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Abstract: In this paper, we investigate the problem of aligning multiple deployed camera into one
united coordinate system for cross-camera information sharing and intercommunication. However,
the difficulty is greatly increased when faced with large-scale scene under chaotic camera deploy-
ment. To address this problem, we propose a UAV-assisted wide area multi-camera space alignment
approach based on spatiotemporal feature map. It employs the great global perception of Unmanned
Aerial Vehicles (UAVs) to meet the challenge from wide-range environment. Concretely, we first
present a novel spatiotemporal feature map construction approach to represent the input aerial and
ground monitoring data. In this way, the motion consistency across view is well mined to overcome
the great perspective gap between the UAV and ground cameras. To obtain the corresponding rela-
tionship between their pixels, we propose a cross-view spatiotemporal matching strategy. Through
solving relative relationship with the above air-to-ground point correspondences, all ground cameras
can be aligned into one surveillance space. The proposed approach was evaluated in both simulation
and real environments qualitatively and quantitatively. Extensive experimental results demonstrate
that our system can successfully align all ground cameras with very small pixel error. Additionally,
the comparisons with other works on different test situations also verify its superior performance.

Keywords: multi-camera system; space alignment; UAV-assisted calibration; cross-view matching;
spatiotemporal feature map; view-invariant description; air-to-ground synchronization

1. Introduction

The advance of imaging performance and decline of sensor price play a significant
role in promoting the popularization and development of multi-camera systems. With
its advantages, such as complementary field of view, flexible structural arrangement
and diverse acquisition forms, multi-camera systems have an increasingly important
effect in the field of security surveillance [1,2], automatic controlling [3,4], intelligent
transportation [5,6], etc. Among them, camera space alignment, which is the foundation
and difficulty for large-scale multi-camera systems, has gradually become one of the
research focuses in recent years. It aims to unify visual data from different cameras
into one coordinate system which contributes to cross-camera information sharing and
interconnection.

To date, several related algorithms have put been forward for camera spatial rela-
tionship estimation of multi-camera system space alignment [7–9]. According to whether
the camera field of view overlaps, numerous corresponding space alignment solutions
are presented for overlapping cameras and non-overlapping cameras, respectively. When
there are overlapping areas between cameras, we can use common features from addi-
tional calibrator or only own scene to calculate the relative camera relationship matrix for
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space alignment. There are many and various types of calibration object: one-dimensional
calibrating bar, board calibration plane, stereo calibration tower, etc. For space alignment
of cameras without overlapping, current approaches relate these independent but closely
linked visual data by intermediate connector, e.g., scene 3D map, mirror reflection, mov-
ing target, common marker, etc. Their performances typically rely on the accuracy and
robustness of cross-camera link bridge establishment. Based on the above achievements,
several technical issues such as active tracking and situation awareness can be studied and
implemented under multi-camera spatial calibration results.

However, despite recent advances, there are still many problems that need further
research on existing deployed multi-camera space alignment. The main difficulties cover
the following points: (1) Chaotic spatial layout: Most cameras are set up at different times
for different application requirements. Lack of scientific topology structure planning and
design lead to chaotic layout. Thus, the overlapping relation between cameras is also
complex. (2) Large scale environment: Multi-camera systems are mostly used in large
scenes because of their wider coverage. Thus, specially designed calibrators with limited
size and fixed shape are inapplicable. Meanwhile, how to balance accuracy and efficiency
in large-scale environment is also a challenge. (3) Great visual gap: Cameras are distributed
dispersedly under wide baseline. There are differences between cameras in viewing angle,
rotation and object scale. These differences bring great difficulty on space alignment
across cameras.

In this paper, we thoroughly analyze the above problems of multi-camera space
alignment in large-scale environment. Its essence lies in how to better build the connection
among these independent cameras. This problem, in a sense, is similar to multi-station
cooperative wireless communication [10]. In its relevant studies, a UAV is employed as
relay node to maintain stable signal coverage in long-distance data transmission due to
its mobility and flexibility. Inspired by this, we extend the thinking of UAV assistance to
multi-camera space alignment, as shown in Figure 1. However, UAV airborne camera and
ground deployed camera observe the surveillance scene in aerial view and street view,
respectively. Significant perspective differences make it hard to directly match the air
with the ground. To address this problem, we explore the consistency of motion across
different views. Based on the principle that intersection point is invariable under projection
transformation, we construct spatiotemporal feature map which records the time and
position of intersection generated by moving targets. Through matching these feature
maps, time synchronization and spatial alignment can be achieved simultaneously. The
relative relationship between ground cameras and UAV is established. Multiple cameras
are aligned into one coordination system with the auxiliary connection of UAV.

Following the above research route, we propose a novel UAV-assisted multi-camera
space alignment algorithm based on spatiotemporal feature map. Concretely, it contains
two main modules: one is spatiotemporal feature map construction to describe UAV-
assisted aerial data and ground monitoring data and the other is cross-view spatiotemporal
matching based on feature map. The first one employs several lines perpendicular to the
road direction as the feature detection lines. The corresponding spatiotemporal feature map
can be constructed by recording the time and position of moving target crossing each line.
On this basis, we then present a novel cross-view matching strategy which deeply explores
their relations through the waveform change of time series and space distribution. With
UAV-to-ground matching point pairs, we can calibrate ground cameras’ space relationship
to UAV. When the spatial parameters of all ground cameras are estimated, the multi-camera
system is aligned into one united space under UAV assistance.
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Figure 1. An illustration of UAV-assisted wide area multi-camera space alignment. Through air-to-
ground matching based on spatiotemporal feature map, the relative relationship between UAV and
ground cameras is obtained (yellow line). Since we can unity the UAV’s external parameters (blue
line), multiple cameras in a large-scale environment are aligned into one coordination system with
UAV auxiliary linkage effectively and efficiently.

1.1. Related Work

In this section, we review the other multi-camera space calibration works which are re-
lated to the proposed method. Multi-camera space alignment calibrates all sensors together
by estimating each sensor’s rotation matrix and translation matrix in one reference coordi-
nate system. According to whether there is overlap between their field of view, we divide
existing methods into two categories: overlapping cameras and non-overlapping cameras.

For the first one, most scholars mine the common and independent visual data cap-
tured by different cameras to estimate their spatial relationship. Either the scene itself
or additional calibrator can be used. Many studies are conducted based on the common
visual feature of observation scene itself. For example, Lv et al. [11] detected moving
humans, who represent common visual information across cameras, and regarded them
as a set of sticks with the same height for camera calibration based on vanishing point
theory. Liu et al. [12,13] put forward an automatic camera calibration approach and its im-
provement method using common pedestrian feature. Their methods are proposed under
the assumption that all humans are on one plane surface. Unlike them, Truong et al. [7]
employed president tracks to match corresponding information in partial overlapped
cameras and then computed the extrinsic calibration matrices. Besides these methods
using pedestrian information, Romil et al. [14] analyzed the traffic scenarios and intro-
duced a novel camera calibration method by leveraging vehicle feature correspondences
between real size and pixel distance. Furthermore, many studies focus on adding common
visual information by additional calibration markers [15]: one-dimensional calibration
bar, checkerboard plane, stereo calibration tower, etc. One of the widely used calibration
algorithms was proposed by Zhang [16], who used single checkerboard calibration plane
to estimate camera external and internal parameters simultaneously. Based on Zhang’s
approach, many corresponding improved methods [17,18] are presented to optimize dif-
ferent parts such as optimization function and calibration object. To overcome the limited
stereo information of 2D calibration object, 3D marker is used to camera imaging pa-
rameter estimation. Andreas et al. [19] calculated the extrinsic matrix of a multi-camera
system with 3D target and then optimized these parameters based on genetic algorithm.
Huang et al. [20] designed a cube calibration object which can easily be captured by multi-
ple cameras, and this approach calibrates all cameras in one process with high efficiency
and convenience. In summary, the calibration methods of overlapping cameras, whether
based on its own scene feature or additional calibrator, have their own advantages and
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disadvantages. The approach based on the scene feature itself is strongly influenced by
the accuracy of feature detection and matching, while the approach based on additional
marker usually has poor universality.

Calibration algorithms of non-overlapping cameras can be broadly classified into
the following kinds: SLAM-based method, mirror-based method, tracking-based method
and marker-based method. Taking advantages of SLAM in visual localization, a user can
estimate camera relative pose by several corresponding points. For instance, Yin et al. [21]
constructed 3D feature point map of the natural environment. The extrinsic matrix is
obtained through the 3D scene point map created by SLAM. Feng et al. [22] modeled the
surveillance space by SLAM previously and then employed 2D–3D matching to calibrate
camera external parameters. Another extensively applied calibration strategy is based
on specular reflection. It can generate the common view between different cameras by
planer mirror. Xu et al. [23] employed mirrored phase target as an intermediate linkage,
and camera calibration without overlapping can be achieved through mirror reflection
relationship. By combining camera projection model and flat refractive geometry, an
accurate multiple camera pose estimation approach [24] is investigated with a transparent
glass calibration board. Beyond that, some works connect non-overlapping camera with
moving object. Sarmadi et al. [25] analyzed the interaction relationship between camera
pose estimation and object tracking. Their method shows accurate results on camera
imaging parameters estimation and real-time tracking with low computational cost. Similar
to overlapping camera calibration, users can also add an extra calibrator. Izaak et al. [26]
established a gray code and projected it into a plane with a projector. They could calculate
the relative pose between camera, plane and projector. For non-overlapping cameras in
aero photogrammetry, Yin et al. [27] introduced a novel marker-based method based on
multiple chessboard targets. Sufficient equations can be obtained to solve the extrinsic
parameters by moving camera at multiple positions. Recently, Jeong et al. [28] regarded
road markings as robust visual feature in urban environment. They realized calibration
through joint optimization of normalized information distance, edge alignment and plane
fitting. Overall, these algorithms start from different perspectives to solve various problems
when calibrating the camera without field of view overlapping.

1.2. Main Contribution

This paper aims to align all deployed monitoring cameras into a united coordinate sys-
tem. Compared to the aforementioned related works, there are some differences between
our proposed approach and them. The problem studied in this paper is more complicated
due to the chaotic layout of deployed cameras. The overlapping relationship between cam-
eras is unknown. Meanwhile, the research ideas are also different. Most current strategies
employ designed calibrators or scene visual feature to relate multiple cameras, while this
paper utilizes UAV as an aid. We give full play to the UAV’s global perception ability
to cover the challenge in large scenes. In addition, unlike the above methods based on
visual features (texture, object trajectory, etc.), we explore a more stable cross-view feature
description method based on motion intersection invariance to overcome perspective gap
between aerial and ground data. In this paper, we start our research from a new angle and
propose a novel UAV-assisted wide area multi-camera space alignment approach.

We summarize our contributions in this paper as follows:
• We propose a multi-camera wide-area space alignment approach with UAV assistance

to realize the unification of cameras’ imaging coordinate system. Unlike current ad-
ditional marker-based methods, this paper employs UAV to build visual connection
across cameras which shows superior flexibility and efficiency in large-scale environ-
ment.

• We present a novel cross-view feature description algorithm, called spatiotemporal
feature map, to overcome perspective gap between aerial-view images captured by
UAV and street-view images collected by ground cameras. It makes full use of motion
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consistency among different views, which can implement synchronization on both
time and space.

• To better evaluate the proposed method, we establish a new traffic monitoring
database collected in both simulation and real environment. This database provides
abundant monitoring data captured by multiple cameras at different fixed positions
from various scenarios, including crossroad, T-junction, straight road, multi-lane road,
etc. Extensive experiments demonstrate that our system returns encouraging space
alignment results.

The rest manuscript is organized as follows. A detailed introduction of the proposed
approach is described in Section 2. Section 3 evaluates our method in simulation and
real-world environment qualitatively and quantitatively. In addition, we also conduct
contrast experiments with other methods for performance comparison in Section 4. The
parameter influence of system performance is discussed at the end of this section. Finally,
Section 5 concludes this paper considering the methodology and experimental results.

2. UAV-Assisted Wide Area Multi-Camera Space Alignment Based on Spatiotemporal
Feature Map

Figure 2 provides an overview of the proposed UAV-assisted wide area multi-camera
space alignment approach intuitively. With the videos from assisted-UAV and ground
monitoring cameras as input, we first describe them by the spatiotemporal feature map,
which lays a basis for multi-camera space alignment. Then, this paper puts froward a
cross-view spatiotemporal matching strategy to mine the association relationship between
these feature maps from multiple levels. The corresponding pixels between UAV-assisted
videos and ground fixed videos can be obtained, and then multiple ground cameras are
aligned into one surveillance space under UAV auxiliary data connection.

The following notations are used in this manuscript (Table 1).

Table 1. Major notations.

Notation Description

N The number of ground monitoring cameras
M The number of UAV’s hovering positions
VC1, VC2, ...VCN The set of ground monitoring videos
VA1, VA2, ...VAM The set of UAV assisted videos
V An example of monitoring video
Ni The number of frames obtained from V deframing
NLi The number of feature lines detected from V
f li An example of feature line in V
Ng The number of ground spatiotemporal feature maps
Fg The set of ground spatiotemporal feature maps
Fgi ith ground feature map
Fak kth aerial feature map
fg The set of feature vectors of Fg in time dimension
fgti Feature vector of Fgi in time dimension
fatk Feature vector of Fak in time dimension
τ Time delay
Fg
′
i ith ground feature map after cutting

Fa
′
k kth aerial feature map after cutting

fgsi Feature vector of Fg
′
i in space dimension

fask Feature vector of Fa
′
k in space dimension

W
′

Corresponding coordinate set between fgsi and fask
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Figure 2. An illustration of the proposed UAV-assisted wide area multi-camera space alignment
approach based on spatiotemporal feature map. Our algorithm contains two critical components:
spatiotemporal feature map construction to describe the input UAV-assisted aerial data and ground
monitoring data and cross-view spatiotemporal matching to mine air-to-ground space correspon-
dences. Multiple ground cameras are aligned into one space with UAV-assisted visual connection.

2.1. Spatiotemporal Feature Map Construction

Before constructing spatiotemporal feature map, we firstly introduce the input data.
As shown in Figure 2, the input data contains two parts: ground monitoring videos from
ground deployed cameras and aerial videos from the UAV. Among them, each ground
monitoring video corresponds to a deployed camera to be aligned. The aerial videos
are collected by assisted UAV at different hover positions. The motion information in
observation scene is contained in both UAV aided data and ground surveillance data,
which is the key to motion consistency for subsequent cross-view matching.

Let N ground monitoring videos VC1, VC2, . . . VCN denote the monitoring data from
N deployed cameras, respectively, and VA1, VA2, . . . VAM are the UAV-assisted data which
are obtained by UAV hovering at M positions. How can these data be described by the spa-
tiotemporal feature map? Similar to the general pipeline of visual feature construction (key
point detection, feature extraction and description), our approach consists of three modules:
feature line detection, spatiotemporal information extraction and feature map description.

2.1.1. Feature Line Detection

To find spatial correspondences between the UAV data and ground monitoring data,
we expect to get the pixel relationship between them for camera space alignment. Therefore,
local feature representation method is required for such local information matching. Similar
to key point detection in widely-used SIFT algorithm, feature line detection is the beginning
step in our proposed spatiotemporal feature map construction method.

What kind of line should we choose as feature line? As is known, there exists a great
gap in perspectives between aerial UAV data and ground monitoring data. Perspective
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projection transformation causes deformation in length, relative proportion and intersec-
tion angle. That is why direct scene lines extracted by traditional hand-craft method or
deep-learning network are not suitable for air-to-ground matching. However, fortunately,
the intersection points of lines are precisely invariant under perspective projection transfor-
mation. According to this, we start with the establishment of feature lines. As shown in
Figure 2, we draw several lines perpendicular to the direction of vehicle moving as feature
lines. This is because such feature lines can capture rich visual intersection information of
the moving target passing through them. Thsi intersection information remains unchanged
between the air and the ground.

Considering the uncertainty of camera position and orientation, our approach adopts
the combination of traffic flow direction and vanish point in [29] to determine feature line.
Next, we introduce the proposed feature lines detection method of ground monitoring data
and UAV-assisted data, respectively.

For ground monitoring data, feature line directions vary greatly in different camera
orientations (Figure 3). When the camera faces the road center (Figure 3a), its feature line
directions are quite similar. While for roadside camera, Figure 3b shows an instance of its
collected data. The feature line directions are different in different positions. Their included
angles are also different in two-dimensional image. Therefore, we need to determine the
direction of feature line adaptively according to specific condition. By thoroughly analyzing
scene visual information, feature line direction relates to the short edges of foreground
moving vehicles. Their slope in different positions is the feature line direction. We adopt
vanish point to help extract the feature line direction. This specific method was proposed
by Dubská et al. [29], who first obtained the direction of traffic flows by optical flow and
calculated the first vanish point by diamond space voting. The feature line corresponds
to the direction parallel to the ground and perpendicular to the first direction. Thus, we
model background edge to get the edge of foreground moving vehicle. Then, we filter out
the edge which belongs to the first vanishing point or perpendicular to the ground. Feature
lines are the extensions of these retained foreground edges.

Camera orientation (b)

KL1
KL2

KL3
KL4

KL5

(0,0)

KL6

 Camera orientation (a)(0,0)

KL1

KL2

KL3

KL4

KL5

Figure 3. Feature lines in different camera orientations: (a) the directions of feature lines are similar
to each other; and (b) the directions of feature lines are much more different.

As for aerial data from the UAV, its top view makes two-dimensional image without
geometric perspective. That is different from ground monitoring data above. Therefore,
the feature line direction is just the line perpendicular to the direction of traffic flow in
two-dimensional image. Thus, in this part, we only utilize traffic flow detection to obtain
feature line. To be specific, the procedure has two steps: traffic flow detection by optical
flow approach and feature line drawing with vertical direction of optical flow. It is worth
noting that aerial video usually has a wider observation range, which may involve traffic
flow in multiple directions. For example, a turning road contains traffic in two directions.
Multiple traffic directions correspond to multiple feature line sets. Feature lines in the same
direction are grouped into one set.

Based on the methods stated above, we detect and draw feature line in N ground
monitoring videos and M UAV-assisted videos. Each video has several feature lines. Taking
V as a monitoring video example, it can come from ground cameras or aerial UAV. There
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are NLi feature lines detected from V. We finally obtain numerous ground feature lines
and aerial feature lines after a series of the above-mentioned processing.

2.1.2. Spatiotemporal Information Extraction

This section aims to extract visual information from input ground monitoring data
and aerial assisted data with the help of feature lines. According to motion consistency
in cross-view data, we extract the visual information in two dimensions (temporal order
and spatial structure). For temporal order extraction, the monitoring video is unframed in
order. We record their spatial features from the feature line in turn. Thus, temporal visual
feature shown over time can be extracted. Meanwhile, the visual changes in space are the
spatial visual feature.

Figure 4 provides the detailed spatiotemporal information extraction method intu-
itively. Suppose f li is one of the feature lines in monitoring video V; it is circled in this
figure. V can be ground monitoring camera or aerial camera. The video is decoded into
Ni frames at the beginning. The visual data at the position and direction of this feature
line can be found at corresponding locations in each frame. Next, the related data are
extracted and integrated into one row in order. The number of rows is equal to the number
of video frames, which is Ni for f li. Figure 4 (right) shows the rows from top to bottom
corresponding to the video frames from front to back. The visual data of all rows are the
spatiotemporal information extracted from feature line f li.

The above visual information extraction approach not only extracts time series infor-
mation at feature line location but also extracts spatial visual information on the different
pixels of feature line. For better understanding, feature lines are similar to a door: the door
can obtain what passed by recording what happened in every moment. Similarly, we can
get what information go through the feature line by recording visual data in every frame.
Thus, the motion time occurred as well as its space position are extracted.

..
.

... ...

G ...

...

Feature line fli Corresponding video frames

Spatio-temporal 

information extraction

G

Figure 4. Spatiotemporal information extraction. With the position and direction of a sample feature
line (circled on the left), we can extract the visual data at this location from each corresponding video
frame. The related visual data are integrated into several rows in order on the right and form the
spatiotemporal information.

2.1.3. Feature Map Description

Next, how to describe the above spatiotemporal information is also an important
problem. To address this, we construct two dimensional feature map whose coordinate
axes are the set of space and time information, respectively.

The spatiotemporal information extracted from the above section is represented by
several visual data rows. Based on this, we then connect them in chronological order to
form a two-dimensional feature map. The row of visual data calculated in the last section
composes one row in the feature map, and the visual data at different time from one feature
line position compose one column in the feature map. From the middle module of Figure 2,
we can see that the time and position of every passed moving object are recorded in this
feature map. The height of each moving object’s Y axis in feature map is their passage time
through feature line, and the span of each moving object’s X axis is object width.

Then, we transform feature map into binary image with small data quantities by
foreground object segmentation method. The benefits of this are the following. It can
further highlight the motion information which is consistent in different cameras. At
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the same time, it can also filter out the other visual features that we do not care about
(such as color and gradient). The feature map shows that most of the visual data in it are
background road. Based on this, we start with the hypothesis that background occupies the
majority relative to foreground motion. Then, each column in the feature map is processed
as an independent unit to find the background of feature line. According to the statistical
distribution of gray value in each column, the gray with maximum value comes from
background. Thus, the pixel whose gray value is close to the maximum is set to 255 to
indicate background, and vice versa. The binary processed feature map displays obvious
black–white effect.

Thus far, the spatiotemporal feature map construction is finished. N ground mon-
itoring videos VC1, VC2, . . . VCN and M aerial assisted videos VA1, VA2, . . . VAM are repre-
sented by spatiotemporal feature maps. The relationship of videos and their feature maps
is one-to-many.

2.2. Cross-View Spatiotemporal Matching

To describe the proposed method clearly, we assume that the aerial spatiotemporal
feature map from the UAV is query. To search for its matched database feature map from
ground monitoring videos, we propose a cross-view spatiotemporal matching approach
which can also determine the best space responding pixel between matched feature map
pairs for camera space alignment. The proposed method includes three key steps: (1) global
feature map matching; (2) aerial-to-ground time synchronization; and (3) cross-view spatial
alignment. The first one measures the similarity of feature maps from the global and the
latter two are used to find the corresponding relationship between local pixels.

2.2.1. Global Feature Map Matching

Let Fak be the kth query feature map from aerial assist UAV and Fg the database
which contains Ng ground spatiotemporal feature maps. It is the collection of ground
feature maps calculated from N ground monitoring videos VC1, VC2, ...VCN , as expressed in
Equation (1). Figure 5 gives the whole global feature map matching method.

Fg = {
VC1︷ ︸︸ ︷

Fg1, Fg2, ..., FgNc1,

VC2︷ ︸︸ ︷
FgNc1+1, FgNc1+2, ..., FgNc1+Nc2, ..., FgNg} (1)

Spatio-temporal feature map

Query feature map Fak

(aerial)

ma

Database feature map Fg
(ground)

...

Query feature vector fatk

Database feature vector fgt

Feature map dimension reduction

...

Weighted SVD

GCC analysis
WSVDGCC1(fgt1, fatk)

WSVDGCC2(fgt2, fatk)

WSVDGCC3(fgt3, fatk)

...

argmaxWSVDGCCi

Global feature map matching result

fgti            fatk

Fgti           Fatk

mg1

ma

mg1

mg3

mg2

mg2

mg3

Similarity measurement

Figure 5. Global feature map matching. Query feature map Fak from aerial assisted UAV and
database feature map Fg from ground cameras are firstly transformed into one-dimensional time
feature vector. Then, we measure the similarity between them according to their weighted SVD
generalized cross correlation value (WSVD FS-GCC). The feature map Fgi corresponding to the
highest scoring feature vector fgti is the global matching result.

First, the input feature maps Fak and Fg are mapped into one-dimensional space
before matching. The two-dimensional feature map matching problem is transformed into
a one-dimensional feature vector similarity measurement problem. In doing so, it avoids
complicated computing accompanied by high-dimensional feature maps while attempts
to narrow the gap of 2D feature map caused by air-ground asynchronous. Our method
projects 2D feature map to 1D feature vector in time (see Figure 2). To better describe this
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process, we take feature map F ∈ Rm×n as an example. F is m rows and n columns. F can
be regarded as several row vectors, as F = {r1, r2, ..., rm}. The number of row vectors is
m and the dimension of each row vector is n. Each row vector comes from a sampling
time. Then, as for each row vector, we count the number of foreground pixels as its feature
number. Thus, a n-dimensional row vector is converted to a feature number. m row vectors
are converted into m feature numbers. By arranging the m feature numbers in order, we
can establish the time feature vector of feature map F. Thus, the two-dimensional feature
map F, which is m rows and n columns, can be mapped to one-dimensional feature vector
ft, which is an m-dimensional feature vector. The calculation process is shown as follows:

ft = { f t1, f t2, ..., f tm}, where f tj = card(rp(q) = 0); q = 1, 2, ...n; p = 1, 2, ...m (2)

In this way, query Fak is represented by fatk, and all database feature maps in Fg
are also represented by time feature vectors. Our next step is to measure the similarity
between them. The time non-synchronization problem among air and ground cameras
makes the traditional Euclidean distance incapable of quantifying their similarity. This
paper analyzes the generalized cross-correlation value between them as the similarity
measurement. We adopt the evaluation index of generalized cross-correlation. It was
defined by Cobos [30] in 2020, who improved the general generalized cross-correlation
based on the sub-band analysis of cross-power spectrum phase, named FS-GCC (Frequency-
sliding Generalized Cross Correlation). This method shows robust performance under
noise and reverberation. Concretely, according to their denoised FS-GCC values based
on weighted SVD, the similarity between query feature vector fatk and every database
feature vector in fg can be obtained. In the following calculation, the highest scoring
database feature vector is the ground feature vector matched with fatk. We denote it as fgti.
Meanwhile, their corresponding feature maps Fak and Fgi are a matched pair.

i = arg max
p

(FS − GCC(fatk, fgtp)) where fgtp ∈ fg (3)

When all aerial feature maps retrieve their matched ground feature maps in database,
we can obtain several feature map pairs, which are the results of global feature map
matching. Furthermore, the feature lines corresponding to the same feature map pair are
considered as a matched feature line pairs.

After finding the matching relationship between feature maps globally, we next try to
find the correspondence between local pixels. The calculation procedure includes two key
modules: aerial-ground time synchronization and cross-view spatial alignment.

2.2.2. Aerial-to-Ground Time Synchronization

To find the corresponding pixels between matched feature line pairs, we need to
realize time synchronization between them at first. The visual feature is described by
spatiotemporal feature maps in this paper, time synchronization and space alignment
are closely related. Time synchronization affects the accuracy of finding corresponding
points, and then influences the performance of camera spatial alignment. In other words,
considering a single variable principle, accurate spatial correspondence is obtained under
the prior time unification of spatiotemporal feature maps.

Mathematically, feature vectors fatk and fgti are one-dimensional time features en-
riched from the two-dimensional feature maps Fak and Fgi. They are also the time series.
The problem of feature maps’ time synchronization is also the issue of one-dimensional se-
ries’ time delay estimation. Generalized cross correlation is one of the most commonly used
method. It estimates time delay by analyzing the correlation between two signals. There-
fore, our approach employs an improved generalized cross correlation algorithm [30] to
synchronize fatk and fgti. This method is used for similarity measurement and global match
feature map matching in the previous section. In terms of time delay estimation of fatk
and fgti, their concrete time delay τ is the corresponding value when the maximum cross-
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correlation value obtains. Let G be the calculation function (G named WSVDFC− GCC
in [30], and we do not bore you with its details), the time delay can be calculated as below:

τ̂ = arg max
τ
G(fatk(t), fgti(t + τ)) (4)

τ̂ is the time delay of aerial feature vector fatk and ground feature vector fgti. fatk is
the reference. The first component of fatk and the τ̂th component of fgti are synchronized.
We reverse τ̂ into the row of feature maps Fak and Fgi, and the collection time of these
rows is the same. We than cut the same length T from the synchronization row and get
new spatiotemporal feature maps Fa

′
k ∈ RT×na and Fg

′
i ∈ RT×ng . The parameter T needs

to meet the following two requirements: T < ma and T + τ̂ < mg. The specific calculation
method is expressed as:

Fak =

[
Fa
′
k

A

]
where Fak ∈ Rma×na ; Fa

′
k ∈ RT×na ; A ∈ R(ma−T)×na (5)

Fgi =

 B
Fg
′
i

C

 where Fgi ∈ Rmg×ng ; Fg
′
k ∈ RT×ng ; B ∈ Rτ̂×na ∈ R(mg−T−τ̂)×na (6)

2.2.3. Cross-View Spatial Alignment

With Fa
′
k and Fg

′
i , we next solve the problem of finding corresponding pixels for

cross-view spatial alignment. Our proposed method includes three steps: (1) feature
map dimension reduction; (2) one-dimensional space feature vector alignment; and (3)
cross-view air-to-ground spatial alignment.

Similar to Section 2.2.1 that maps feature map to time dimension, we map Fa
′
k =

{caT
1 , caT

2 , ..., caT
na} and Fg

′
i = {cgT

1 , cgT
2 , ..., cgT

ng
} to space dimension at first. Figure 6

displays the proposed feature dimension reduction and alignment process vividly. As we
can see, Fa

′
k and Fg

′
i are reduced to one dimension as space feature vectors fask and fgsi.

The length of space feature vector is equal to the number of columns in feature map and
each component is the number of foreground pixels in the corresponding column. The
calculation formula is as follows.

τ

T

T

^

FaK
’FaK
’ Fgi

’Fgi
’

na

ngng

fask fgsi

ng

nana

nang

Space feature vector alignment

0

pixel

fask

fgsi

feature map 

dimension reduction

feature map 

dimension reduction

pg1

pa1

pg2

pg3 pg4

pa2

pa3 pa4

Figure 6. Cross-view spatial alignment. The matched feature map Fa
′

k (left) and Fg
′

i (right) is firstly
reduced from 2D map to 1D spatial feature vector, as denoted by fask and fgsi. We then match the two
spatial sequences by DTW (middle). Several corresponding pixel pairs labeled in blue are returned
as result.

fask = { f ask1, f ask2, ..., f askna} where f askp = card(cap(q) = 0); q = 1, 2, ...T; p = 1, 2, ...na (7)

fgsi = { f gsi1, f gsi2, ..., f gsing} where f gsip = card(cgp(q) = 0); q = 1, 2, ...T; q = 1, 2, ...ng (8)

Note that the length of space feature vectors are different because the different sizes of
feature maps.

We leverage Dynamic Time Warping (DTW) [31] as the matching method to align a
pair of space feature vector fask and fgsi. It is a simple but effective template matching
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algorithm which is also universality for different sequence lengths. Our first stage is to
construct a distance matrix D ∈ Rna×ng . D(x, y) is the Euclidean distance between the xth
element of fask and the yth element of fgsi. After that, we start to align the two sequences.
The matching path is set as W = w1, w2, ..., wj, ..., wl (max(|na|, |ng|) ≤ l ≤ |na| + |ng|).
Each element wj = (x, y) represents the aligned coordinate pair (xth coordinate of fask
aligns with the yth coordinate of f gsi). To ensure each element in the sequence can find its
corresponding alignment position without intersection, W needs to satisfy:

w1 = (1, 1) (9)

wl =
(
na, ng

)
(10)

wj+1 = (x
′
, y
′
) x ≤ x

′ ≤ x + 1 y ≤ y
′ ≤ y + 1 (11)

where x
′

and y
′

are the next matched coordinates of fask and fgsi. It only has three possible
results: (x+ 1, y), (x, y+ 1), (x+ 1, y+ 1). We choose the one with the minimum cumulative
distance from (x, y) according to distance measurement D. After that, we can obtain the
matching relationship between vector elements which is stored in W. However, there are
diversified corresponding relation types which include one-to-many relationship, many-
to-one relationship and one-to-one relationship. The first two are ambiguous in spatial
alignment, so we only retain the one-to-one matching pixel pairs. At the same time, we
further sample these one-to-one pixel pairs at equal space intervals to get sparse space
correspondences. After such screening, W

′
is the corresponding coordinate set between

fask and fgsi.
Feature maps Fak and Fgi constructed by fask and fgsi are just an example of matched

feature map pairs. All feature map pairs calculated after Section 2.2.1 can obtain their
corresponding relationship between local pixel by the methods in Sections 2.2.2 and 2.2.3.
Thus, several corresponding coordinate sets are returned. Moreover, we can track back to
the feature line and camera corresponding to each set. This means that we obtain several
cross-view corresponding points between aerial 2D images captured by assisted UAV and
ground 2D visual data collected by deployed monitoring cameras.

Once air-to-ground corresponding pixels are matched, we calculate the homography
matrix between cameras by more than four non-collinear corresponding coordinate pairs.
The relative projection relationship between them can be estimated. In this way, the
proposed method gets the relationship between each ground monitoring camera and the
assisted UAV. The M locations of assisted UAV can be united into one coordinate system
with current visual positioning and navigation methods (e.g., SLAM), so ground deployed
cameras are aligned to this coordinate system naturally. Our system realizes multi-camera
space alignment in large scale environment under UAV assistance.

3. Experiments

We conducted extensive experiments to evaluate the performance of our proposed
multi-camera space alignment approach based on spatiotemporal feature map. To main-
tain the objectivity and comprehensiveness, we constructed an evaluation database by
ourselves, which is described in Section 3.1. On this basis, we then explored the robustness
and accuracy of our proposed method from both qualitative and quantitative aspects in
simulation environment and real scene. The extended applications of our approach are
provided in Section 3.4.

3.1. Database

Database in simulation environment

This paper utilizes AirSim [32] as the simulation platform to construct a suitable
virtual scene for our system’s performance verification. AirSim is an open source simulator
based on Unreal Engine. It supports cross-platform operation, multiple programming
languages and various sensors (camera, UAV, Lidar, GPS, etc.). Some major parameter
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settings in Airsim are summarized in Table 2, including environmental parameters and
sensor parameters. Figure 7 presents the simulation scene model and some simulation
monitoring data.

Table 2. The parameter settings to generate database in simulation environment and real scene.

Environmental Parameter Sensor Parameter

Simulation
Environment

Environment intensity 1.0 Ground camera number 11

Directional light actor light source Ground camera resolution 1920 × 1080

Colors determined by sun position Yes Ground camera FOV 90◦

Sun brightness 75 Aerial camera position 5

Sun height 0.348239 Aerial camera resolution 1920 × 1080

Horizon Falloff 3.0 Aerial camera FOV 90◦

Diffuse boost 1.0 Acquisition frame rate 25 fps

Real Scene

Scene type Mixed traffic system Ground camera number 4

Acquisition time 15:00 p.m. Ground camera resolution 1920 × 1080

Scene width ≈60 m Aerial camera position 1

Scene length ≈50 m Aerial camera resolution 1920 × 1080

Ground camera height ≈7 m Aerial camera FOV 58◦

UAV flight altitude ≈80 m Acquisition frame rate 25 fps

To be specific, we chose a model of urban street block as our simulation environment,
as shown in Figure 7a. It includes abundant and complex city elements: buildings, land-
scape plants, traffic signs, junctions, etc. Based on this model, we firstly load multiple car
models and set various running routes to restore the real traffic flow as much as possible.
Then, the camera model and UAV at different positions are added to imitate ground moni-
toring cameras and aerial auxiliary camera. Thereafter, we collect simulation monitoring
data with these cameras and establish a test simulation dataset called CamData− Sim. This
database consists of two parts: (1) 24 videos from 11 ground cameras at fixed locations;
and (2) 5 aerial videos from the UAV at 5 hover positions. Their frame resolution and
rate are set to 1920× 1080 and 25 fps, respectively. The self-built simulation database
CamData − Sim is provided in Figure 7 (right). Several vehicles shuttle through these
streets and their moving information is collected into ground monitoring videos and the
UAV videos independently. Moreover, to better evaluate the effectiveness of the proposed
method, these videos are captured by ground cameras and UAV at different heights with
different pitch angles.

Database in real scene

Taking into account that current public multi-camera databases cannot provide both
ground monitoring data and auxiliary UAV data, we constructed a new multi-camera
monitoring database. Figure 8 provides the collection environment and data of our self-
built database. Table 2 provides its related parameter settings, in which some cannot be
obtained in real scenes and only roughly estimated parameters are given. (1) Acquisition
environment: This database is collected from a mixed traffic system with bidirectional
six-lane main road and bidirectional four-lane side road. The width of its middle green belt
is about 25 m and the total transverse length of this road is more than 60 m. (2) Camera
configuration: There are four ground monitoring cameras and each camera monitors traffic
in one traffic area, including northbound main road, northbound side road, southbound
main road and southbound side road. Since the accurate parameters of a deployed multi-
camera system are unknown, we make a rough estimation of its main parameters. The
deployment heights of ground cameras are about 7 m and their pitch angle is about 60◦. As
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shown in Figure 8, there is little overlap between their field of view. The auxiliary UAV data
which overlook the observation scenario are captured at about 80 m. It contains common
motion information with the ground monitoring data. (3) Data information: The frame
resolution and rate of all data in this database are 1920× 1080 and 25 fps, respectively. The
total frame number of each ground video is 5493. The time delay and space relationship
between these data is unknown. This paper applies the proposed approach to estimate the
space alignment relationship between the ground cameras with UAV assistance.

Urban street block

Car model UAV

(b) Simulation data

 Ground monitoring video
(a) Simulation environment

Assisted UAV video

Figure 7. Our simulation database . (a) Simulation environment. The top left figure is a model
of urban street block. The car models and UAV used in database are displayed below. (b) Some
examples of ground monitoring videos and assisted UAV videos in this simulation database.

Mixed traffic system

(b) Real data(a) Real environment

 Ground monitoring video Assisted UAV video

Figure 8. Our self-built database in real scene. (a) Real environment. It is a mixed traffic system with
bidirectional six-lane main road and bidirectional four-lane side road. The stars represent UAV and
ground camera’s general locations. (b) Real data. the ground monitoring videos and the UAV videos
captured from real scene.

3.2. System Performance Evaluation on Simulation Environment

In this section, we explore the performance of our proposed approach on three typical
traffic scenarios: crossroad, T-junction and straight road. In addition to qualitative analysis,
we also conduct quantified analysis on simulation environment in which the ground truth
is manually labeled. Figure 9 displays some space alignment results and Table 3 the pixel
error statistics.
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Figure 9. Some qualitative evaluation results of our proposed approach on simulation environment.
Three groups of experiments conducted on crossroad, T-junction and straight road are displayed
from top to bottom, respectively. Their space alignment results are shown in turn, including the
monitoring data, space transformation and the comparison with ground truth. In these results, the
ground truth is marked in green and our results are marked in red.

Figure 9 shows the space alignment results of crossroad, T-junction and straight road,
from top to bottom, respectively. The fist column is the monitoring data of ground deployed
cameras. They are transformed into the united coordinate system with the alignment
parameter. The following error analysis roughly evaluates algorithm performance by the
coincidence degree between ground truth (marked in green) and our results (marked in
red). Multi-camera space alignment results are shown in the end. It can be seen in this
figure that our approach performs well in different situations. The first simulation scene
is a crossroad. Four overlapping monitoring cameras monitor traffic from four directions.
To better see the space alignment performance of overlapping region, the space alignment
results of crossroad are set to translucent. Compared with ground truth, we can find that
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zebra crossings are mapped together successfully. That means the same visual information
is aligned to the same coordinates, which indicates the effectiveness of our approach. The
second simulation scene is a T-junction and the ground monitoring cameras in it have
limited overlapping area between them. Under UAV assistance, these three cameras are
calibrated into one space. This illustrates that our system can maintain stable performance
with partial-overlapping cameras. The bottom test situation is a straight road with three
cameras of sequential distribution. Their overlapping region is not only limited but has
fewer visual features. As the right column shows, we can return good space alignment
results, further verifying the robustness of our proposed method.

The quantitative experimental study was conducted by analyzing the pixel error
between our space alignment results and ground truth. Table 3 shows that the pixel error
varies from 5.78 to 23.76 pixels. The average errors on above three scenarios are 20.02,
20.32 and 10.01 pixels, respectively. Thus, if we want to relate the visual data of different
cameras, the space alignment error is within 25 pixels. This set of evaluations on different
monitoring scenes further demonstrates that the proposed approach satisfies the need in
the practice interconnection application. Meanwhile, these quantitative results are also in
good agreement with the previous qualitative results. In addition, we can see in this table
that there are some differences of space alignment error between different scenarios. The
performance of straight road is better than that of crossroad and T-junction. The reason for
this phenomenon is as follows. Crossroad and T-junction have both turning and straight
traffic. They include more complex motion compared with straight road. This leads to
more disturbances of feature line detection and spatiotemporal feature map construction,
which directly influences space alignment performance.

Table 3. The pixel error of different monitoring scenarios.

Scene Crossroad T-Junction Straight Road

Camera 1 2 3 4 AVG 1 2 3 AVG 1 2 3 AVG

Pixel error 23.76 16.33 23.71 16.29 20.02 22.09 17.23 21.65 20.32 14.11 10.13 5.78 10.01

Overall, the evaluation in a simulation environment shows that our proposed multi-
camera space alignment approach obtains satisfactory performance not only in quality but
also in quantity.

3.3. System Performance Evaluation on Real Environment

Besides evaluation on simulation environment, we also evaluated the performance
of our system in a real environment. The test scene and monitoring data constructed by
ourselves is introduced in detail in Section 3.1. We applied the proposed method to align
the four ground monitoring cameras into one united coordinate system.

Figure 10 shows our space alignment result in real traffic scene. The monitoring data
from four ground cameras are mapped into a united coordinate system, as shown in the
second column. We then compare our result (labeled in red) with ground truth (labeled
in green by manual calibration) qualitatively. The comparison results of the individual
camera and the whole system are both provided. Viewing the result as a whole, we can
see that these ground cameras are well aligned. Their space alignment results replay the
whole monitoring scene, which is a bidirectional traffic system with greenbelt. The imaging
relationship between these limited overlapping ground cameras can be obtained with UAV
connection. This means that cameras can cooperate for overall surveillance. By comparing
with the ground truth, the pixel error of our approach is about 20, which demonstrates the
feasibility and effectiveness in real environment. From a local point, lane direction after
each camera mapping is basically parallel. That conforms to the actual situation, which also
confirms algorithm performance. However, as we can see, our approach performs poorly
on the distant targets which are warped incorrectly with too large longitudinal extension.
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This happens because our method cannot get enough feature lines when the object is too
small in the far region.

Monitoring data

Cam 1

Cam 2

Space transformation Error analysis Space alignment result

Ground

truth

Ours

Cam 3

Cam 4

Figure 10. Some qualitative evaluation results of our proposed approach on real environment. The
real monitoring scene is two-way multi-lane traffic system with main and side road. Our space
alignment results are shown in turn, including the monitoring data, space transformation and the
comparison with ground truth. In these results, the ground truth is marked in green and our results
are marked in red.

The above experiments were conducted on a computer with an Interl(R) Core(TM)
i9-9900X (3.50 Hz GPU, NVIDIA GeForce GTX 1080Ti GPU, 64 GB RAM) using C++. The
computational complexity of the proposed method is analyzed below. As described, the
proposed method contains two main modules: spatiotemporal feature map construction
and cross-view spatiotemporal matching. For the real scene above, the running time of the
first module is about 123.9 s. In the second module, the feature map dimensional reduction
in time and space costs 38.2 s on average. The time of air-to-ground time synchronization
and cross-view spatial matching is 136.0 s. To sum up, the time cost to align the ground
monitoring cameras in the above real scene is within 5 min. That also verifies the fast
spatial alignment ability of our system in large scenes. In addition, the proposed method is
easier to operate in real environment. The operation complexity mainly comes from input
data preparation. The input ground monitoring videos can be obtained from database or
real-time monitoring data. The UAV needs to capture the monitoring space from top view
under stable flight condition. We only need a part of the common motion information
between ground and aerial data and do not require data synchronization.

3.4. Extended Applications

Due to its multi-camera space alignment ability, the proposed method has great value
in many real-world scenarios. For example, vehicle road hybrid system is a common traffic
scene. Multiple cameras are used in it to monitor traffic operation status. The proposed
method can be applied to estimate the space relationship between cameras and converts
independent monitoring to integrated monitoring. The efficiency of traffic monitoring
can be improved. A campus is a typical example of our approach’s application scenario.
To insure teachers and students work or study on a harmonious campus, many cameras
are deployed in every corner of the campus. The proposed method can be used to obtain
the spatial position of each camera in a campus and unify them into a coordinate system.
Thus, all monitoring data will be aligned as a whole. We can see what is happening on
campus from the whole multi-camera video rather than multiple separate single camera
videos. Besides the above two examples, our approach also can be applied to key industrial
factories, large-scale activity square, etc.
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In addition, the proposed method, which lays the foundation of multi-camera system,
has the potential application value in many multi-camera cooperation fields, including
object re-identification, multi-object detection, multi-camera cooperative locating, and so
on. To be specific, on the basis of our multi-camera space alignment results, cross-camera
object re-identification can be solved from a new perspective. Other object re-identification
methods identify the same target by their feature similarity. Unlike other methods that mine
their similarity, we can relate the same object across different cameras by the estimated
spatial corresponding relationship. Furthermore, the initial object detection result can
be verified by multiple cameras with their space alignment result. Through the spatial
correspondence between target boxes, false alarm rate and missed rate can also be reduced.
For multi-camera cooperative locating, their space alignment result can provide a references
location of the interested target. Especially, when the target is occluded, the result obtained
by our approach can ensure stable positioning accuracy.

To show the utility of our proposed approach in real-world intuitively, we apply it in
a typical vehicle road hybrid system. Figure 11 shows a crossroad with four ground moni-
toring cameras. They observe the traffic intersection from four directions. The proposed
method has application value in imaging display and intelligent analysis. Concretely, on
the one hand, the proposed method aligns the four cameras into one coordinate system.
Four independent monitoring videos are unified into a more comprehensive monitoring
video, as shown on the right. That allows users to timely obtain the whole intersection
running state, which improves the efficiency of current video surveillance. On the other
hand, the spatial correspondence between different cameras obtained by our approach also
contributes to cross-camera intelligent analysis. If we employ single camera object detection
algorithm on one of these cameras, the objects can be detected out. As shown in the upper
left corner, a white car marked with red box is detected out. On the basis of our result, the
data of this target in other cameras can be directly associated. In other words, such ability
to relate targets across cameras is capable of cross-camera re-identification and tracking.
Compared with other methods which detect objects in different cameras separately first
and then re-identify them, our approach only detects objects of one camera and relate them
by coordinate correspondence. The efficiency and robustness of cross-camera intelligent
analysis are naturally improved.

Multi-camera space alignment result

Object detection

Camera 1

Camera 2 Camera 3 Camera 4

Spatial coordinate correspondence

Figure 11. An applicable example of the proposed multi-camera space alignment approach. Our
method aligns the four ground monitoring locations into one coordinate system. With this corre-
sponding spatial relationship, the object information of the car in Camera 1 (marked in red) can be
directly associated with its data in other related cameras (marked in blue).
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4. Discussion
4.1. Performance Comparison

In this section, we compare our performance with other works from two levels. First,
from the partial important sub-process, we conducted contrast experiments on cross-view
matching performance, which is one of the key technologies in our system. Then, from
the overall performance, we compared our approach with other methods on multi-camera
space alignment.

4.1.1. Comparison of Cross-View Matching

Cross-view matching, which mines the relationship between ground monitoring
camera and auxiliary UAV, is one of the key technologies involved in this paper. Its
accuracy has a direct impact on air-to-ground coordinate system unification, and thus plays
a negative role in multi-camera space alignment. Therefore, first, the performance our
proposed cross-view matching algorithm is compared with other matching methods in
both simulation and real environments.

SIFT (Scale-Invariant Feature Transform) [33] proposed by Lowe and SuperGlue [34]
proposed by Sarlin are chosen as the contrast methods. SIFT as a traditional hand-crafted
matching approach that is widely used in practical application. It extracts local feature
from input image and measures them similarity by Euclidean distance. The highest scoring
feature and query feature are the matching pair. SIFT is robust to rotation, zoom scale
and brightness changes. SuperGlue [34], as a deep neural matching network, was recently
proposed. It is based on graph neural network and attention mechanism. They regard
matching as the optimal transport problem in which the loss function is constructed by deep
network. In the specific implementation, two images and their visual features described by
SuperPoint [35] are the input. They are then sent to the matching network established by
SuperGlue and the matching relationship between them is returned as output.

Figure 12 shows the qualitative performance comparison of SIFT, SuperGlue and
our approach on cross-view matching. The test image on the left is a UAV aerial image,
and its related ground monitoring image is provided on the right. They observe the
monitoring scene from the top view and street view, respectively. Obviously, there exists
great perspective gap between them. The evaluation results on simulation environment
and real traffic scene are provided from top to bottom.The above three methods are applied
on the two scenes for cross-view matching. For visualization, the matching pairs found
by each method are connected with straight lines. We can see that our proposed method
outperforms the other methods in both quantity and accuracy. (1) For quantity, our
approach returns more than 60 matching pixel pairs. SIFT only obtains a few matching
pairs. SuperGlue finds plenty of matching pairs in the simulation environment, but it finds
very few pairs in real scene. (2) For accuracy, most of the matching pairs calculated by
SIFT are not correct. Similarly, SuperGlue can also hardly find the accurate cross-view
corresponding point. However, in the matching results of our system in the simulation and
real environments, the overwhelming majority of pairs are accurate. According to the above
analysis, SIFT gets too few and incorrect matching pairs. The accuracy of SuperGlue is also
poor on air-to-ground matching. In other words, the two approaches fail on cross-view
matching. However, our proposed method can obtain sufficient and correct matching pairs.
It shows satisfying performance across different perspective views.
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Figure 12. Qualitative cross-view matching comparison of our proposed method against SIFT and
SuperGlue. The air-to-ground matching pairs between UAV aerial image and the ground monitoring
image are connected by straight lines.

The high performance of our approach is due to the proposed spatiotemporal feature
map and cross-view matching method, which links up different views according to inter-
section invariance of projection transformation. Thus, it is naturally robust to view change.
However, SIFT matches images by their local feature similarity. That makes it difficult to
cover such huge view gap. Meanwhile, there are many similar elements in the observation
scene, e.g., the pedestrian crossings in four directions. That is also a key reason for the
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poor performance of SIFT. SuperGlue is based on a pre-trained matching network. Its
performance depends on the scale and quality of the training database. The disadvantage
of matching neural network on generalization capability causes its failure of cross-view
matching. To sum up, experimental evaluation and result analysis prove that our approach
has better performance than the comparison methods in cross-view matching.

4.1.2. Comparison of Multi-Camera Space Alignment

For the overall multi-camera space alignment performance, we compare the proposed
method with other two methods: COLMAP and MapNet.

COLMAP is a widely used 3D reconstruction approach based on structure-from-
motion [36] and multi-view stereo [37]. Without camera calibration in advance, COLMAP
can reconstruct the whole scene with a set of ordered or unordered two-dimensional
images. For multi-camera space alignment, we use COLMAP to reconstruct the whole
monitoring scene by inputting a series of scene images obtained from different angles.
Then, the monitoring data from multiple ground camera as the new registered images can
be re-localized into scene reconstructed model. Thus, multiple cameras are united into the
coordinate system established by scene reconstructed model. Thus, COLMAP can also
achieve multi-camera space alignment based on three-dimensional reconstruction.

MapNet [38] is a camera localization approach with geometry-aware learning of
maps. It was proposed by Brahmbhatt in 2018. In this work, they proposed a novel
parameterization method for camera rotation to better estimate camera pose with deep
learning network. In other words, MapNet can be regarded as an end-to-end multi-camera
method. The ground monitoring data can be sent to this network and the output is each
camera’s pose in the whole scene map. The relative space relationship is also contained in
their poses. On the basis of multiple camera localization, we can align them. Therefore,
MapNet can realize multi-camera space alignment by camera localization.

As described above, COLMAP and MapNet are not proposed for multi-camera space
alignment. The reason that we choose them as the comparison methods are as follows.
First, the related works for overlapping cameras and non-overlapping cameras are not
suitable for comparison. The overlapping relationship between cameras in wide area
multi-camera system is usually chaotic and unknown. Marker- or motion-based methods
can estimate camera spatial topological relations and not the pixel level correspondence.
Second, COLMAP as a representative algorithm of 3D reconstruction and MapNet as
a deep learning method can obtain camera space relationship in some ways. They can
implement multi-camera space alignment with data post processing. The comparison with
them can reflect the performance of our method on space alignment.

The multi-camera space alignment results of the above three methods are displayed
in Figure 13. As we can see, the test scene is a crossroad with four ground monitoring
cameras. From left to right, the results of COLMAP, MapNet and ours are provided.
COLMAP successfully aligns the monitoring data captured from four cameras into one
coordinate. The same visual information (e.g., the zebra crossings) is mapped with the
same two-dimensional coordinate. As for MapNet, it fails to align all monitoring data into
one united coordinate system. Especially, the result of Camera 2 maps the data into the
wrong coordinates. That leads to a large pixel error with manually labeled ground truth.
Meanwhile, the final alignment result is also formless, which makes it hard to monitor
the scene in all directions. The alignment result obtained by our proposed method shows
comparable qualitative performance with COLMAP. The four monitoring cameras are also
well aligned into one united coordinate system. We can see that the error between ground
truth and our result is very small. To quantitative compare the pixel error, we statistically
analyze the error of each method, as shown in Table 4. It is the qualitative experiment
results. COLMAP obtains the minimum pixel error on each camera space alignment, while
MapNet has quite large pixel error. The pixel error of our approach is about 20 pixels,
which can meet the demand in real-world.
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Table 4. The quantitative comparison of COLMAP, MapNet and ours on pixel error.

Camera 1 Camera 2 Camera 3 Camera 4 AVG

COLMAP [36,37] 8.25 3.84 9.89 5.88 6.965

MapNet [38] 174.61 88.34 59.59 231.49 138.51

Ours 23.76 16.33 23.71 16.29 20.02

Ours

Camera 1

MapNet [38]COLMAP [36,37]

Camera 2

Camera 3

Camera 4

Space alignment result

Input data

Figure 13. The comparison of multi-camera space alignment performance. The test scene is a
crossroad with four monitoring cameras. The coordinate mapping results of each camera by COLMAP,
MapNet and ours are provided from left to right. The space alignment result in the bottom marked
in green is the ground truth.
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The factors causing the above results are analyzed below. The high performance of
COLMAP is due to the space relationship provided by its pre-built scene 3D model. A better
scene model guarantees accurate space alignment. However, such scene model is usually
obtained by a variety of scene images, requiring 10 h for three-dimensional reconstruction.
With the increase of the number of cameras and monitoring area, it will take more time.
It cannot meet the needs of fast spatial alignment in large scenes. The performance of
MapNet is limited by the deep neural network. It can regress camera pose by multi-layer
network computing and pre-data training. However, such pose regression method still has
accuracy disparity with the method based on geometry structure and image retrieval. For
the proposed method, it ensures space alignment efficiency with the help of UAV, which
has excellent flexibility and global awareness that can adapt to the needs of fast spatial
alignment in large scenes. Meanwhile, we mine the motion consistency between UAV and
ground monitoring cameras. Thus, we can align them into one united coordinate system
by air-to-ground pixel correspondence. That ensures the space alignment accuracy. To
balance the efficiency and accuracy, our approach returns better performance than the other
contrast methods.

4.2. Parameter Discussion

This section discusses the effect of three parameters on our system’s performance: the
number of feature lines, camera pitch angle and deployment height. The number of feature
lines relates to cross-view visual feature extraction and description. Different camera pitch
angles and deployment heights are also two main factors influencing our performance.

The evaluation data are captured from a typical crossroad on simulation environment,
as presented in the top of Figure 9. To simulate different situations, we vary the view
angle and deployment height of ground cameras. Meanwhile, the number of feature lines
is also changed to analyze algorithm performance. Using variable-controlling principle,
the pixel errors by varying these parameters are studied. The experimental results are
given in Figure 14. It provides the proposed method’s pixel error under different camera
pitch angles (20◦, 30◦ and 40◦) and different camera deployment heights (5 and 9 m) with
different number of feature lines (the range interval is [50, 600]).
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Figure 14. Pixel error under different camera pitch angle, deployment height and the number of
feature lines. Blue, red and orange curves are the performance of different pitch angles with different
number of feature lines based on the same deployment height of 9 m. Blue and green curves are the
performance of different deployment with different number of feature lines based on the same pitch
angle 20◦.

First, the error decreases with increasing the parameter of number of feature lines,
as shown by the three curves. When this number is large enough, the algorithm error
keeps at a low level. That is because more feature lines mean more spatiotemporal feature
maps. The input data can be described more comprehensively, and then rich cross-camera
corresponding points can be obtained. Thus, the accuracy is greatly improved at the
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beginning. However, when we have enough features and corresponding points, the error
will not be greatly reduced. An appropriate number of feature lines for the proposed
method is about 200–300. At the same time, it can be seen that the greater is the camera
pitch angle, the better is the performance. Overall, 40◦ obtains the minimum alignment
error. Large pitch angles of the ground monitoring camera have a small perspective gap
between it and the aerial UAV. That makes air-to-ground matching more accurate and
further improves multi-camera space alignment performance. In addition, we also found
that the situation with 40◦ pitch angle converges to the minimum error more slowly than
others. Under the same deployment height, the more the camera looks down, the smaller its
observation range is. Therefore, it requires more feature lines for accurate space alignment.

The blue and green curves show the impact of different deployment heights on
alignment error. We enlarge the error results after convergence in the upper right corner. It
is noticeable that the space alignment error of cameras deployed at 9 m is lower than those
at 5 m. It is for the same reason that a large pitch angle has a smaller error. High deployed
cameras have more similar perspective views with auxiliary UAV. They can be aligned into
the united coordinate system established by UAV more accurately. The change regularity
of feature line number also verifies the discussion in the previous paragraph.

However, there are two major limitations to this study that will be addressed in the
future. First, the proposed multi-camera space alignment approach is based on UAV-
assisted aerial data, which unifies ground monitoring cameras. Thus, it is not applicable
to these monitoring situations where stable UAV video cannot be obtained, e.g., no fly
zone for UAV, bad weather so the UAV is unable to hover stably or areas that are covered
by trees or other things. Secondly, the performance of our proposed method depends on
the spatiotemporal feature map which describes input data with abundant traffic flow.
However, it is affected by random traffic flow. When the passing vehicles are too sparse or
their moving direction is complex, our system performs poorly. To overcome this problem,
lane detection and segmentation can be used to reduce dependence on traffic flow during
future work.

5. Conclusions

This paper introduces a novel UAV-assisted wide-area multi-camera space alignment
approach based on a spatiotemporal feature map. The proposed methods contains two
key parts: spatiotemporal feature map construction and cross-view space matching. The
first is presented on the basis of motion consistency between UAV-assisted aerial data and
ground monitoring data. Following the procedure of feature line detection, spatiotemporal
information extraction and feature map description, all input monitoring videos are de-
scribed by spatiotemporal feature maps. The second key module is the cross-view space
matching strategy, which is proposed to find the corresponding relationships between
aerial and ground data. Through three matching steps, which are global feature map
matching, air-to-ground time synchronization and cross-view spatial alignment, we can
obtain a set of air-to-ground corresponding pixel pairs. In this way, the spatial relationship
between assisted UAV and ground deployed camera can be calculated. Due to the united
coordinates between UAVs, multiple cameras are successfully aligned into one coordinated
system with UAV assistance.

Experimental results on simulation environment and real scene demonstrate that
our system achieves satisfactory performance and aligns multiple camera in one space
coordinate system. From the quantitative analysis, its minimum pixel error is around
5 pixels and the maximum error is less than 25 pixels. Through parameter discussion, we
find that high deployment height and large pitch angle of camera are beneficial to alignment
accuracy. Meanwhile, the proposed method shows superior performance to other contrast
methods. Furthermore, this study has great academic meaning for camera pose estimation,
camera array imaging and cross-camera information fusion. It has significant application
value in the field of traffic monitoring, public security and so on. However, there may be
some possible limitations to this study. The proposed method cannot work in no UAV
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fly zones which cannot obtain UAV-assisted data. Because the proposed method relies
on traffic flow, it not applicable to the area with not enough traffic. Our future work will
consider these problems.
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