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Abstract: The instantaneous frequency (IF) is a vital parameter for the analysis of non-stationary
multicomponent signals, and plays an important role in space cone-shaped target recognition. For a
cone-shaped target, IF estimation is not a trivial issue due to the proximity of the energy of the IF
components, the intersections among different IF components, and the existence of noise. Compared
with the general parameterized time-frequency (GPTF), the traditional Kalman filter can perform
better when the energy of different signal components is close. Nevertheless, the traditional Kalman
filter usually makes association mistakes at the intersections of IF components and is sensitive to the
noise. In this paper, a novel IF estimation method based on modified Kalman filter (MKF) is proposed,
in which the MKF is used to associate the intersecting IF trajectories obtained by the synchroextracting
transform (SET). The core of MKF is the introduction of trajectory correction strategy in which a
trajectory survival rate is defined to judge the occurrence of association mistakes. When the trajectory
survival rate is below the predetermined threshold, it means that an association mistakes occurs,
and then the new trajectories generated by the random sample consensus algorithm are used to correct
the wrong associations timely. The trajectory correction strategy can effectively obviate the association
mistakes caused by the intersections of IF components and the noise. The windowing technique is
also used in the trajectory correction strategy to improve computational speed. The experimental
results based on the electromagnetic computation data show that the proposed method is more robust
and precise than the traditional Kalman filter. Moreover, the proposed method has great performance
advantages compared with other methods (i.e., the multiridge detection, the ant colony optimization,
and the GPTF methods) especially in the case of low signal noise ratio (SNR).

Keywords: instantaneous frequency estimation; Kalman filter; time-frequency analysis; space
cone-shaped target; micro-Doppler

1. Introduction

Relative motion of nonrigid parts of complex targets can induce micro-Doppler effect [1].
Micro-Doppler effect widely exists in the radar targets, for example, the rotating helicopter blades,
precession cone-shaped targets, and the walking people. Moreover, the micro-Doppler effect appears as
sidebands around the central Doppler frequency. Since different kinds of targets usually induce different
types of micro-Doppler modulations, which can be regarded as a unique feature, there has been a lot of
research applying the micro-Doppler effect to the accurate target identification applications [2–5].

Because of the time-varying properties of micro-Doppler, time-frequency (TF) analysis of
non-stationary radar signals can provide information about time-dependent Doppler frequency
variations and allow to extract classification features. In the last decade, several radar automatic target
recognition techniques and activity classification algorithms, which are based on TF analysis (TFA)
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have been presented. After analyzing the differences between the micro-Doppler signatures from the
three kinds of ground moving targets, a three-dimensional TF feature vector is extracted in [6] for
categorizing ground moving targets. The paper [7] proposes a novel algorithm for the estimation of
blade length and rotations per second of drone using TFA. In [8], the estimation method of spin rate
and nutation angle based on the TF spectrum for free rigid targets is proposed.

For the multicomponent signal, instantaneous frequency (IF) of each component will appear as an
IF trajectory which is determined by the micro-dynamic characteristics in the TF spectrum. Estimation
of their IF characteristics for multicomponent signals is a widely investigated problem. The most IF
estimation methods contain two critical steps: the first step is to obtain the concentrated TF spectrum
and the second step is about tracking and associating each IF trajectory, i.e., the peak points of individual
signal component in the TF spectrum. Viterbi algorithm (VA), as a representative method introduced
in [9,10], has been applied in the IF estimation by utilizing the idea of dynamic programming. Another IF
estimation approach based on an adaptive short-time Fourier transform (STFT) has been proposed
in [11]. However, restricted by the Heisenberg uncertainty principle or undesired cross-terms, the IF
estimation methods based on the classical TF analysis algorithms, such as Wigner–Ville distribution
and STFT have poor TF resolution and cannot estimate the IF precisely. In order to achieve the
performance of ideal TFA (ITFA) [12], Daubechies and Maes propose synchrosqueezing transform
(SST) [13], which sharpens the time-scale representation given by continuous wavelet transform to
improve the TF resolution. Subsequently, an extension of SST to the short-time Fourier transform
is proposed in [14]. Compared with SST, which squeezes all TF coefficients into the IF trajectory,
the synchroextracting transform (SET) [15] only retains the most valued TF information of STFT and
has better TF energy concentration.

For a cone-shaped target with micro-motion, there are multiple IF components. Two scattering
points are usually visible and the other one only can be observed at particular sight angles due to the
occlusion. Each IF component is a standard sine form or in the form of the multistage superimposed
sine series, and these IF components are always intersecting. Since there are many peak points at
each time in the TF spectrogram, it is not easy to identify which peak points correspond to which
components, especially in the presence of the intersections and noise. Thus, how to track and associate
the IF trajectory for a cone-shaped target is also a crucial issue. A popular multiridge detection (MD)
algorithm is proposed in [16,17] by calculating the minimum value of the energy functional to obtain
the estimation of the IF. It is worth noting that the MD algorithm only considers the magnitudes and
the absolute frequency variations, and does not account for the variation directions of the IF trajectory.
Thus, the MD algorithm is hard to deal with the intersecting IF component. An IF estimation approach
based on the ant colony optimization (ACO) is proposed in [18] by taking into account that edges
represent image segments with high energy to overcome the high noise impact. In practice, the local
convergence problem reduces the stability of the algorithm and the algorithm will be invalid when IF of
each component is intersecting. An IF estimation algorithm based on Kalman filter is proposed in [19].
The Kalman filter is a time-saving association algorithm, which can predict the locations of missing
points and filter out the spurious points caused by noise. Nevertheless, the wrong association may
occur because of the intersections of IF components. Afterwards, a method named the coherent single
range Doppler interferometry-modified general parameterized TF (CSRDI-MGPTF) [20] solves the
problem of intersection with a multicomponent signal-separating operator, which reduces the impact
of each component. However, when the energy of different signal components is close, this method
is inapplicable because the TF ridge, which is obtained by modified GPTF transform, is the aliasing
of multiple signal components. Besides, the residual component energy by the multicomponent
signal-separating operator can cause serious estimation mistakes involving high noise.

In this paper, a novel IF estimation method based on the modified Kalman filter (MKF) is proposed.
The initial intersecting IF trajectories are obtained by the SET and the MKF is proposed to associate
the intersecting IF trajectories. The traditional Kalman filter is an association algorithm, which can
predict the locations of missing points and filter out the spurious points caused by noise. However,
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potential association mistakes usually cannot be avoided at the intersections of IF trajectories especially
in the case of low signal to noise ratio (SNR). The core of the proposed MKF is the introduction of
trajectory correction strategy, which can correct the incorrect associations. The proposed trajectory
correction strategy defines a trajectory survival rate to judge the occurrence of incorrect associations
drawing on the idea of random sample consensus (RANSAC) [21]. The predicting locations of points
will gradually deviate from the real IF trajectories when an association error occurs and there is a
decline in the trajectory survival rate. The RANSAC algorithm then is used to generate a new trajectory
to correct the wrong association obtained by the Kalman filter when the trajectory survival rate is
below the predetermined threshold. The proposed trajectory correction strategy can effectively avoid
the association mistakes caused by the intersections of IF components and the noise. In addition,
considering that the RANSAC algorithm has a heavy computational burden, the windowing technique
is also used in the trajectory correction strategy to improve computational speed of the RANSAC
algorithm. Besides the intuitive IF estimation results in the experiment, the quantitative evaluation
results are also attained in terms of the relative root mean squared error (RRMSE), the mean absolute
error (MAE), and the determination coefficient. Experimental results based on the electromagnetic
computation data show that the proposed method has stronger robustness and higher accuracy than
the traditional Kalman filter. Furthermore, the proposed method yields great performance advantages
compared with other methods (i.e., the MD, the ACO, and the general parameterized TF (GPTF)
methods), especially in the case of low SNR.

The plan of the work is as follows. After deriving the precession model of the cone-shaped target
and SET in Section 2, this paper introduces MKF algorithm in Section 3. Numerical examples with the
estimation results are presented to verify the performance of the proposed method in Section 4. Finally,
conclusions are described in Section 5.

2. Procession Model of the Cone-Shaped Target and SET

2.1. Procession Model

As shown in Figure 1, the reference coordinate system (O− x′y′z′) and target coordinate system
(O− xyz) are established and the precession center of target is located at the origin O. When the target
does precession, the precession angle is θ, ωs and ωc denote the angular velocity of the space target
rotating around the axis Oz and OC respectively. Because of the symmetry of the target, it is generally
assumed that the radar line-of-sight (RLOS) lies in the yOz plane. γ is the sight angle which is the angle
between the RLOS and OC. β is the angle between the RLOS and axis Oz and this angle is time-varying.
The smooth cone-shaped target contains three effective scattering points P1, P2, P3. Usually, the scatter
P3 is occlusive. According to [19], the distance between two scatters and radar can be obtained by{

r1(t) = R0 − (H − h) cos β(t)
r2(t) = R0 + hcosβ(t) − r sin β(t)

(1)

where R0 is the distance between the radar and the origin O, H, and r is the height and radius of the
target respectively, h is the distance between the bottom surface and the origin O. The variation of β
can be expressed as

cos β(t) = cosγ cosθ− sinγ sinθ cos(wct) (2)

The micro-Doppler formula of scatters can be described as

f1(t) = 2ωb(h−H) sin(wct)/λ (3)

f2(t) = −
2
λ

r(a + b cos(wct)) ×
wcb sin(wct)√

1− (a + b cos(wct))
2
−

2
λ

wchb sin(wct) (4)
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where a = cosθ cosγ, b = sinθ sinγ. It is observed that the micro-Doppler formula of P1 is a standard
sine form and the micro-Doppler formula of P2 is relatively complex which can be regarded as the
superposition of the sine series of infinite order.
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Figure 1. The micro-motion model of cone-shaped target.

2.2. Synchroextracting Transform

The STFT of a given signal x(t) = A(t)eiφ(t) is defined by

Sg
f (t,ω) =

∫ +∞

−∞

x(τ)g∗(τ− t)e− jω(τ−t)dτ (5)

where g(t) is a real-valued window function with g(t) = g∗(t).
The expression (5) can be rewritten as [15]

Sg
f (t,ω) = A(t)e jφ(t) ĝ(ω−φ′(t)) (6)

where ĝ(ω) is the Fourier transform of g(t).
The two-dimensional IF estimation of the STFT result (6) can be obtained by

ω̂(t,ω) = Re

− j ·
∂tS

g
f (t,ω)

2πSg
f (t,ω)

 (7)

In the framework of SET, the TF coefficient in the IF trajectory ω = ω̂(t,ω) is extracted to obtain a
more concentrated TF representation:

Te(t,ω) = Sg
f (t,ω)δ(ω− ω̂(t,ω)) (8)

where the synchroextracting operator (SEO) δ(ω− ω̂(t,ω)) can be interpreted as

δ(ω− ω̂(t,ω)) =

1 ω = ω̂(t,ω)

0 ω , ω̂(t,ω)
(9)

Figure 2 shows the electromagnetic simulation results induced by the precession for the
cone-shaped target. The TF representations of the signal acquired by STFT and SET are shown
in Figure 2a,b respectively. It can be seen that the result of SET has an obviously higher energy
concentration than that of STFT. The more energy-concentrated TF result denotes the better ability of
the TF location and is more favorable to IF estimation. Meanwhile, different signal components in the
TF representation are intersecting, which brings a huge challenge for IF estimation. Thus, based on the
TF representation obtained by SET, this paper proposes a MKF algorithm, which will be introduced in
detail in the next section.
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3. Instantaneous Frequency Estimation

The most IF estimation methods contain two critical steps: the first step is to obtain the concentrated
TF spectrum and the second step is about finding the peak point sequences that correspond to individual
signal component in the TF spectrum. The second step can be seen as tracking and associating the
IF trajectory. In a real scenario, there are often many peak points in the TF spectrum at each time,
and their number often varies. In such circumstances it can be not easy to judge which peak points
correspond to which components, and which are spurious points caused by noise. The traditional
Kalman filter is an association algorithm, which can predict the locations of missing points and filter
out the spurious points caused by noise. However, potential association mistakes usually cannot be
avoided at the intersections of IF trajectories especially in the case of low SNR. Therefore, in this paper,
the traditional IF estimation problem is transformed into the trajectory association problem and a novel
IF estimation method is proposed based on the MKF.

To describe the trajectory association problem, the discrete system with the linear Gaussian
dynamic and measurement model is given by{

Xi
k = AXi

k−1 +ωi
k−1,ωi

k−1 ∼ N(0, Rω)
Yi

k = HXi
k + ei

k, ei
k ∼ N(0, Re)

(10)

where Xi
k denotes state vector of ith trajectory at time step k, Yi

k denotes the measurement of ith
trajectory at time step k. A represents the state transition and H represents the measurement matrix.
ωi

k−1 and ei
k are mutually uncorrelated process noise with covariance Rω and measurement noise with

covariance Re.
The echo signal in a short-time window can be approximately a chirp signal and the frequency

varies linearly with time at the moment [22]. In this paper, the constant velocity (CV) model is adopted.

The state vector is Xi
k = [xi

k,
.
xi

k]
T

, where xi
k denotes the position,

.
xi

k =
xi

k−xi
k−1

∆t denotes the velocity,
∆t is the time lag. The velocity is approximately constant within a short time. The state transition

matrix A =

[
1 ∆t
0 1

]
and the measurement matrix H =

[
1 0
0 0

]
are assumed to be invariant with

time. The covariance of measurement noise and the covariance of process noise are assumed to be

Re= diag([ r1 r2]) =

[
r1 0
0 r2

]
and Rω = q

[ 1
3 4 t3 1

2 4 t2

1
2 4 t2

4t

]
.

The flowchart of MKF is shown in Figure 3. The detailed MKF algorithm can be found in
Algorithm 1.
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Algorithm 1. The MKF Algorithm.

Input: measurement Y1:T = Sg
f (t,ω), window length l, threshold of trajectory survival rate ε0, number of

signal component I.

for each time step k = 1 : T do
update the trajectory survival rate εi

k = mi
k:k+l/l where mi

k:k+l denotes the inlier
number of ith trajectories in a short time window.
if εi

k < ε0

generate new trajectories.
end if
for each trajectory do

X̂i
k = AXi

k−1.
compute inlier set S.
if S = ∅

yi
k = HX̂i

k.
else

yi
k = mean(S).

end if
update Xi

k using yi
k by Kalman filter.

update the trajectories Ti = [Ti, yi
k].

end for
end for

Output: trajectories set {T1, . . . , TI}Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 22 
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The key procedures of algorithm are explained in detail as follows:

1. One-step Kalman predictor is used to obtain the prediction X̂i
k = [x̂i

k,
.̂
x

i
k]

T
of the state vector Xi

k at
k time step for each trajectory. Then update the state vector using the Kalman filter. The updated
state vector Xi

k is estimated as follows:

Xi
k = X̂i

k + Gi
k(yi

k −HX̂i
k) (11)
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The Kalman prediction gain Gi
k is obtained by:

Gi
k = P̂i

kHT(HP̂i
kHT + Re)

−1
(12)

The estimation error covariance matrix Pi
k is:

Pi
k = P̂i

k −Gi
k(HP̂i

kHT + Re)Gi
k

T (13)

and the prediction P̂i
k is

P̂i
k = APi

k−1AT + Rω (14)

2. For filtering out the spurious points which are generated by noise and avoiding the association
mistakes at the intersection, this paper introduces the inlier set S which is define as

S =

ykj|
∣∣∣ykj − x̂i

k

∣∣∣ < τ f

2
,

∣∣∣∣∣∣∣ ykj − x̂i
k

4t
−

.̂
x

i
k

∣∣∣∣∣∣∣ < τv

 (15)

where ykj is the location of jth trajectory at the time step k. τ f and τv are the threshold based on the
actual situation. Because of the limitation of TF resolution, the points in the same frequency cell belong
to one trajectory. Therefore, τ f is equal to the frequency resolution and τv = τ f /4t. The setting of
velocity threshold is to avoid the association error at the intersection where the states of two trajectories
are close but the velocities of the trajectories have an obvious difference. There may be more than
one points in the inlier set due to existence of the spurious points caused by noise. If S is not empty,
the mean value of the inlier set is regarded as the location of estimated trajectory. If S is empty, Hx̂i

k is
regarded as the location of estimated trajectory.

3. Trajectory correction strategy is performed for each time step to correct the association mistakes
caused by the intersections and noise. The RANSAC algorithm is utilized to generate trajectories
when the trajectory survival rate is lower than the threshold ε0. The basic idea of RANSAC
is to form simple data association hypotheses from a batch of data and verify it to the data.
As an iterative algorithm, RANSAC contains two sections: hypothesis generation and hypothesis
evaluation [21]. In the hypothesis generation phase, RANSAC chooses a subset of data at random,
and then estimates the parameters from the samples. Many assumptions are generated during the
iteration. In the hypothesis evaluation phase, the most likely hypothesis is selected according to
the maximum inlier candidates. A subset of data is considered as the inlier candidate, whose error
is assumed to be within a predefined threshold. RANSAC is popular until now because it is
easy to implement. The signal can be approximately regarded as the linear chirp signal in a
short time, i.e., the trajectories in the short time window can be regarded as a simple straight line
approximately. The windowing technique is used in the trajectory correction strategy to improve
computational speed of the RANSAC algorithm. If the wrong association occurs because of the
intersections and noise, subsequently, the false predicted state vector X̂i

k is obtained. In this case,
the inlier point set obtained by the false state vector X̂i

k does not contain the points correspond to
the true IF, and the trajectory survival rate will drop rapidly.

4. Performance Evaluation with Numerical Results

In this section, this paper focuses on the comparisons between the proposed method and
other advanced IF estimation methods for the cone-shaped target. The experimental electromagnetic
computation data is obtained by FEldberechnung bei Körpern mit beliebiger Oberfläche (FEKO) using
the physical optics (PO) method. The performance of the proposed method with the following TF-based
IF estimation methods is compared:

• multiple target tracking (MTT) algorithm [19] which is based on the STFT;
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• CSRDI-MGPTF algorithm [20] which is based on the MGPTF;
• ACO algorithm [18], which is based on the STFT;
• multiridge detection (MD) algorithm [17], which is based on the STFT and SET.

For multicomponent signals, which are considered in our experiment, the cross-terms of Wigner
distribution (WD) can confuse the auto-terms seriously and cause failures of ACO algorithm. Therefore,
in this paper, the ACO algorithm is performed on the basis of STFT.

Quantitative evaluation criteria used in the experiments include the relative root mean squared
error (RRMSE), the mean absolute error (MAE) and the determination coefficient (R2) between the true
IF and estimated IF, which are formulated as follows:

RRMSE = sqrt

 N∑
n=0

(
fn − f̂n

)2
/N

N∑
n=0

( fn)
2


 (16)

MAE =
N∑

n=0

∣∣∣ fn − f̂n
∣∣∣/N (17)

R2 = 1−
N∑

n=0

(
fn − f̂n

)2
/ N∑

n=0

 fn −
N∑

n=0

fn
/
N


2

(18)

where fn denotes the true IF and f̂n denotes the estimation IF, N is the length of signal. The determination
coefficient R2 is a statistical measure of how well the predictions approximate the real data. R2 = 1
indicates that the predictions perfectly fit the real data. The negative value of R2 indicates that the mean
of the data provides a better prediction result than the original prediction. The Monte Carlo simulations
are performed to calculate the RRMSE, MAE, and R2. Meanwhile, the performance is evaluated
versus different SNR. Some simulation and target parameters are listed in Table 1. The measurement
window length is set to be l = 10 and the threshold of trajectory survival rate is set to be ε0 = 0.6.
The parameters of measurement noise and process noise are set as r1 = r2 = 0.2 and q = 0.1.

Table 1. Some Parameters.

Parameter Value Parameter Value

Radar carrier frequency fc 10 GHz center height h 1 m
Pulse repletion frequency pr f 1000 Hz Precession angle θ 5◦

Target height H 3 m Target bottom radius r 0.5 m

Example 1. In this experiment, sight angle, precession rate and dwell time are set as γ = 45◦, ωc = π rad/s,
T = 0.7 s respectively. At the moment, the scatter P3 is invisible. The signal contains two well-separated and
disjointed IF components.

Figures 4 and 5 show the TF spectrums and IF estimation results for different methods with
SNR = 20 dB and SNR = 5 dB respectively. It can be seen that the two worst estimation results are
exhibited by the ACO algorithm and MTT algorithm. For the MTT algorithm, the use of constant false
alarm rate (CFAR) technology and plots centroid technology may cause the deviation of estimated IF
especially in low SNR. Although the ACO algorithm is robust to high noise influence, the resolution of
STFT is the performance-limiting factor.
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Figure 4. TF spectrums and instantaneous frequency (IF) estimation for example 1 with signal noise
ratio (SNR) = 20 dB. (a) TF representation acquired by STFT; (b) TF representation acquired by SET;
(c) modified Kalman filter (MKF); (d) multiple target tracking (MTT); (e) coherent single range Doppler
interferometry-modified general parameterized TF (CSRDI-MGPTF); (f) ant colony optimization (ACO);
(g) multiridge detection-STFT (MD-STFT); (h) multiridge detection-SET (MD-SET).

In order to make quantitative analysis, the RRMSEs, MAEs, and R2 with different SNRs are given
in Table 2. For the CSRDI-MGPTF algorithm, the first IF component can be modeled as sinusoid,
which lead to the RRMSEs, MAEs, and R2 of the first IF component are minimal for all SNRs. However,
the second IF component is in the form of the complex multistage superimposed sine series. The short
dwell time affects the estimation accuracy of model parameter especially in low SNR. On the contrary,
in low SNR situation, the proposed MKF method has a better performance on the second IF component.
Compared with the MD algorithm, the MKF algorithm can filter out the spurious points caused by
noise and has more precise estimation results. From the Mean evaluation criteria, comprehensive
performance analysis on total IF components, in Table 2, it can be obviously found that the proposed
method outperforms all the other the IF estimation methods when the SNR is not higher than 15 dB
and the performance advantages of the proposed algorithm are more obvious in the case of low SNR.
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Table 2. Performance evaluation of IF Estimation for example 1 based on the relative root mean squared
error (RRMSE), the mean absolute error (MAE) and the determination coefficient (R2 ).

Method MKF MTT CSRDI-
MGPTF ACO MD-STFT MD-SET

RRMSE
(×10−4)

5 dB
1st 8.7561 39.450 8.6603 44.102 9.2366 8.9419
2nd 14.922 77.059 32.826 99.001 18.858 17.218

10 dB
1st 8.4385 29.061 8.4151 41.743 8.8461 8.5507
2nd 13.486 45.515 16.540 86.649 14.760 14.139

15 dB
1st 8.3951 28.818 8.3115 41.652 8.7069 8.4868
2nd 12.890 42.530 13.093 76.140 13.619 12.901

20 dB
1st 8.3288 24.105 8.2771 39.214 8.4426 8.4245
2nd 12.860 34.257 12.878 74.629 12.884 12.870
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Table 2. Cont.

Method MKF MTT CSRDI-
MGPTF ACO MD-STFT MD-SET

Mean RRMSE
(×10−4)

5 dB 11.839 58.254 20.743 71.551 14.047 13.080

10 dB 10.962 37.288 12.477 64.196 11.803 11.345

15 dB 10.642 35.674 10.702 58.896 11.162 10.693

20 dB 10.594 29.181 10.578 56.921 10.663 10.647

MAE

5 dB
1st 1.0866 4.8195 1.0275 7.3464 1.1284 1.0924
2nd 1.1220 6.6894 2.3035 8.5916 1.6371 1.4947

10 dB
1st 1.0498 3.1736 1.0157 6.1121 1.0830 1.0505
2nd 1.1196 3.9473 1.5978 7.2762 1.6044 1.3369

15 dB
1st 1.0025 3.1702 0.9869 6.0521 1.0613 1.0501
2nd 1.1193 2.6299 1.1435 5.5773 1.4803 1.3269

20 dB
1st 0.9938 2.7358 0.9702 5.9137 1.0242 0.9964
2nd 1.1134 2.4103 1.0968 5.5770 1.1697 1.1347

Mean
MAE

5 dB 1.1043 5.7544 1.6635 7.9690 1.3828 1.2936

10 dB 1.0847 3.5605 1.3068 6.6942 1.3435 1.1937

15 dB 1.0609 2.9001 1.0652 5.8147 1.2708 1.1885

20 dB 1.0536 2.5731 1.0335 5.7454 1.0970 1.0641

R2

5 dB
1st 0.9871 0.7377 0.9874 0.6722 0.9856 0.9865

2nd 0.9651 0.0697 0.8312 −0.5355 0.9443 0.9536

10 dB
1st 0.9880 0.8577 0.9881 0.7063 0.9868 0.9877

2nd 0.9715 0.6755 0.9571 −0.1762 0.9659 0.9687

15 dB
1st 0.9881 0.8600 0.9884 0.7076 0.9872 0.9879

2nd 0.9740 0.7166 0.9731 0.0918 0.9709 0.9739

20 dB
1st 0.9883 0.9021 0.9885 0.7408 0.9880 0.9880

2nd 0.9741 0.8162 0.9740 0.1275 0.9740 0.9741

Mean R2

5 dB 0.9761 0.4037 0.9093 0.0684 0.9650 0.9701

10 dB 0.9798 0.7666 0.9726 0.2651 0.9764 0.9782

15 dB 0.9811 0.7883 0.9808 0.3997 0.9791 0.9809

20 dB 0.9812 0.8592 0.9813 0.4342 0.9810 0.9811

Example 2. In this experiment, sight angle, precession rate and dwell time are set asγ = 60◦, ωc= 1.8π rad/s,
T = 0.7 s respectively. At the moment, the scatter P3 is invisible. The signal contains two intersecting IF
components and the energy of the two components is close.

The TF representations and IF estimation results of different algorithms are displayed in
Figures 6 and 7. Obviously, the proposed MKF algorithm can effectively estimate two IF components,
especially at the intersections of IF trajectories. The CSRDI-GPTF algorithm is invalid because the
TF ridge obtained by MGPTF transform is the aliasing of two signal components at the moment.
In Figures 6d and 7d, association errors occur at the intersections for the MTT algorithm because of the
lack of the correction mechanism. The MD algorithms tries to look for an IF trajectory which goes
through positions with large energy. However, MD algorithms do not consider the variation directions
of IF trajectory, which may lead to the failure for estimating the IFs of intersecting components.
The MD-STFT algorithm is easy to converge to an incorrect local extremum point and leads to
wrong estimation of the first IF component when the energy of overlapped two components is close,
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as shown in Figures 6f and 7f. From Figures 6g and 7g, it can be seen that the MD-SET algorithm
has significant estimation errors around the intersections. For ACO algorithm, the estimation cannot
be performed because it is impossible to identify the regions of components and estimate IF of each
region separately for the multicomponent signal containing overlapping components. Thus, in the
experiment of example 2, example 3, and example 4, ACO algorithm is not adopted for comparison.
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acquired by STFT; (b) TF spectrum acquired by SET. (c) MKF; (d) MTT; (e) CSRDI-MGPTF; (f) MD-STFT;
(g) MD-SET.

The quantitative evaluations, RRMSEs, MAEs and R2, are provided in Table 3. Note that desirable
performance of the MKF algorithm is achieved even for SNR = 5dB. From the column 5 and column 6
it can be observed the MTT algorithm and CSRDI-GPTF algorithm cannot provide accurate estimation
results for both the first IF component and second IF component. Even more, the negative values
of R2 on the second IF component indicate that the estimation results are worse than the average of
the original data. It can be concluded that the proposed IF estimation method has a superior mean
estimation performance compared with other methods due to the trajectory correction strategy.
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Table 3. Performance evaluation of IF Estimation for example 2.

Method MKF MTT CSRDI-
MGPTF MD-STFT MD-SET

RRMSE
(×10−4)

5 dB
1st 10.870 259.63 280.72 262.86 24.192
2nd 9.0626 433.09 517.35 9.4629 9.0738

10 dB
1st 8.9880 255.43 321.23 262.01 22.260
2nd 9.0490 425.01 448.46 9.0990 9.0599

15 dB
1st 8.6752 252.02 313.33 236.00 17.929
2nd 9.0410 420.05 468.54 9.0485 9.0507

20 dB
1st 8.2833 251.09 333.50 233.47 12.818
2nd 9.0338 418.61 418.23 9.0366 9.0366
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Table 3. Cont.

Method MKF MTT CSRDI-
MGPTF MD-STFT MD-SET

Mean RRMSE
(×10−4)

5 dB 9.9663 346.36 399.04 136.16 16.633

10 dB 9.0185 340.22 384.85 135.55 15.660

15 dB 8.8581 336.04 390.94 122.52 13.490

20 dB 8.6585 334.85 375.86 121.25 10.927

MAE

5 dB
1st 1.8319 60.544 64.331 60.160 4.4248
2nd 1.1534 69.018 51.118 1.1722 1.1559

10 dB
1st 1.4906 60.351 75.898 60.904 4.2954
2nd 1.1487 60.615 43.959 1.1687 1.1521

15 dB
1st 1.4774 59.545 78.797 55.762 3.2361
2nd 1.1236 59.909 49.650 1.1605 1.1508

20 dB
1st 1.4630 59.326 72.361 55.549 3.0424
2nd 1.1130 59.907 38.553 1.1585 1.1134

Mean
MAE

5 dB 1.4927 64.781 57.725 30.666 2.7904

10 dB 1.3197 60.483 59.929 30.631 2.7238

15 dB 1.3005 59.727 64.224 28.461 2.1935

20 dB 1.2880 59.617 55.457 28.354 2.0779

R2

5 dB
1st 0.9992 0.5197 0.4385 0.5076 0.9958
2nd 0.9994 −0.3386 −0.9162 0.9994 0.9994

10 dB
1st 0.9994 0.5351 0.2647 0.5108 0.9965
2nd 0.9994 −0.2891 −0.4353 0.9994 0.9994

15 dB
1st 0.9995 0.5474 0.3005 0.6031 0.9977
2nd 0.9994 −0.2592 −0.5667 0.9994 0.9994

20 dB
1st 0.9995 0.5507 0.2074 0.6116 0.9988
2nd 0.9994 −0.2506 −0.2483 0.9994 0.9994

Mean R2

5 dB 0.9993 0.0906 −0.2389 0.7535 0.9976

10 dB 0.9994 0.1230 −0.0853 0.7551 0.9980

15 dB 0.9995 0.1441 −0.1331 0.8013 0.9986

20 dB 0.9995 0.1501 −0.0205 0.8055 0.9991

Example 3. In this experiment, sight angle, precession rate and dwell time are set as γ = 40◦, ωc= 1.8π rad/s,
T = 0.7 s respectively. At the moment, the scatter P3 is invisible. The signal contains two intersecting IF
components and the energy of one of them is much bigger than that of the other one.

In Figures 8 and 9, (a) and (b) give the TF representations obtained by the STFT and SET,
(c)~(g) show the IF estimation results of the proposed method and other compared methods. It is
noted that the CSRDI-MGPTF algorithm has the best estimation result at SNR = 20 dB. Nevertheless,
in the case of SNR = 5 dB, the residual component energy by the multicomponent signal separating
method in the CSRDI-MGPTF algorithm may be larger than the other component energy, and this can
cause serious estimation mistake for the other component. As shown in Figure 9e, the second IF is
not accurately estimated. By contrast, the MKF algorithm still works well in the case of SNR = 5 dB,
which denotes that the proposed algorithm has a good noise robustness. For the MTT, MD-STFT,
and MD-SET algorithms, the IF estimation results at SNR = 20 dB, shown in Figure 8b,d,f, have an
obvious estimation error near the intersection. Moreover, when SNR = 5 dB, the MTT and MD-STFT
algorithms have worse estimation results for the second IF component.
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Figure 8. TF spectrums and IF estimation results for example 3 with SNR = 20 dB. (a) TF spectrum
acquired by STFT; (b) TF spectrum acquired by SET. (c) MKF; (d) MTT; (e) CSRDI-MGPTF; (f) MD-STFT;
(g) MD-SET.

Subsequently, Table 4 lists performance evaluation results. It is observed that the CSRDI-MGPTF
algorithm has more precise estimation results than other algorithms when SNR is higher than 10 dB.
It is worth noting that the MKF algorithm and the CSRDI-MGPTF algorithm give quite close results
about R2 when SNR is higher than 10 dB. However, in low SNR, i.e., SNR ≤ 10 dB, the proposed MKF
has a better performance in terms of mean evaluation criteria. Moreover, in high SNR, the proposed
MKF has an approximate performance with the CSRDI-MGPTF algorithm.
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Table 4. Performance evaluation of IF Estimation for example 3.

Method MKF MTT CSRDI-
MGPTF MD-STFT MD-SET

RRMSE
(×10−4)

5 dB
1st 7.6616 51.084 4.2201 10.028 7.6658
2nd 9.0178 699.85 217.78 359.20 13.202

10 dB
1st 6.2131 10.467 3.9868 9.9708 6.2733
2nd 8.1456 189.40 179.95 18.671 11.420

15 dB
1st 6.0647 10.460 3.8160 8.9094 6.2253
2nd 7.9485 47.192 7.1505 18.091 10.927

20 dB
1st 6.0621 8.8946 3.8157 8.8951 6.0794
2nd 7.9413 45.011 7.1457 12.068 10.912
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Table 4. Cont.

Method MKF MTT CSRDI-
MGPTF MD-STFT MD-SET

Mean RRMSE
(×10−4)

5 dB 8.3397 375.47 111.00 184.61 10.434

10 dB 7.1793 99.934 89.968 14.366 8.8470

15 dB 7.0066 28.826 5.4832 13.500 8.5762

20 dB 7.0017 26.953 5.4807 10.482 8.4957

MAE

5 dB
1st 1.0548 3.7475 0.6992 1.8990 1.1437
2nd 1.0475 89.413 33.090 50.117 1.5365

10 dB
1st 0.9444 1.8816 0.6550 1.8882 1.0880
2nd 0.8429 26.426 25.107 2.6050 1.3602

15 dB
1st 0.7779 1.8808 0.5776 1.1179 0.9576
2nd 0.6790 2.5844 0.4577 2.5241 1.0789

20 dB
1st 0.7731 1.1195 0.5772 1.1179 0.7814
2nd 0.6710 2.2578 0.4524 1.1437 1.0617

Mean
MAE

5 dB 1.0512 46.580 16.896 26.008 1.3401

10 dB 0.8937 14.154 12.881 2.2466 1.2241

15 dB 0.7285 2.2326 0.5177 1.8210 1.0183

20 dB 0.7221 1.6887 0.5148 1.1308 0.9216

R2

5 dB
1st 0.9996 0.9814 0.9998 0.9993 0.9996
2nd 0.9994 −2.4969 0.6614 0.0788 0.9688

10 dB
1st 0.9997 0.9992 0.9998 0.9993 0.9997
2nd 0.9995 0.7439 0.7688 0.9975 0.9991

15 dB
1st 0.9997 0.9992 0.9998 0.9994 0.9997
2nd 0.9995 0.9841 0.9995 0.9977 0.9991

20 dB
1st 0.9997 0.9994 0.9998 0.9994 0.9997
2nd 0.9995 0.9885 0.9996 0.9990 0.9992

Mean R2

5 dB 0.9995 −0.7578 0.8306 0.5391 0.9842

10 dB 0.9996 0.8716 0.8843 0.9984 0.9994

15 dB 0.9996 0.9917 0.9997 0.9986 0.9994

20 dB 0.9996 0.9940 0.9997 0.9992 0.9995

Example 4. In this experiment, sight angle, precession rate and dwell time are set as γ = 124◦,ωc= 1.8π rad/s,
T = 0.7 s respectively. At the moment, the scatter P3 can be observed. The signal contains three intersecting IF
components and the energy of the second IF component and third IF component is close.

A more complex condition is considered in the experiment. The intuitional results are shown
in Figures 10 and 11. Although the CSRDI-MGPTF has the best estimation performance of the first
IF component, it is not suitable for the second IF component and the third IF component with close
energy. However, in the meanwhile, the MKF algorithm has a better estimation result for the second IF
component compared with the MTT, CSRDI-MGPTF, MD-STFT, and MD-SET algorithms. Besides,
at SNR = 20 dB, the MKF still has a better IF estimation, whereas all of the IF estimation methods are
unavailable at SNR = 5 dB due to the third IF component is almost flooded by noise.
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The performance comparisons with the RRMSEs, MAEs, and R2 are given in Table 5 for different
values of SNR. It can be concluded from Figure 10 that the proposed IF estimation method shows a
better accuracy compared with other methods in the more complex scenario.

Table 5. Performance evaluation of IF Estimation for example 4.

Method MKF MTT CSRDI-
MGPTF MD-STFT MD-SET

RRMSE
(×10−4)

5 dB
1st 10.683 13.817 3.8870 11.409 10.982
2nd 32.993 653.12 296.50 378.49 288.59
3rd 102.68 505.15 574.11 515.47 504.04

10 dB
1st 10.677 13.568 3.7387 10.904 10.887
2nd 19.985 644.98 299.67 371.65 25.870
3rd 50.283 482.72 563.52 525.41 76.212

15 dB
1st 10.423 13.436 3.6201 10.832 10.663
2nd 10.861 26.514 367.45 367.59 20.102
3rd 8.1118 16.169 585.27 426.64 16.100

20 dB
1st 10.394 13.069 3.4951 10.611 10.656
2nd 9.8399 21.054 129.24 654.14 18.491
3rd 5.3313 8.9482 614.39 406.13 14.085

Mean RRMSE
(×10−4)

5 dB 48.785 390.70 291.50 301.79 267.87

10 dB 26.982 380.42 288.98 302.65 37.656

15 dB 9.7986 18.706 318.78 268.35 15.622

20 dB 8.5217 14.357 249.04 356.96 14.651

MAE

5 dB
1st 0.7446 1.0510 0.5179 0.8501 0.7541
2nd 3.7771 79.599 36.814 35.131 37.033
3rd 19.018 115.84 134.84 122.47 101.12

10 dB
1st 0.7440 1.0267 0.4956 0.7662 0.7522
2nd 2.3255 72.228 35.820 31.787 2.5958
3rd 13.264 97.334 140.65 128.60 20.104
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Table 5. Cont.

Method MKF MTT CSRDI-
MGPTF MD-STFT MD-SET

15 dB
1st 0.7192 0.9776 0.4940 0.7592 0.7506
2nd 1.5056 2.9666 51.089 31.089 2.5420
3rd 2.1398 3.1612 144.39 94.386 2.7469

20 dB
1st 0.7181 0.9497 0.4845 0.7505 0.7502
2nd 1.0299 2.4010 15.143 86.170 2.5009
3rd 1.0425 1.5168 137.27 86.608 2.4104

Mean
MAE

5 dB 7.8466 65.497 57.391 52.817 46.302

10 dB 5.4445 56.863 58.989 53.718 7.8173

15 dB 1.4549 2.3685 65.324 42.078 2.0132

20 dB 0.9302 1.6225 50.966 57.843 1.8872

R2

5 dB
1st 0.9992 0.9986 0.9999 0.9991 0.9991
2nd 0.9923 −2.0197 0.3777 −0.0141 0.4104
3rd 0.9253 −0.8086 −1.3361 −0.8833 −0.8007

10 dB
1st 0.9992 0.9987 0.9999 0.9992 0.9992
2nd 0.9972 −1.9449 0.3643 0.0222 0.9953
3rd 0.9821 −0.6516 −1.2508 −0.9566 0.9588

15 dB
1st 0.9992 0.9987 0.9999 0.9992 0.9992
2nd 0.9992 0.9950 0.0442 0.0435 0.9971
3rd 0.9995 0.9981 −1.4278 −0.2901 0.9982

20 dB
1st 0.9992 0.9988 0.9999 0.9992 0.9992
2nd 0.9993 0.9969 0.8818 −2.0291 0.9976

3rd 0.9998 0.9994 −1.6755 −0.1691 0.9986

Mean R2

5 dB 0.9723 −0.6173 0.0138 0.0339 0.2029

10 dB 0.9928 −0.5326 0.0378 0.0216 0.9844

15 dB 0.9993 0.9973 −0.1279 0.2509 0.9958

20 dB 0.9994 0.9984 0.0687 −0.3997 0.9985

In the end, a brief analysis for the convergence of the estimation process is performed. The values
of diagonal elements of covariance matrix Pi

k over time in example 2 are given in Figure 12. It can be
seen that the proposed MKF algorithm has a good convergence.

Remote Sens. 2020, 12, x FOR PEER REVIEW 21 of 22 

 

 
Figure 12. The values of diagonal elements of covariance matrix i

kP  over time for example 2. 

5. Conclusions 

In this paper, a novel method is proposed which combines the Kalman filter algorithm and the 
RANSAC algorithm to gain a more precise IF estimation with an acceptable computation cost. For 
the traditional Kalman filter, the advantage is its speed. However, potential association mistakes 
usually cannot be avoided at the intersections of IF trajectories especially in the case of low SNR. 
Moreover, for the traditional RANSAC algorithm, the batch trajectory processing is used to increase 
the accuracy and the noise robustness but brings the huge computation burden in the meanwhile. 
How to guarantee precision with less computational cost in the proposed method is a difficulty we 
facing with. Therefore, we introduce the trajectory correction strategy to achieve the combination 
between the Kalman filter algorithm and the RANSAC algorithm. Experimental results based on 
electromagnetic computation data indicate that the proposed method can obtain good estimation 
performance and show the superiority in processing signal with high noise. It is worth mentioning 
that the MKF algorithm is a post-processing method. Therefore, the proposed method is applicable 
to other multicomponent signals and TF representations. IF of space cone-shaped target is 
determined by the micro-dynamic characteristics. Therefore, how to retrieve the physical structure 
and motion information of the target from estimated IF, and subsequent space cone-shaped target 
recognition need to be deeply investigated in future works. Besides, the IF estimation problem for 
the space targets of other shapes will also be investigated.  

Author Contributions: Conceptualization, K.R. and Z.Z.; methodology, K.R.; software, K.R.; validation, K.R. 
and X.L.; investigation, K.R. and X.L.; data curation, K.R. and X.L.; writing—original draft preparation, K.R.; 
writing—review and editing, L.D. and L.L.; supervision, L.D. All authors have read and agreed to the published 
version of the manuscript. 

Funding: This research was funded by the National Science Foundation of China (Grant number 61771362), and 
the 111 Project (Grant number B18039). 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Chen, V.; Li, F.; Ho, S.S.; Wechsler, H. Micro-doppler effect in radar: Phenomenon, model, and simulation 
study. IEEE Trans. Aerosp. Electron. Syst. 2006, 42, 2–21, doi:10.1109/taes.2006.1603402. 

2. Zeng, Z.; Amin, M.G.; Shan, T. Arm Motion Classification Using Time-Series Analysis of the Spectrogram 
Frequency Envelopes. Remote Sens. 2020, 12, 454, doi:10.3390/rs12030454. 

3. Wang, W.; Tang, Z.; Chen, Y.-C.; Zhang, Y.; Sun, Y. Aircraft Target Classification for Conventional Narrow-
Band Radar with Multi-Wave Gates Sparse Echo Data. Remote Sens. 2019, 11, 2700, doi:10.3390/rs11222700. 

4. He, Y.; Li, X.; Jing, X. A Mutiscale Residual Attention Network for Multitask Learning of Human Activity 
Using Radar Micro-Doppler Signatures. Remote Sens. 2019, 11, 2584, doi:10.3390/rs11212584. 

5. Abdullah, R.S.A.R.; Alnaeb, A.; Salah, A.A.; Sali, A.; Sali, A.; Pasya, I. Micro-Doppler Estimation and 
Analysis of Slow Moving Objects in Forward Scattering Radar System. Remote Sens. 2017, 9, 699, 
doi:10.3390/rs9070699. 

Figure 12. The values of diagonal elements of covariance matrix Pi
k over time for example 2.

5. Conclusions

In this paper, a novel method is proposed which combines the Kalman filter algorithm and
the RANSAC algorithm to gain a more precise IF estimation with an acceptable computation cost.
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For the traditional Kalman filter, the advantage is its speed. However, potential association mistakes
usually cannot be avoided at the intersections of IF trajectories especially in the case of low SNR.
Moreover, for the traditional RANSAC algorithm, the batch trajectory processing is used to increase
the accuracy and the noise robustness but brings the huge computation burden in the meanwhile.
How to guarantee precision with less computational cost in the proposed method is a difficulty we
facing with. Therefore, we introduce the trajectory correction strategy to achieve the combination
between the Kalman filter algorithm and the RANSAC algorithm. Experimental results based on
electromagnetic computation data indicate that the proposed method can obtain good estimation
performance and show the superiority in processing signal with high noise. It is worth mentioning
that the MKF algorithm is a post-processing method. Therefore, the proposed method is applicable to
other multicomponent signals and TF representations. IF of space cone-shaped target is determined
by the micro-dynamic characteristics. Therefore, how to retrieve the physical structure and motion
information of the target from estimated IF, and subsequent space cone-shaped target recognition need
to be deeply investigated in future works. Besides, the IF estimation problem for the space targets of
other shapes will also be investigated.
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