Wuhan
University (WHU) building benchmark were used to evaluate our approach, which, respectively,
was found to achieve 90.19% and 93.33% intersection-over-union and top performance without using
additional datasets, data augmentation, and post-processing. The EANet is effective in extracting
buildings from aerial images, which shows that the quality of image segmentation can be improved
by focusing on edge details.

Keywords: semantic segmentation; convolutional neural networks; building extraction; edge;
multi-task learning

1. Introduction

As aerial and satellite remote sensing images have become convenient information sources,
extracting various artificial features from image information has become a research hotspot. Buildings,
as one of the main artificial features in a city, have special significance in the automatic extraction of
urban areas, map updating, urban change detection, urban planning, building energy consumption
assessment, and infrastructure construction. The acquisition of buildings from remote sensing images
has evolved into a mature research field after decades of development [1–4]. However, many challenges
persist in this domain. First, given the building materials and their very close proximity to roads,
buildings are easily confused with other elements. Second, the structure and spectrum of buildings
are complex and diverse. Moreover, the considerable variance that occurs within this class makes
buildings difficult to identify. Third, image structure is easily affected by the shadows of buildings and
trees. Thus, automatically extracting buildings from remote sensing images is challenging.

Therefore, improving the recognition ability of feature representation in pixel-level recognition
is necessary to extract buildings. Early image segmentation adopted a traditional image processing
method based on artificial design characteristics, such as spectral information [5], tone [6], texture [7],
and geometric shape [8,9]. At present, image processing technologies based on convolutional neural
networks (CNNs) have obtained remarkable development, and their accuracy and even efficiency
far exceed those of traditional methods. Remote sensing image processing methods according
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to artificial intelligence (AI) and machine learning (ML) provide opportunities and possibilities
for the automatic acquisition of buildings from remote sensing images. Particularly key to these
technologies is the development of image classification [10–13], object detection [14–16], and semantic
segmentation [17–19], as represented by deep learning. Semantic segmentation for the image is the
purpose of each pixel in the allocation of a single category, and it can be seen as a dense classification
problem. Most object parsing issues in image segmentation can be regarded as semantic segmentation.
The depth of the continuous development of CNNs has helped many remarkable achievements in
the semantic segmentation field. Long et al. [18] extended the original convolutional neural network
structure and proposed an end-to-end full convolutional neural network (FCN). Their FCN could
achieve the intensive prediction of images without the use of fully connected layers. This kind
of network is an encoder–decoder structure and enables the segmentation network to generate
images of any size, which improves processing efficiency compared with the traditional image block
classification method. Since then, almost all research on semantic segmentation has adopted the FCN
structure [19–21].

Many improved methods of FCN are employed to extract ground objects from remote sensing
images. Maggiori et al. [10] used a multi-scale structure to improve FCN to alleviate the tradeoff

between increasing contexts and increasing the number of parameters. Mou et al. [19] proposed a
method that combined FCN and a recurrent neural network that used the most superficial boundary
perception feature map to achieve accurate object boundary inference and semantic segmentation.
Marmanis et al. [20] adopted a parallel processing chain with two identical structures to improve
FCN through delayed fusion with the help of a network layer in an early active deconvolution and
cyclic feature graph. Xu et al. [21] applied manual characteristics and the guided filtering technique to
optimize building extraction with the res-u-net network they proposed.

Compared with the traditional manual design feature model, the semantic segmentation model
based on a CNN has been significantly improved. However, in this model, the CNN uses the pooling
layer many times to increase the receptive field. The use of down-sampling to compress data is
irreversible, resulting in information loss and thereby causing translation invariance and smooth
results. At the same time, this development leads to an inaccurate image contour generated by the
convolutional network and an unclear boundary. On the basis of the strong recognition ability of
CNNs, Chen et al. [22] used fully connected conditional random fields (CRFs) for post-processing,
which improved the quality of the object boundary in their segmentation results.

However, image segmentation still requires the precise position information of each pixel.
Consequently, such a segmentation is inapplicable to pooling layers or striding convolution as
boldly as a classification task to reduce computation. A mainstream method involves utilizing an
encoder–decoder structure network [18,22–25]. The encoder reduces the resolution of the input image
through down-sampling to generate a feature map with low resolution. Then, the decoder performs
upper sampling on these feature descriptions to restore the segmentation graph with full resolution,
thereby significantly reducing the necessary calculation by decreasing the size of the feature map.
Zeiler et al. [26] proposed deconvolution for the first time for the reconstruction of feature maps to
help them recover their original size. Tian et al. [27] believed that the use of bilinear interpolation
up-sampling to restore the resolution of a feature map might lead to an unsatisfactory segmentation
result, so they designed a data-dependent up-sampling method called DUpsampling to replace
bilinear interpolation.

In addition to computation, the multi-scaling of objects is also a challenge for CNNs. The extraction
of any target feature is conducted on a certain scale, and different scales produce dissimilar results.
To enlarge the receptive field of a feature map, Yu et al. [28] proposed atrous convolution, an approach
that can increase the receptive field without pooling operation. It allows each convolution operation
to extract a wider range of information. Conversely, the pyramid pooling module developed by
Zhao et al. [29] can maximize the global feature hierarchy’s prior knowledge to understand different
scenarios and aggregate the context information of various regions so as to give the feature map more
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semantic information using more global information. Chen et al. [25] recommended atrous spatial
pyramid pooling, which combines atrous convolution and spatial pyramid pooling. Using their scheme
allows for the re-sampling of the convolutional features extracted from a single scale and the accurate
and effective classification of regions at any scale. Liu et al. [30] added low-level features to adjacent
upper floors and combined them into new features. At the same time, each layer of feature maps could
be predicted separately to realize detection at different scales.

In the recent semantic segmentation community, researchers have also shifted their attention
toward the improvement of multi-task learning in addition to the enhancement of the encoder–decoder
structure and multi-scaling. Scholars have increasingly begun to pay attention to multi-task learning.
That learning entails the simultaneous learning of multiple related tasks and facilitates the sharing of
the learned information among tasks. Dai et al. [31] reduced the risk of model over-fitting and improved
the accuracy of the results by learning the three tasks of mask estimation, instance differentiation,
and object classification. Zhang et al. [32] used head posture estimation and facial attribute inference
as auxiliary tasks for improving the effectiveness of facial key-point detection.

The above studies not only developed various CNN models for semantic segmentation but also
provided numerous ideas for our research. In addition, Zeiler et al. [33] proved that a feature map
gains more semantic information and loses more detailed information as the layers of its neural
network deepen. However, as a pixel-level prediction task, semantic segmentation requires detailed
and accurate information. As part of detailed information, semantic segmentation is widely concerned
with the edge in to boost the performance of neural networks. Yu et al. [34] obtained as many features
as possible through inter-class differences to enhance semantic segmentation performance under
precise boundary supervision. Qin et al. [35] implicitly injected precise boundary prediction targets
into mixing loss to reduce false errors from the cross-propagation of information learned in other areas
of the boundary and image.

Inspired by multi-task learning and edge information utilization, we hereby designed a new edge
perception network according to edge information supervision to automatically extract buildings from
high-resolution aerial images. The main contributions of this work are as follows.

1. The EANet, a multi-task learning network based on the encoder–decoder structure, is proposed
to automatically extract buildings from high-resolution aerial images. Our proposed network
EANet was trained end-to-end through a series of loss functions. The EANet consists of an image
segmentation network and an edge perception network. The former predicts the segmentation of
images using remote sensing images, and the latter aims to supervise the segmentation network
and further enhance the accuracy of edge prediction.

2. EALoss, a new loss function, is proposed to refine the prediction results of the segmentation
network and was designed to supervise the learning process of accurate prediction for the binary
boundary segmentation of images.

3. Without using additional datasets, data augmentation, and post-processing, the EANet
achieves top performance on two remote sensing image semantic segmentation datasets, i.e.,
The International Society for Photogrammetry and Remote Sensing (ISPRS) Potsdam [36] and
Wuhan University (WHU) building datasets [37].

The rest of this article is organized as follows. Section 2 introduces the composition of the model
in detail. Section 3 describes the experimental dataset, model evaluation methods, experimental design,
and the analysis of the experimental results. Section 4 discusses the effectiveness of the EANet and
future work. Section 5 summarizes the paper.

2. Methods

The main purpose of this article is to explore a means to overcome the incompleteness of detail
information that is extracted automatically from remote sensing images. The key idea in this article
involves using the edge to guide the neural network to pay greater attention to the edge and use
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edge information to guide the network to refine the segmentation results. This section begins with an
overview of network architecture. The image segmentation network is first illustrated in Section 2.2.
Then, details of the newly designed edge perception network and EALoss are provided in Section 2.3.

2.1. Overview of Network Architecture

The overall structure of the EANet is shown in Figure 1. The EANet consists of two blocks—the
image segmentation and the edge perception networks that are, respectively, used for image semantic
segmentation and edge supervision. The EANet was developed on the basis of a rough-to-fine
encoding–decoding structure. The edge perception network learns the residuals between the edge
labels and the predicted edges through the supervision of the loss function to further refine the feature
map of the segmentation network.
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Figure 1. Overall architecture of our approach. Solid lines represent the direction of information flow.
Dashed lines indicate the edge of supervision. The output dimensions of each block (H ×W ×C) are
indicated in the boxes. ESRE: explicit spatial resolution embedding; EEB: edge extraction branch; FAB:
feature aggregation block.

2.2. The Image Segmentation Network

Inspired by FPN [38] and U-Net [23], the image segmentation network was designed herein as
an encoding–decoding structure with residual connection, because this structure can simultaneously
extract high-level global semantic information and low-level detail information on the basis of reducing
computation. In line with the choices in previous works [39–43], we also used ResNet [13] as the
backbone of this work. Finally, the last full connection layer of ResNet was replaced with atrous
convolution [24–28,44] to reduce the loss of detail due to pooling operations. After each convolutional
layer, a ReLU function [45] is used as the activation function, and batch normalization [46] is added
at the same time. Figure 2 depicts a concrete atrous convolution operation. The atrous convolution
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maintains the relative spatial position of the feature map and can improve the receptive field without
decreasing the spatial resolution, making it possible to aggregate a wider range of information after
convolution operation. The other two methods we propose are as follows.
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Figure 2. The atrous convolution operation with pooling p = 2 and stride s = 1. Pooling is applied but
is not indicated in this figure. The dimension of the input feature map is 7× 7, of the kernel is 3× 3,
and of the output feature map through atrous convolution becomes 7× 7.

2.2.1. Explicit Spatial Resolution Embedding

As mentioned, many semantic segmentation networks like FPN [38] and FRRN [39] adopt the feature
fusion method of residual connection. This common form of residual connection is formulated as:

yl = F (xl) + Unsample(xl+1) (1)

where yl is the feature map obtained by the decoder fusion at l-th level, xl stands for the feature map
obtained by the encoder at l-th level, and xl+1 denotes the higher level of the feature map generated by
the encoder. Features have more semantic information as large l, but their spatial resolution decreases
and vice versa (see Figure 1). Our framework utilizes the residual connection method and further
improves the feature extraction method as the explicit spatial resolution embedding (ESRE) module
(Figure 3). We applied this component in Levels 2–4 to extract more detailed features at different scales.
The features at the high level provide less spatial information, so a natural motivation is to extract
more low-level details from the high-level feature space to help model inference. The ESRE module
can be used to obtain detailed spatial information from various scales.
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2.2.2. Feature Aggregation Block (FAB)

Feature fusion is of great help to the promotion of targets at different scales. As different levels
have dissimilar semantic information, the spatial information extracted from varied levels can be fused
to highlight the detection targets. As shown in Figure 4, we designed the feature aggregation block
(FAB) module for feature fusion after extracting additional spatial information on different scales.
The spatial information extracted from Levels 2–4 after passing through the ESRE module and from
Level 1 is fused by the FAB module. Finally, the prediction results are obtained through up-sampling.
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2.3. The Edge Perception Network

As shown in Figure 5, we designed an edge perception network to guide the semantic segmentation
network to learn more edge information of images by using an edge extraction branch (EEB) module,
which refines image prediction results. Inspired by [47–49], we believe that learning the edge information
directly from the feature map is helpful for the segmentation task. Edges belong to low-level details and
are considered important spatial information. The full use of edge information in the network can make
up for the loss of spatial information caused by down-sampling to a certain extent.
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Identifying the edge label directly from the ground truth of the image is straightforward. We used
a morphological erosion operation [50] to obtain a reliable edge label. Let S be the set formed by the
elements of the ground truth and Kn be a kernel whose elements are all 1 with shape n. The erosion of
S by the kernel Kn is denoted by φKn(S) and defined as follows:

φKn(S) = {s|Kn + s ⊆ S} (2)

Using the erosion result of the ground truth obtained by Equation (2), we could conveniently
ascertain the edge label of the ground truth. The edge label is produced by subtracting the erosion
result, defined as η(S), from the ground truth. That is:
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η(S) = S−φKn(S) (3)

Edge prediction results and true labels are, respectively, obtained by the EEB module and
morphological operation. As shown in Figure 1, each level has a side-output that generates an edge
prediction through the EEB module. We used binary cross entropy (BCE) [51] as a loss function to
evaluate the extraction of the edge. The BCE loss function is one of the loss functions commonly used in
semantic segmentation or a binary classification task. It is also used in our network. That loss is defined as:

`
(k)
bce = −

∑
(x,y)

[η(x, y) log(P(k)(x, y)) + (1− η(x, y)) log(1− P(k)(x, y))] (4)

where η(x, y) ∈ {0, 1} is the edge label of the pixel (x, y) and P(k)(x, y) ∈ [0, 1] is the edge prediction
probability obtained by the EEM module from the feature map at the k-th layer. For accurate segmentation
results and clear edges, we propose a new edge loss function, EALoss, which is expressed as:

`ea = 1−

H∑
x=1

W∑
y=1

η(x, y)P(x, y)

H∑
x=1

W∑
y=1

η(x, y)
(5)

where η(x, y) ∈ {0, 1} is the edge label of the pixel (x, y). P(x, y) ∈ [0, 1] predicts the probability that the
pixel (x, y) is the edge, as obtained by the calculation result of the FAB module (Figure 1) through the
Softmax function. As the most commonly used loss function in deep neural networks, the cross-entropy
(CE) loss is also used to constrain the final semantic segmentation result, which is defined as:

`ce = −
H∑

x=1

W∑
y=1

[η0(x, y) log
ea0

ea0 + ea1
+ η1(x, y) log

ea1

ea0 + ea1
] (6)

where ai is the probability of belonging to category i ∈ {0, 1} at pixel (x, y). During training, we defined
the loss function as the sum of BCE, EALoss, and CE:

L =
K∑

k=1

`
(k)
bce + `ea + `ce (7)

As described in Figure 1, our edge perception network is supervised with four side-outputs, i.e.,
K = 4.

3. Experiment

Our model was implemented using PyTorch 1.3.0 [52] and Cuda 10.1 with ResNet101 [13]
pre-trained from ImageNet [53] as the backbone. To test the validity and the correctness of our model,
we constructed an experiment of the automatic acquisition of buildings on two remote sensing image
datasets and compared the outcomes against those of the CNN model developed by other researchers.
This section introduces the basic situation of the two datasets, describes the experimental setup,
presents the evaluation standard, and illustrates the experimental results.

3.1. Datasets

The ISPRS Potsdam dataset [36] is a state-of-the-art airborne image dataset released in 2018.
The said dataset was designed for urban classification, 3D reconstruction, and the semantic annotation
testing tasks of high-resolution remote sensing images. The dataset reflects the large building volume,
narrow streets, and dense settlements of Potsdam City, Germany. Furthermore, ISPRS Potsdam also
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includes water bodies, tennis courts, swimming pools, and other semantic objects that are usually
overlooked in urban scenes. Those complex scenes require high algorithm robustness. The dataset
contains 38 patches (6000 × 6000 pixel RGB images, for which each channel has a spectral resolution of
8 bit and the spatial resolution is 5 cm). We selected 14 images as the test set (IDs: 2_13, 2_14, 3_13,
3_14, 4_13, 4_15, 5_13, 5_14, 5_15, 6_14, 6_14, 6_15, and 7_13). The validation set contained 1 image
(ID: 2_10), and the rest of the images were used as training sets.

The WHU building dataset [37] was specifically designed for building extraction with high-resolution
remote sensing images. The dataset was collected by aircraft over 450 m2 of Christchurch, New Zealand
with a resolution of 0.075, and it contains more than 220,000 individual buildings. The aerial image
involved down-sampling from a 0.075 to 0.3 m ground resolution. The whole dataset was cropped into
8189 pieces of 512 × 512 pixels without overlapping. All masks were manually annotated. In addition
to the difference of satellite sensors, the change of atmospheric conditions, the corrections from the
atmosphere and radiation, and the change of the seasons also increase the requirements of the samples
in regard to the robustness of the building extraction algorithm. We used 4736 images as the training
set, 2416 images as the test set, and the remaining 1032 images as the verification set.

3.2. Experimental Setup

As the images in the Potsdam dataset are too large to fit into memory, each image was cropped
to 384× 384 with a 25% overlap, with padding added beyond the border. In our experiment, we did
not use any data augmentation or any training tricks [54] for all models, such as a warm-up [55] or
label smoothing [56]. To demonstrate the effectiveness of the proposed algorithm, we compared it with
eleven state-of-the-art models, including the PSPNet [29], U-Net [23], FCN [18], Deeplabv3-plus [24],
RefineNet [57], CGNet [58], BiSeNet [40], SegNet [59], SiU-Net [37], SRINet [60], and DE-Net [17].
SegNet, FCN, and Unet are the most representative models of deep learning in semantic segmentation.
PSPNet, Deeplabv3-Plus, CGnet, BiSeNet, and RefineNet are recently proposed state-of-the-art
approaches that have achieved excellent performance on natural image datasets. Similar to the method
proposed by us, SIU-NET, SRINet, and De-Net also use a boundary-aware approach to extract objects.

For fairness, an open source code was used, and all the backbones of the models used ResNet-101,
which is pre-trained on ImageNet [53]. For the training of all models, the stochastic gradient descent [61]
optimizer was adopted, starting with a learning rate of 0.001, a weight decay of 0.0005, and a momentum
of 0.9. A polynomial learning rate decay strategy was also used, and the learning rate was updated

after each iteration by the decay factor (1− iteration
max_iteration )

0.9
. As mentioned, the parameters of the encoder

were initialized from ResNet-101, and all convolutional layer parameters in the remaining decoder
were initialized by Kaiming initialization [62]. The validation set was not employed during training.
All experiments were trained on 2 GeForce RTX 2080Ti GPUs for 200 epochs with eight clips in a
mini-batch (a mini-batch has a total size of 16 clips).

3.3. Evaluation Metrics

To correctly evaluate the performance of the model, four commonly used indicators in traditional
semantic segmentation tasks were adopted: precision, recall, the F1 score (F1), and the intersection-
over-union (IoU) ratio. Precision is the percentage of all retrieved results that are correctly retrieved.
Recall is the proportion of correctly retrieved results that should be detected. The F1 score is a
commonly used index in machine learning and is the harmonic mean of precision and recall. The IoU
represents the ratio of the intersection and union of the prediction and ground truth. The formulas are
as follows:

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)
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F1 =
2× Precision×Recall

Precision + Recall
(10)

IoU =
TP

TP + FP + FN
, (11)

where TP, TN, FP, and FN represent the true positive, true negative, false positive, and false negative
pixels in the prediction, respectively.

3.4. Result

To assess the segmentation quality of our proposed model, seven state-of-the-art models, namely,
FCN [18], PSPNet [29], ReFineNet [57], U-Net [23], BiSeNet [40], CGNet [58], and SegNet [59], were
selected for comparison with our approach on the ISPRS Potsdam dataset. As the simplest methods,
FCN, SegNet, and U-Net achieved 87.99%, 86.12%, and 86.2% performances in IoU score, respectively.
The performance of PSP was very disappointing, with IoU scores about 2% lower than FCN. The results
of those semantic segmentation models on the ISPRS Potsdam test dataset are summarized in Table 1.
Our method outperformed existing schemes in predicting the area of a building. Though some tree
shading caused the wrong extraction of the building in Figure 6, our method focused more on the
edge. The edge in the predicted results was more continuous and clearer than that in the other
techniques. The incorrect classification of other ground objects as buildings rarely occurred with the
EANet, but some buildings were improperly classified.

Table 1. A comparison experiment with state-of-the-art models on the International Society for
Photogrammetry and Remote Sensing (ISPRS) Potsdam test set. IoU: intersection-over-union. The bold
type represents the best data under that metrics.

Method Backbone F1 Precision Recall IoU

BiSeNet [40] ResNet-101 0.9524 0.9653 0.9451 0.8871
FCN-8s [18] VGG-16 [63] 0.9427 0.9619 0.9297 0.8799
PSPNet [29] ResNet-101 0.9424 0.9525 0.9370 0.8554
CGNet [58] ResNet-101 0.9405 0.9600 0.9269 0.8729

RefineNet [57] ResNet-101 0.9473 0.9635 0.9373 0.8849
U-Net [23] ResNet-101 0.9386 0.9547 0.9284 0.8620
SegNet [59] VGG-16 [63] 0.9419 0.9549 0.9351 0.8612

EANet ResNet-101 0.9548 0.9702 0.9454 0.9019

As a dataset with larger data volume and a more complex situation, the WHU building dataset
presented a greater challenge in correctly extracting buildings from remote sensing images relative
to smaller and simpler datasets. To further demonstrate the effectiveness of our proposed model,
we also selected seven most advanced models, namely Deeplabv3-plus [24], PSPNet [29], FCN [18],
U-Net [23], SRINet [60], DeNet [17], and SiU-Net [37], for the experiment on the WHU building dataset.
Deeplabv3-plus, as a carefully designed network, has always been one of the best performing models
in the field of semantic segmentation. It achieved a performance of 91.96% on the IoU score. The three
models of DeNet, SRINet, and SiU-Net are similar to our idea. They also use edge information to help
network learning, and they achieved IoU scores of 90.12%, 89.09%, and 88.4%, respectively, on the
WHU building dataset. As indicated by Table 2, our model performed well on the state-of-the-art
WHU building datasets. The EANet achieved the top performance of 93.33% of the IoU in the WHU
building validation set, which was better than all other models in the experiment, and even 1.37%
of the IoU more than Deeplabv3-plus. In our approach, it is almost impossible to misidentify a
car as a roof. As shown in Figure 7, for buildings with regular boundaries, our method had better
performance and could completely extract buildings. Compared with the ISPRS Potsdam dataset,
the WHU building dataset was more different from the environment, which made it easier for the
model to extract buildings from aerial images. Therefore, our model performed better in the ISPRS
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Potsdam dataset than in the WHU building dataset. Compared with other schemes that use more
global information to improve performance, our model focuses more on spatial information such as
edges. Making full use of this low level of spatial information proved to be very helpful in extracting
ground objects from high-resolution aerial images.
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Table 2. Accuracy levels with the WHU building validation set. The bold type represents the best data
under that metrics.

Method F1 Precision Recall IoU

Deeplabv3-plus [24] 0.9676 0.9867 0.9566 0.9196
PSPNet [29] 0.9669 0.9853 0.9562 0.9182
FCN-8s [18] 0.9651 0.9813 0.9528 0.9032
U-Net [23] 0.9135 0.9542 0.8826 0.8813

SiU-Net [37] - 0.9380 0.9390 0.8840
SRINet [60] 0.9423 0.9521 0.9328 0.8909
DeNet [17] 0.9480 0.9500 0.9460 0.9012

EANet 0.9752 0.9867 0.9642 0.9333
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In summary, we conducted comparative experiments on two different datasets with eleven other
SOTA models to verify whether EANet could obtain high-quality segmentation results. Experiments
confirmed that our model had better results than other SOTA models in all evaluation metrics, which
not only indicated that our model has a good performance in building extraction but also indicates
that the increase of spatial information, especially edge information, is conducive to the automatic
extraction of buildings in a network.

4. Discussion

In this section, the impact of the various parts of the proposed network on the results is first
examined. Then, we discuss our conducted experiments on the ISPRS Potsdam dataset to test the role
of each part of our proposed model. Finally, the future work is also discussed.

4.1. Ablation Study

Ablation research consists of two parts: architecture ablation and loss ablation. Our model served
as a kind of u-shaped structure [38,39,60,64], and we selected U-Net [23] as the baseline.

In the architecture ablation experiment, the effectiveness of atrous convolution was first tested.
Specifically, the atrous convolutional layer, whose dilation rate was equal to 2, was used to replace the
last stage of ResNet, which could add more receptive field and global semantic information without
reducing the spatial resolution. Furthermore, we also used our proposed ESRE and FAB modules to
replace the baseline decoder in the experiment. As our decoding module contains multi-scale feature
fusion, different from the up-sampling strategy with a ratio of 4 that is adopted in the last layer of the
decoder in most segmentation networks, our feature map adopted an up-sampling operation with
a ratio of 2 after multi-scale fusion, which makes the results more smooth. The IoU was adopted as
the evaluation metric (Table 3). The IoU score was substantially increased from 89.17% to 92.75%
when using the feature fusion method we proposed, which reflected the advantages of ESRE and FAB
modules and atrous convolution over the decoder in the baseline.

Table 3. Ablation experiments of the methods in Section 4.1. The IoU (%) was adopted as the
evaluation metric on the ISPRS Potsdam dataset. The baseline model was the U-Net [23]. Atrous:
atrous convolution layer; ESRE and FAB: explicit spatial resolution embedding and feature aggregation
block; EEB: edge extraction branch. The bold type represents the best data.

Index Baseline Atrous ESRE
and FAB EEB EALoss IoU (%)

1 4 89.17

2 4 4 91.80

3 4 4 92.51

4 4 4 4 92.75

5 4 4 4 4 93.58

6 4 4 4 4 4 94.09

To further demonstrate the generality of the EANet, different loss functions were used in the loss
ablation experiment to guide the model in learning the building extraction task. We first added the
EEB module to extract image edges based on a baseline and used the BCE loss to render the predicted
results closer to the ground-truth label. With the constraint of BCE loss function, the feature map of
each stage in the decoder pays more attention to the learning of edge information. Finally, to verify
the effectiveness of our proposed EALoss, we added it to the baseline to enhance edge prediction of
segmentation results. The experimental results in Table 3 prove that our suggested approach was
significantly better than the baseline on the IoU and the ablation results reported in Table 3. As shown
in Figure 8, the number of false-positive pixels in our approach was significantly reduced compared to
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the baseline, possibly because the model effectively separated the background from the building using
edge information. At the same time, the number of false-negative pixels was not significantly reduced
from baseline, possibly because the difference between the environment and the building was too small
for the model to accurately distinguish. The EANet focuses more on the edge than on the baseline and
has fewer misdetections and omissions. Thus, the EANet can learn low-level spatial information well.

Remote Sens. 2020, 6, xx FOR PEER REVIEW 13 of 19 

 

89.17% to 92.75% when using the feature fusion method we proposed, which reflected the advantages 
of ESRE and FAB modules and atrous convolution over the decoder in the baseline.  

To further demonstrate the generality of the EANet, different loss functions were used in the 
loss ablation experiment to guide the model in learning the building extraction task. We first added 
the EEB module to extract image edges based on a baseline and used the BCE loss to render the 
predicted results closer to the ground-truth label. With the constraint of BCE loss function, the feature 
map of each stage in the decoder pays more attention to the learning of edge information. Finally, to 
verify the effectiveness of our proposed EALoss, we added it to the baseline to enhance edge 
prediction of segmentation results. The experimental results in Table 3 prove that our suggested 
approach was significantly better than the baseline on the IoU and the ablation results reported in 
Table 3. As shown in Figure 8, the number of false-positive pixels in our approach was significantly 
reduced compared to the baseline, possibly because the model effectively separated the background 
from the building using edge information. At the same time, the number of false-negative pixels was 
not significantly reduced from baseline, possibly because the difference between the environment 
and the building was too small for the model to accurately distinguish. The EANet focuses more on 
the edge than on the baseline and has fewer misdetections and omissions. Thus, the EANet can learn 
low-level spatial information well. 

Table 3. Ablation experiments of the methods in Section 4.1. The IoU (%) was adopted as the 
evaluation metric on the ISPRS Potsdam dataset. The baseline model was the U-Net [23]. Atrous: 
atrous convolution layer; ESRE and FAB: explicit spatial resolution embedding and feature 
aggregation block; EEB: edge extraction branch. The bold type represents the best data. 

Index Baseline Atrous ESRE 
and FAB 

EEB EALoss IoU (%) 

1 √     89.17 
2 √ √    91.80 
3 √  √   92.51 
4 √ √ √   92.75 
5 √ √ √ √  93.58 
6 √ √ √ √ √ 94.09 

 

   
Remote Sens. 2020, 6, xx FOR PEER REVIEW 14 of 19 

 

   

   

(a) Input (b) Baseline (c) EANet 

Figure 8. Results of ablation experiments on the ISPRS Potsdam dataset. White indicates true 
positive pixels, blue indicates false positive pixels, black indicates true negative pixels, and red 
indicates false negative pixels. (a) Original image selected from the dataset. (b) The processing result 
of U-Net as the baseline. (c) The processing result of our proposed method, the EANet. 

4.2. Future Work 

In today's semantic segmentation community, a technique called non-local [65] is widely used 
by researchers in neural networks to capture the long-distance dependence of two non-adjacent 
pixels in an image. As can be seen from Figure 7, our network generates voids for extracting some 
particularly large buildings. We speculate that this situation is caused by insufficient semantic 
information rather than the lack of low-level detailed information. Adopting non-local technology to 
obtain more complete semantic information may greatly improve this situation. 

Though our proposed network presents some improvement regarding the loss of spatial 
information, that information loss due to down-sampling is irreversible [66]. Therefore, using a high-
resolution representation [67–69] for calculation may be useful. Meanwhile, in our suggested method, 
the edge is only used as a constraint to supervise the learning of the model. Perhaps there is a way to 
incorporate the extracted edges into the network's stream of traffic rather than just using it as a guide. 
Additionally, the artificial building boundary presented in the remote sensing image is uncertain, 
and errors occur in artificial labeling. Moreover, the labeling of the boundary is affected by noise. 
Future work can emphasize the investigation of robust algorithms free from noise interference.  

5. Conclusions 

This work proposed the EANet, a novel encoder–decoder edge-aware network with an edge-
aware loss for accurate building extraction from remote sensing images. The EANet presents an end-
to-end architecture consisting of two components: an image segmentation network and an edge 
perception network. The image segmentation network aims to obtain high-quality segmentation 

Figure 8. Results of ablation experiments on the ISPRS Potsdam dataset. White indicates true positive
pixels, blue indicates false positive pixels, black indicates true negative pixels, and red indicates false
negative pixels. (a) Original image selected from the dataset. (b) The processing result of U-Net as the
baseline. (c) The processing result of our proposed method, the EANet.

4.2. Future Work

In today’s semantic segmentation community, a technique called non-local [65] is widely used by
researchers in neural networks to capture the long-distance dependence of two non-adjacent pixels in
an image. As can be seen from Figure 7, our network generates voids for extracting some particularly



Remote Sens. 2020, 12, 2161 14 of 18

large buildings. We speculate that this situation is caused by insufficient semantic information rather
than the lack of low-level detailed information. Adopting non-local technology to obtain more complete
semantic information may greatly improve this situation.

Though our proposed network presents some improvement regarding the loss of spatial information,
that information loss due to down-sampling is irreversible [66]. Therefore, using a high-resolution
representation [67–69] for calculation may be useful. Meanwhile, in our suggested method, the edge is
only used as a constraint to supervise the learning of the model. Perhaps there is a way to incorporate
the extracted edges into the network’s stream of traffic rather than just using it as a guide. Additionally,
the artificial building boundary presented in the remote sensing image is uncertain, and errors occur
in artificial labeling. Moreover, the labeling of the boundary is affected by noise. Future work can
emphasize the investigation of robust algorithms free from noise interference.

5. Conclusions

This work proposed the EANet, a novel encoder–decoder edge-aware network with an edge-aware
loss for accurate building extraction from remote sensing images. The EANet presents an end-to-end
architecture consisting of two components: an image segmentation network and an edge perception
network. The image segmentation network aims to obtain high-quality segmentation results from
images. Conversely, the edge perception network guides the segmentation network toward paying
more attention to edge information and restores lost low-level details as much as possible. The ISPRS
Potsdam and the WHU building datasets, respectively, cover two different cities. Both datasets contain
civil and industrial buildings that fully demonstrate the complexity of urban buildings. Compared
with the existing eleven state-of-the-art methods, our network was found to have the best performance
for the extraction of buildings according to experiments with the ISPRS Potsdam and WHU building
datasets, with the proposed EANet achieving the highest F1 and IoU (97.52% and 93.33%, respectively)
compared with Deeplabv3-plus (96.76% and 91.96%, respectively), PSPNet (96.69% and 91.82%,
respectively), U-Net (91.35% and 88.13%, respectively), SRINet (94.23% and 89.09%, respectively),
DeNet (94.80% and 90.12%, respectively) for the WHU buildings dataset. For the extraction of dense
buildings, the results showed that our method performed better. Meanwhile, our network is simple
and efficient, and it can not only be applied to the extraction of buildings in other cities or regions but
can also be easily extended to the extraction of other ground objects of remote sensing images.

Author Contributions: Q.Z. conceived of the presented idea and designed the study. G.Y. derived the models
and performed the experiments. The manuscript was drafted by G.Y. with support from Q.Z. and G.Z. All authors
discussed the results and contributed to the final manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Nature Science Foundation of China (Grant Nos. 61731009
and 41301472) and the Science and Technology Commission of Shanghai Municipality (Grant No. 19511120600).

Acknowledgments: The authors would like to thank Xiangyu Lei for his advice on models.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ahmadi, S.; Zoej, M.J.V.; Ebadi, H.; Abrishami, H.; Mohammadzadeh, A. Automatic urban building boundary
extraction from high resolution aerial images using an innovative model of active contours. Int. J. Appl.
Earth Obs. Geoinf. 2010, 12, 150–157. [CrossRef]

2. Liu, C.; Huang, X.; Zhu, Z.; Chen, H.; Tang, X.; Gong, J. Automatic extraction of built-up area from ZY3
multi-view satellite imagery: Analysis of 45 global cities. Remote Sens. Environ. 2019, 226, 51–73. [CrossRef]

3. Li, J.; Huang, X.; Gong, J. Deep neural network for remote sensing image interpretation: Status and
perspectives. Natl. Sci. Rev. 2019, 6, 1082–1086. [CrossRef]

4. Huang, X.; Cao, Y.; Li, J. An automatic change detection method for monitoring newly constructed building
areas using time-series multi-view high-resolution optical satellite images. Remote Sens. Environ. 2020,
244, 111802. [CrossRef]

http://dx.doi.org/10.1016/j.jag.2010.02.001
http://dx.doi.org/10.1016/j.rse.2019.03.033
http://dx.doi.org/10.1093/nsr/nwz058
http://dx.doi.org/10.1016/j.rse.2020.111802


Remote Sens. 2020, 12, 2161 15 of 18

5. Peng, J.; Zhang, D.; Liu, Y. An improved snake model for building detection from urban aerial images.
Pattern Recognit. Lett. 2005, 26, 587–595. [CrossRef]

6. Müller, S.; Zaum, D. Robust Building Detection in Aerial Images. In Proceedings of the International Archives
of Photogrammetry and Remote Sensing, Vienna, Austria, 29–30 August 2005; pp. 143–148.

7. Liu, Z.; Cui, S.; Yan, Q. Building extraction from high resolution satellite imagery based on multi-scale image
segmentation and model matching. In Proceedings of the International Workshop on Earth Observation and
Remote Sensing Applications, Beijing, China, 30 June–2 July 2008.

8. Shackelford, A.K.; Davis, C.H.; Wang, X. Automated 2-D Building Footprint Extraction from High-Resolution
Satellite Multispectral Imagery. In Proceedings of the IEEE International Geoscience and Remote Sensing
Symposium, Honolulu, HI, USA, 20–24 September 2004; pp. 1996–1999.

9. Zhang, Q.; Huang, X.; Zhang, G. Urban Area Extraction by Regional and Line Segment Feature Fusion and
Urban Morphology Analysis. Remote Sens. 2017, 9, 663. [CrossRef]

10. Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Convolutional Neural Networks for Large-Scale
Remote-Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 645–657. [CrossRef]

11. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of
the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.

12. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
21–26 July 2017; pp. 4700–4708.

13. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016;
pp. 770–778.

14. Vakalopoulou, M.; Karantzalos, K.; Komodakis, N.; Paragios, N. Building detection in very high resolution
multispectral data with deep learning features. In Proceedings of the 2015 IEEE International Geoscience
and Remote Sensing Symposium, Milan, Italy, 26–31 July 2015; pp. 1873–1876.

15. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV),
Santiago, Chile, 13–16 December 2015; pp. 1440–1448.

16. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.; Berg, A.C. SSD: Single Shot Multibox Detector.
In Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands,
8–16 October 2016; pp. 21–37.

17. Liu, H.; Luo, J.; Huang, B.; Hu, X.; Sun, Y.; Yang, Y.; Xu, N.; Zhou, N. DE-Net: Deep Encoding Network for
Building Extraction from High-Resolution Remote Sensing Imagery. Remote Sens. 2019, 11, 2380. [CrossRef]

18. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 8–10 June 2015;
pp. 3431–3440.

19. Mou, L.; Zhu, X.X. RiFCN: Recurrent network in fully convolutional network for semantic segmentation of
high resolution remote sensing images. arXiv 2018, arXiv:1805.02091. Available online: https://arxiv.org/abs/
1805.02091 (accessed on 5 May 2018).

20. Marmanis, D.; Wegner, J.D.; Galliani, S.; Schindler, K.; Datcu, M.; Stilla, U. Semantic Segmentation of Aerial
Images with an Ensemble of CNNs. ISPRS Annals Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3, 473–480.

21. Xu, Y.; Wu, L.; Xie, Z.; Chen, Z. Building Extraction in Very High Resolution Remote Sensing Imagery Using
Deep Learning and Guided Filters. Remote Sens. 2018, 10, 144. [CrossRef]

22. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation
with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal.
Mach. Intell. 2018, 40, 834–848. [CrossRef] [PubMed]

23. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation.
In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241.

24. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder–decoder with atrous separable convolution
for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV),
Munich, Germany, 8–14 September 2018; pp. 801–818.

http://dx.doi.org/10.1016/j.patrec.2004.09.033
http://dx.doi.org/10.3390/rs9070663
http://dx.doi.org/10.1109/TGRS.2016.2612821
http://dx.doi.org/10.3390/rs11202380
https://arxiv.org/abs/1805.02091
https://arxiv.org/abs/1805.02091
http://dx.doi.org/10.3390/rs10010144
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://www.ncbi.nlm.nih.gov/pubmed/28463186


Remote Sens. 2020, 12, 2161 16 of 18

25. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image
Segmentation. arXiv 2017, arXiv:abs/1706.05587. Available online: https://arxiv.org/abs/1706.05587 (accessed
on 17 June 2017).

26. Zeiler, M.D.; Taylor, G.W.; Fergus, R. Adaptive deconvolutional networks for mid and high level feature
learning. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Barcelona, Spain,
6–13 November 2011; pp. 2018–2025.

27. Tian, Z.; He, T.; Shen, C.; Yan, Y. Decoders matter for semantic segmentation: Data-dependent decoding
enables flexible feature aggregation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 3126–3135.

28. Yu, F.; Koltun, V. Multi-Scale Context Aggregation by Dilated Convolutions. In Proceedings of the International
Conference on Learning Representations, San Juan, Puerto Rico, 2–4 May 2016.

29. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 2881–2890.

30. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–20 June 2018;
pp. 8759–8768.

31. Dai, J.; He, K.; Sun, J. Instance-aware semantic segmentation via multi-task network cascades. In Proceedings
of the IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

32. Zhang, Z.; Luo, P.; Loy, C.C.; Tang, X. Facial landmark detection by deep multi-task learning. In Proceedings
of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 94–108.

33. Zeiler, M.; Fergus, R. Visualizing and Understanding Convolutional Networks. In Proceedings of the
European Conference on Computer Vision, Zurich, Switzerland, 6–7 September 2014; pp. 818–833.

34. Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. Learning a Discriminative Feature Network for Semantic
Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake
City, UT, USA, 18–20 June 2018; pp. 1857–1866.

35. Qin, X.; Zhang, Z.; Huang, C.; Gao, C.; Dehghan, M.; Jagersand, M. BASNet: Boundary-Aware Salient Object
Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Long Beach, CA, USA, 16–20 June 2019; pp. 7479–7489.

36. ISPRS 2D Semantic Labeling Contest. July 2018. Available online: http://www2.isprs.org/commissions/
comm3/wg4/semantic-labeling.html (accessed on 2 July 2018).

37. Ji, S.P.; Wei, S.Q.; Lu, M. Fully Convolutional Networks for Multisource Building Extraction from an Open
Aerial and Satellite Imagery Data Set. IEEE Trans. Geosci. Remote Sens. 2018, 57, 574–586. [CrossRef]

38. Lin, T.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object
detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu,
HI, USA, 21–26 July 2017; pp. 2117–2125.

39. Pohlen, T.; Hermans, A.; Mathias, M.; Leibe, B. Full-resolution residual networks for semantic segmentation
in street scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA, 21–26 July 2017; pp. 3309–3318.

40. Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. Bisenet: Bilateral segmentation network for real-time
semantic segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich,
Germany, 8–14 September 2018; pp. 334–349.

41. Zhao, H.; Zhang, Y.; Liu, S.; Shi, J.; Loy, C.; Lin, D.; Jia, J. Psanet: Pointwise spatial attention network for
scene parsing. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany,
8–14 September 2018; pp. 270–286.

42. Zhang, Z.; Zhang, X.; Peng, C.; Xue, X.; Sun, J. Exfuse: Enhancing feature fusion for semantic segmentation.
In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September
2018; pp. 269–284.

43. Zhu, Z.; Xu, M.; Bai, S.; Huang, T.; Bai, X. Asymmetric non-local neural networks for semantic
segmentation. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Seoul,
Korea, 27 October–2 November 2019; pp. 593–602.

https://arxiv.org/abs/1706.05587
http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html
http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html
http://dx.doi.org/10.1109/TGRS.2018.2858817


Remote Sens. 2020, 12, 2161 17 of 18

44. Wang, P.; Chen, P.; Yuan, Y.; Liu, D.; Huang, Z.; Hou, X.; Cottrell, G. Understanding convolution for
semantic segmentation. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision,
Lake Tahoe, NV, USA, 12–15 March 2018; pp. 1451–1460.

45. Nair, V.; Hinton, G. Rectified Linear Units Improve Restricted Boltzmann Machines Vinod Nair. In Proceedings
of the 27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010.

46. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. arXiv 2015, arXiv:1502.03167. Available online: https://arxiv.org/abs/1502.03167 (accessed on 11 February
2015).

47. Liu, Y.; Cheng, M.; Hu, X.; Wang, K.; Bai, X. Richer Convolutional Features for Edge Detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July
2017; pp. 5872–5881.

48. Xie, S.; Tu, Z. Holistically-nested edge detection. In Proceedings of the IEEE Conference on Computer Vision,
Santiago, Chile, 7–9 December 2015; pp. 1395–1403.

49. Liu, Y.; Lew, M. Learning relaxed deep supervision for better edge detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016;
pp. 231–240.

50. Haralick, R.; Sternberg, S.; Zhuang, X. Image Analysis Using Mathematical Morphology. IEEE Trans. Pattern
Anal. Mach. Intell. 1987, 9, 532–550. [CrossRef] [PubMed]

51. Boer, P.; Kroese, D.; Mannor, S.; Rubinstein, R. A tutorial on the cross-entropy method. Ann. Oper. Res. 2005,
134, 19–67. [CrossRef]

52. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A.
Automatic differentiation in pytorch. In Proceedings of the NIPS 2017 Workshop, Long Beach, CA, USA,
4–9 December 2017.

53. Deng, J.; Dong, W.; Socher, R.; Li, L.; Li, F. Imagenet: A large-scale hierarchical image database. In Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Miami, FL, USA,
20–25 June 2009.

54. He, T.; Zhang, Z.; Zhang, H.; Zhang, Z.; Xie, J.; Li, M. Bag of tricks for image classification with convolutional
neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Long Beach, CA, USA, 16–20 June 2019; pp. 558–567.

55. Goyal, P.; Dollar, P.; Girshick, R.; Noordhuis, P.; Wesolowski, L.; Kyrola, A.; Tulloch, A.; Jia, Y.; He, K.
Accurate, large minibatch SGD: Training imagenet in 1 hour. arXiv:1706.02677. Available online: https:
//arxiv.org/abs/1706.02677(accessed on 8 June 2017).

56. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2818–2826.

57. Lin, G.; Anton, M.; Shen, C. RefineNet: Multi-path Refinement Networks for High-Resolution Semantic
Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Honolulu, HI, USA, 21–26 July 2017; pp. 1925–1934.

58. Wu, T.; Tang, S.; Zhang, R.; Zhang, Y. CGNet: A light-weight context guided network for semantic
segmentation. arXiv 2018, arXiv:1811.08201. Available online: http://arxiv.org/abs/1811.08201 (accessed on
20 November 2018).

59. Vijay, B.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder–decoder Architecture for Image
Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495.

60. Liu, P.; Liu, X.; Liu, M.; Shi, Q.; Yang, J.; Xu, X.; Zhang, Y. Building Footprint Extraction from High-Resolution
Images via Spatial Residual Inception Convolutional Neural Network. Remote. Sens. 2019, 11, 830. [CrossRef]

61. Robbins, H.; Monro, S. A stochastic approximation method. Ann. Math. Stat. 1951, 22, 400–407. [CrossRef]
62. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on

imagenet classification. In Proceedings of the IEEE Conference on Computer Vision (ICCV), Santiago, Chile,
7–13 December 2015; pp. 1026–1034.

63. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition.
In Proceedings of the ICLR, San Diego, CA, USA, 7–9 May 2015.

https://arxiv.org/abs/1502.03167
http://dx.doi.org/10.1109/TPAMI.1987.4767941
http://www.ncbi.nlm.nih.gov/pubmed/21869411
http://dx.doi.org/10.1007/s10479-005-5724-z
https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1811.08201
http://dx.doi.org/10.3390/rs11070830
http://dx.doi.org/10.1214/aoms/1177729586


Remote Sens. 2020, 12, 2161 18 of 18

64. Paszke, A.; Chaurasia, A.; Kim, S.; Culurciello, E. ENet: A Deep Neural Network Architecture for Real-Time
Semantic Segmentation. arXiv 2016, arXiv:1606.02147. Available online: https://arxiv.org/abs/1606.02147
(accessed on 7 June 2016).

65. Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–20 June 2018; pp. 7794–7803.

66. Zhang, R. Making convolutional networks shift-invariant again. In Proceedings of the ICML, Long Beach,
CA, USA, 9–15 June 2019; pp. 7324–7334.

67. Huang, X.; Wang, Y.; Li, J.; Chang, X.; Cao, Y.; Xie, J.; Gong, J. High-resolution urban land-cover mapping and
landscape analysis of the 42 major cities in China using ZY-3 satellite images. Sci. Bull. 2020, 65, 1039–1048.
[CrossRef]

68. Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep high-resolution representation learning for human pose estimation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
16–20 June 2019; pp. 5693–5703.

69. Sun, K.; Zhao, Y.; Jiang, B.; Cheng, T.; Xiao, B.; Liu, D.; Mu, Y.; Wang, X.; Liu, W.; Wang, J. High-resolution
representations for labeling pixels and regions. arXiv 2019, arXiv:1904.04514. (accessed on 9 April 2019).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://arxiv.org/abs/1606.02147
http://dx.doi.org/10.1016/j.scib.2020.03.003
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Overview of Network Architecture 
	The Image Segmentation Network 
	Explicit Spatial Resolution Embedding 
	Feature Aggregation Block (FAB) 

	The Edge Perception Network 

	Experiment 
	Datasets 
	Experimental Setup 
	Evaluation Metrics 
	Result 

	Discussion 
	Ablation Study 
	Future Work 

	Conclusions 
	References

