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Abstract: Light Use Efficiency (LUE), Vegetation Index (VI)-based, and process-based models are the
main approaches for spatially continuous gross primary productivity (GPP) estimation. However,
most current GPP models overlook the effects of topography on the vegetation photosynthesis
process. Based on the structures of a two-leaf LUE model (TL-LUE), a VI-based model (temperature
and greenness, TG), and a process-based model (Boreal Ecosystem Productivity Simulator, BEPS),
three models, named mountain TL-LUE (MTL-LUE), mountain TG (MTG), and BEPS-TerrainLab,
have been proposed to improve GPP estimation over mountainous areas. The GPP estimates from
the three mountain models have been proven to align more closely with tower-based GPP than
those from the original models at the site scale, but their abilities to characterize the spatial variation
of GPP at the watershed scale are not yet known. In this work, the GPP estimates from three
LUE models (i.e., MOD17, TL-LUE, and MTL-LUE), two VI-based models (i.e., TG and MTG), and
two process-based models (i.e., BEPS and BEPS-TerrainLab) were compared for a mountainous
watershed. At the watershed scale, the annual GPP estimates from MTL-LUE, MTG, and BTL were
found to have a higher spatial variation than those from the original models (increasing the spatial
coefficient of variation by 6%, 8%, and 22%), highlighting that incorporating topographic information
into GPP models might improve understanding of the high spatial heterogeneity of the vegetation
photosynthesis process over mountainous areas. Obvious discrepancies were also observed in
the GPP estimates from MTL-LUE, MTG, and BTL, with determination coefficients ranging from
0.02–0.29 and root mean square errors ranging from 399–821 gC m−2yr−1. These GPP discrepancies
mainly stem from the different (1) structures of original LUE, VI, and process models, (2) assumptions
associated with the effects of topography on photosynthesis, (3) input data, and (4) values of sensitive
parameters. Our study highlights the importance of considering surface topography when modeling
GPP over mountainous areas, and suggests that more attention should be given to the discrepancy of
GPP estimates from different models.

Keywords: GPP estimation; mountainous areas; ecosystem models; remote sensing

1. Introduction

Understanding the terrestrial carbon cycle is crucial for adaptation to global climate
change [1]. Gross primary productivity (GPP), defined as the total amount of carbon
fixed by the vegetation photosynthesis process per unit of time and space, is an essential
component of the terrestrial carbon cycle [2]. As the main mechanism for terrestrial ecosys-
tems to absorb atmospheric carbon dioxide, a small variation in GPP would significantly
influence the carbon balance of ecosystems [3]. Obtaining accurate GPP estimates plays an
important role in assessing the terrestrial carbon budget and understanding the responses
of terrestrial ecosystems to global climate change [4].
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Currently, the globally distributed eddy covariance (EC) systems can only provide
GPP estimates over a limited spatial context due to the representation of carbon foot-
prints [5]. Fortunately, the availability of satellite observations make it feasible to acquire
important information about ecosystem components at a large scale [6,7]. Various ecosys-
tem models have been developed to obtain spatially-continuous GPP estimates, which can
predominantly be categorized as Light Use Efficiency (LUE) models, Vegetation Index (VI)
-based models, and process-based models. However, most of these GPP models overlook
the effect of topography on the vegetation photosynthesis process [8–12], and limited
attention has been given to carbon modeling over mountainous areas. The topographic
characteristics of mountainous areas, such as steep slopes, altitude variation, and landscape
fragmentation, greatly influence surface energy and hydrologic processes [13–16], and
thus affect the vegetation photosynthesis process [17–21]. Over the last decade, Xie and Li
(2020) [22,23] and Govind et al. (2009) [18] have made efforts to improve GPP estimations
from LUE, VI-based, and process-based models over mountainous areas, respectively.

LUE models are developed from the radiation conversion efficiency concept [24]
and have been widely adopted to generate time-series of regional and global GPP prod-
ucts [25–27]. Most LUE models are big-leaf models with the assumption that the whole
canopy can absorb direct and diffuse solar radiation simultaneously, such as the Moderate-
resolution Imaging Spectroradiometer (MODIS) GPP model (MOD17) [8], Vegetation
Photosynthesis Model [28], and EC-LUE [9]. However, many studies have suggested that
the treatment of sunlit and shaded leaves should be different in LUE models [10,29–32].
Sunlit leaves, which absorb both direct and diffuse radiation, are easily light-saturated,
and thus their photosynthetic capacity is more constrained by low LUE. In contrast, the
photosynthetic capacity of shaded leaves, which only absorb diffuse radiation, is normally
constrained by low absorbed photosynthetically active radiation (APAR). To separate the
treatment of sunlit and shaded leaves, He et al. (2013) [33] proposed a two-leaf LUE
model (TL-LUE) by combining the MOD17 model and the Boreal Ecosystem Productivity
Simulator (BEPS) [29,34]. The performance of TL-LUE has been validated for various
vegetation types [35–37], but neglects topographic characteristics over mountainous areas.
To address this problem, Xie and Li [22] developed a mountain TL-LUE model (MTL-LUE)
by considering (1) the variation of direct radiation resulting from the different geometric
relationships between the tilt of the ground surface and the solar position [38–41], (2) the
shielding of diffuse radiation caused by the tilt of the ground surface itself and surrounding
terrain [38,40–42], and (3) the alteration of sunlit canopy area due to the different relative
positions of geotropic trees [43–45]. The GPP estimates from the MTL-LUE model proved
to better match the tower-based GPP than those from the TL-LUE model at a mountainous
site [22].

VI-based models usually estimate GPP by exploring its direct correlation with remotely
sensed green vegetation indices [11], such as the normalized difference vegetation index
(NDVI) and enhanced vegetation index (EVI). If GPP was able to be calculated entirely
from remotely sensed data, it would be more convenient to have spatially and temporally
continuous GPP estimates over larger-scale areas due to the development of the satellite
remote-sensing technology. Sims et al. (2008) [12] developed a temperature and greenness
(TG) model based on the direct relationship between GPP and the combination of EVI and
MODIS land surface temperature (LST), and its satisfying performance has been confirmed
by various studies [12,46–50]. In the model application of TG, EVI can be obtained from
MODIS (~250 m) or Landsat spectral bands (~30 m), while LST is always provided by
MODIS products at the spatial resolution of ~1 km. However, the ~1 km resolution MODIS
LST product may lose a large portion of topographic characteristics over mountainous
areas [51], and thus the TG model is more suitable for relatively flat areas. To improve the
GPP estimation from TG, Xie and Li [23] proposed a mountain TG model (MTG) by adding
(1) an elevation-corrected factor for the effect of elevation on temperature [52,53] and (2) a
radiation-corrected factor for the contribution of the incoming solar radiation to the spatial



Remote Sens. 2021, 13, 3567 3 of 25

variations of temperature [52,54]. MTG has presented a better ability to capture the GPP
variations than the TG model at sixteen mountainous sites [23].

Process-based models, such as the BEPS model [29,34], the Biome-BGC model [55],
and the Integrated Biosphere Simulator (IBIS) model [56], always use biological, climatic,
and soil variables to describe the major components of ecological processes related to
vegetation photosynthesis. However, most process-based models overlook the large spatial
variation in GPP caused by impacts of topography on received radiation, temperature, and
soil water. To improve GPP estimations from process-based models over mountainous
areas, Govind et al. (2009) [18] developed an eco-hydrological model (BEPS-Terrainlab,
BTL) by integrating the BEPS model with a spatially distributed hydrological model called
TerrainLab. BEPS is a two-leaf process-based model, with daily canopy-level photosynthe-
sis simulated by up-scaling Farquhar’s leaf-level biochemical model [57]. Over the past two
decades, the BEPS model has been adopted as an effective tool to simulate the carbon and
water fluxes between terrestrial ecosystems and the atmosphere in China [58–60], North
America [61], Canada [62,63], East Asia [64], Europe [65], and the globe [66,67]. TerrainLab
was designed to obtain accurate estimations of the water table and soil moisture content
in mountainous areas through the use of a subsurface saturated flow mechanism. The
TerrainLab model not only considers topographic effects on the spatial distributions of
climatic variables, but also describes the movement of soil water by assuming that each
pixel is connected to its surrounding eight pixels. The improvement of BTL in simulating
carbon and water fluxes over BEPS was proved in a mountainous watershed [18].

Generally, GPP estimation at a site scale is always limited by its spatial representation,
whereas a watershed-scale GPP estimation could provide spatial-continuous information
on vegetation photosynthesis. The GPP estimates from the above three mountain GPP
models (i.e., MTL-LUE, MTG, and BTL) have been proven to match better with tower-
based GPP than those from the original models (i.e., TL-LUE, TG, and BEPS) at the site
scale [22,23]. However, the discrepancies among the three mountain GPP models, and
their abilities to characterize spatial variation in GPP at the watershed scale, are not yet
known. BTL considers the combined spatial effect of various environmental indicators
and ecological processes on GPP estimation, but its complicated model structure requires a
large number of input data and ecological parameters. MTL-LUE has a relatively simple
model structure and only considers the process of radiation conversion, and it also requires
meteorological data as input. Although the understanding of the vegetation photosynthesis
process in MTG is not as detailed as that in BTL and MTL-LUE, MTG has the advantage
of extensive remotely sensed information (i.e., estimating GPP without ground data).
Therefore, MTL-LUE, MTG, and BTL have different scopes of application.

The MTL-LUE, MTG, and BTL models are developed from different model structures,
and use different modeling strategies to describe the complex effect of topography on the
vegetation photosynthesis process. The main aims of this study are to: (1) investigate the
improvement in the MTL-LUE, MTG, and BTL models over the original models (i.e., TL-
LUE, TG, and BEPS) at the watershed scale, (2) compare the GPP estimates from MTL-LUE,
MTG, and BTL models at the watershed scale, and (3) analyze and compare the responses
of the three mountain GPP models to surface topography (i.e., elevation, slope, aspect,
and SVF). This study was carried out in a mountainous watershed, and the outcomes can
serve as an example, and the first application, for watershed-scale carbon modeling over
mountainous areas.

2. Materials and Methods
2.1. Model Description for GPP Estimation

This work adopted three approaches for simulating gross primary productivity (GPP)
over mountainous areas, including three LUE models (i.e., MOD17, TL-LUE, MTL-LUE),
two VI-based models (i.e., TG and MTG), and two process-based models (i.e., BEPS
and BTL). Detailed descriptions of MOD17 [8], TL-LUE [33,35], MTL-LUE [22], TG [12],
MTG [23], BEPS [29,34], and BTL [18] can be found in the literature.
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2.1.1. LUE Models

The GPP estimates from MOD17 (GPPMOD17), TL-LUE (GPPTL-LUE), and MTL-LUE
(GPPMTL-LUE) can be described as:

GPPMOD17 = εmtotal × APARtotal × f (VPDdaytime)× g(Tmin) (1)

GPPTL−LUE =
(

εmsun × APARsun− f t + εmshd × APARshd− f t

)
× f (VPDdaytime)× g(Tmin) (2)

GPPMTL−LUE = (εmsun × APARsun−mt + εmshd × APARshd−mt)× f (VPDdaytime)× g(Tmin) (3)

g(Tmin) =


0 Tmin ≤ Tmin−min

Tmin−Tmin−min
Tmin−max−Tmin−min

Tmin−min < Tmin < Tmin−max

1 Tmin ≥ Tmin−max

(4)

f (VPDdaytime) =


0 VPDdaytime < VPDmax

VPDmax−VPDdaytime
VPDmax−VPDmin

VPDmin < VPD < VPDmax

1 VPDdaytime > VPDmin

(5)

where εmtotal, εmsun, and εmshd are the maximum LUE of the total canopy, sunlit leaves,
and shaded leaves, respectively; f(VPDdaytime) and g(Tmin) are the scalars of daytime VPD
and the minimum air temperature (Tmin); Tmin-min, Tmin-max, VPDmax, and VPDmin are the
model parameters that are specific to vegetation types; APARtotal, APARsun (or APARsun-ft,
APARsun-mt), and APARshd (or APARshd-ft, APARshd-mt) are the APAR of the total canopy,
sunlit leaves, and shaded leaves, which can be calculated as:

APARtotal = PARtotal × (1− e−k×LAItotal ) (6)

APARsun = (1− α)× (PARdir ×
cos(β)

cos(θlocal)
+

PARdi f − PARdi f u

LAItotal
+ C)× LAIsun (7)

APARshd = (1− α)× (
PARdi f − PARdi f u

LAItotal
+ C)× LAIshd (8)

PARdi f u = PARdi f × exp
(
−0.5×Ω× LAItotal

0.537 + 0.025× LAItotal

)
(9)

C = 0.07×Ω× PARdir × (1.1− 0.1× LAItotal)× exp(− cos(θlocal)) (10)

where α is the canopy albedo, β is the mean leaf-sun angle (set as 60◦), k is the light
extinction coefficient, and Ω is the clumping index; PARtotal, PARdir, and PARdif are a fraction
(0.45) of incoming total (Rtotal), direct (Rdir), and diffuse (Rdif) radiation, respectively; PARdifu
and C characterize the diffuse photosynthetically active radiation (PAR) under the canopy
and the contribution of multiple scattering within the canopy, respectively; LAItotal, LAIsun,
and LAIshd are the LAI of the total canopy, sunlit leaves, and shaded leaves, respectively.
The value of local solar zenith angle (θlocal) over flat areas is the solar zenith (Zs), whereas
the value of θlocal over mountainous areas can be calculated from Zs, the solar azimuth
angle (As), the slope of the ground surface (S), and the aspect of the ground surface (A):

cos(θlocal−mt) = cos(Zs) cos(S) + sin(Zs) sin(S) cos(As − A) (11)

Considering that the relative positioning of geotropic trees over mountainous areas
always controls the sunlit canopy area, the LAI separation in MTL-LUE (LAIsun-mt and
LAIshd-mt) are different from that in in TL-LUE (LAIsun-ft and LAIshd-ft):

LAIsun− f t = 2× cos(Zs)×
(

1− exp
(
−0.5×Ω× LAItotal

cos(Zs)

))
(12)

LAIsun−mt = LAIsun− f t ×
cos(θlocal−mt)

cos(S)× cos(Zs)
(13)
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LAIshd− f t = LAItotal − LAIsun− f t (14)

LAIshd−mt = LAItotal − LAIsun−mt (15)

Due to the effect of topography on received radiation, the calculation of direct and
diffuse solar radiation in MTL-LUE (LAIsun-mt and LAIshd-mt) are also different from those
in TL-LUE:

Raddi f− f t = Radtotal ×
(
0.7527 + 3.8453× SI − 16.316× SI2 + 18.962× SI3 − 7.0802× SI4) (16)

Rdir− f t = Rtotal − Rdi f− f t (17)

Rdir−mt = E0 ×
(

1 + 0.0344× cos
(

2π × DOY
365

))
× Kb × cos(θlocal−mt) (18)

Rdi f−mt = E0 ×
(

1 + 0.0344× cos
(

2π × DOY
365

))
× Kd × cos(Zs)× SVF (19)

Kb = 0.9292× SI1.5996 (20)

Kd = −1.1459× SI2 + 0.9738× SI + 0.0017 (21)

where Kb and Kd is the transmittance of direct and diffuse radiation, respectively; SI
is the sky clearness index, SVF is the sky-view factor [68], E0 is the solar constant (i.e.,
1367 w m−2), and DOY is the day of year.

2.1.2. VI-Based Models

The GPP estimates from TG (GPPTG) and MTG (GPPMTG) can be described as:

GPPTG = mTG × ScaledEVI × h(LSTf t) (22)

GPPMTG = mMTG × ScaledEVI × h(LSTmt)× Frad (23)

ScaledEVI = EVI − 0.1 (24)

h(LST) = min(
LST − Tn

To − Tn
,

Tn − LST
Tm − To

) (25)

where m (mTG or mMTG) is a model parameter associated with GPP and the combination of
LST (LSTft or LSTmt) and EVI scalar (ScaledEVI); Tn, To, and Tm are the minimum, optimum,
and maximum land surface temperatures for vegetation photosynthesis; the radiation-
corrected factor (Frad) is a function associated with FPAR and the accumulated value of
local solar zenith angle from sunrise (t0) to the satellite overpass (ts):

Frad = 1− exp(−FPAR×
ts

∑
t=t0

COS(θlocal−mt,t)) (26)

LST over mountainous areas is modified by considering the effect of elevation on tem-
perature:

LSTmt = LSTf t + Lap× ∆ELE (27)

where LSTft represents the MODIS LST value of a single coarse pixel (~1 km), ∆ELE is the
elevation difference between the coarse pixel and its subpixel, and Lap is the temperature
lapse rate (set as −8 ◦C km−1).

2.1.3. Process-Based Models

The GPP estimates from BEPS (GPPBEPS) can be described as:

GPPBEPS = (LAIsun Asun + LAIshade Ashade)× DAYL (28)
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where DAYL is the daylength; Asun and Ashade are the gross photosynthesis rates of sunlit
and shaded leaves which can be calculated as [57]:

Ac = Vcmax
Ci − Γ

Ci + Kc(1 + Oi/Ko)
(29)

Aj = Jmax
Ci − Γ

4(Ci − 2Γ)
(30)

A = min(Ac, Aj)− Rd (31)

where Ac and Aj are the Rubiso-limited and RuBP-limited gross photosynthesis rates,
respectively; Vcmax and Jmax are the maximum carboxylation rate and electron transport rate,
respectively; Ci and Oi are the intercellular CO2 and oxygen concentrations, respectively;
Kc and Ko are the Michaelis–Menten constants for CO2 and O2, respectively; Γ is the CO2
compensation point without dark respiration; Rd is the daytime leaf dark respiration and is
generally equal to 0.015 Vcmax.

GPPBTL = GPPBEPS + ∆GPPtopography (32)

where ∆GPPtopography represents the effect of topography on GPP estimates and is needed
to correct GPPBEPS over mountainous areas.

2.2. Study Area and Data Processing
2.2.1. Study Area

As shown in Figure 1a, Wanglang National Nature Reserve (103◦50′–104◦58′E, 32◦49′–
33◦02′N, referred to as Wanglang Reserve in the following) is located at the intersection of
the 800 mm rainfall line, the boundary of China’s first Ladder, and the ridge of Qinling
mountain, which is a typical mountainous region in southwest China. As shown in
Figure 1c, the total area of the Wanglang Reserve is approximately 320 km2, and includes
evergreen needleleaf forest (ENF, 27.10%), deciduous broadleaf forest (DBF, 1.42%), mixed
forest (MF, 11.85%), shrubland (SHR, 6.66%), grassland (GRA, 25.11%), and other lands
(27.86%).

In 2017, an integrated observation and experiment station for mountain ecological
remote sensing (referred to as Wanglang station in the following) was established in the
Wanglang Reserve (Figure 1b). The main reasons for selecting the Wanglang Reserve to
carry out research related to mountain ecological remote sensing are that (1) the topographic
features of Wanglang Reserve are heterogeneous (Figure 1d–f), with elevation, slope,
and SVF ranges of 1699–4914 m, 0–79◦, and 0.15–1.00, respectively, and (2) the location
of Wanglang Reserve is important for research associated with global climate change.
Wanglang station mainly contains three observation systems (as shown in Supplementary
Figure S1), including a shrubland tower with a height of 10 m, an MF tower with a height
of 30 m, and an ENF tower with a height of 75 m.

As shown in Figure 2, during Day Of Year (DOY) 1–273 in 2020, the annual average
air temperature, soil temperature, incoming solar radiation, precipitation, and VPD over
Wanglang Reserve were 5.52 ◦C, 8.22 ◦C, 152.63 w m−2, 639 mm, and 2.72 hpa, respectively.
In general, the seasonal characteristics of Wanglang Reserve can be mainly described as
(1) dry season (i.e., from November to April of the next year) with abundant sunshine,
low rainfall, low air humidity, and low temperature, and (2) wet season (i.e., from May to
October) with high-frequency cloudiness, concentrated heavy rainfall, high air humidity,
and high temperature. Over Wanglang Reserve, the phenomenon that the simultaneous ap-
pearance of high heat, heavy rainfall, and significant diurnal temperature difference in the
wet season, maximally promotes vegetation growth, and is conducive to the accumulation
of vegetation biomass.
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Figure 1. Spatial characteristics of elevation (b), land cover (c), aspect (d), slope (e), and SVF (f) over Wanglang National
Nature Reserve. The location of Wanglang National Nature Reserve in China is shown in sub-figure (a).

2.2.2. Data Processing

Due to the availability of time-series tower-based measurements, the study period
of this work is from January to September 2020. As shown in Table 1, multiple datasets
were used in this work. Besides tower-based measurements, all other data were prepared
at 30 m resolution, including soil texture, LST (8-day), LAI (8-day), EVI (16-day), fraction
of photosynthetically active radiation absorbed (FPAR, 8-day), land cover, and topographic
features (i.e., elevation, aspect, slope, SVF, and watershed boundary). Soil texture maps
at the 250 m resolution and MODIS LST at the 1 km resolution were resampled to 30 m
resolution by assuming the soil type or LST of all the subpixels are the same as those of
each coarse pixel.

Table 1. Description of multiple datasets used in this study.

Dataset Variable Resolution Reference

MCD15A2H a LAI/FPAR 500 m/8-day [69]
MOD13Q1 Version 6 a NDVI/EVI 250 m/16-day [70]
MOD11A2 Version 6 a LST 1 km/8-day [71]
Sentinel-2 Level-1C b Surface albedo 10 m/10-day [72]
Landsat-8 Level-1T c Surface albedo 30 m/16-day [73]

SRTM DEM Elevation 30 m [74]
Open Land Map Soil properties 250 m [75]

a All available scenes between 1 January 2020, and 1 October 2020. b Four scenes obtained on 25 January 2019, 27
September 2019, 25 March 2020, and 3 June 2020. c One scene obtained on 1 July 2019.
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Figure 2. Seasonal variations in daily average air temperature (Tave, a), daily minimum air temperature (Tmin, a), daily
maximum air temperature (Tmax, a), daily average soil temperature (Tsoil, a), daily average incoming solar radiation (b),
daily average VPD (c) and daily precipitation (c) over Wanglang Reserve in 2020.

• Tower-based data

Tower-based measurements were adopted in this work, including half-hour air tem-
perature, incoming solar radiation, precipitation, and vapor pressure deficit (VPD). Daily
data were calculated from these half-hour measurements to drive the GPP models. All
tower-based data were processed according to Wutzler, Lucas-Moffat [76], with detailed
information available at the online service (https://www.bgc-jena.mpg.de/bgi/index.
php/Services/, accessed on 23 December 2020).

• Land cover map

In this study, a high-resolution land cover map was obtained from multi-temporal
Sentinel-2 surface albedo data. Four Sentinel-2 surface albedo data with difference dates
were used to provide seasonal information [77], which is useful for LC classification. The
Level-1C products were firstly pre-processed by radiometric calibration and atmospheric
correction (i.e., Sen2Cor). An object-oriented classification approach with a validation
accuracy of ~89.68% [77], was then used to generate the 10-m land cover map from albedo
information of the blue, green, red, and near-infrared bands. The main land cover types
in the 10-m land cover map were evergreen needleleaf forest, deciduous broadleaf forest,
mixed forest, shrubland, and grassland. To maintain consistency with the spatial resolution
of other data, the 10-m land cover map was resampled to 30-m by assuming that the land
cover type of each 30 m pixel was the dominant type (i.e., having the largest percentage of
area) of all the 10-m subpixels.

• Time-series LAI, FPAR, and EVI maps

https://www.bgc-jena.mpg.de/bgi/index.php/Services/
https://www.bgc-jena.mpg.de/bgi/index.php/Services/
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To ensure the reliability of MODIS LAI, FPAR, and EVI time-series data, those values
with corresponding quality control (QC) values less than 64 (i.e., LAI and FPAR) or quality
assurance (QA) values less than 1 (i.e., EVI) were selected, and missing values gap-filled
using the linear interpolation method. In addition, the MODIS LAI, FPAR, and EVI time-
series data were preprocessed with the Savitzky-Golay filter model (SG) due to noise.

The UofT LAI algorithm, developed from the four-scale geometrical optical model
(FSGOM) [78], and the Spatial and Temporal Nonlocal Filter-Based Data Fusion Method
(STNLFFM) [79] were adopted to generate high spatiotemporal resolution LAI maps. In
this study, the UofT LAI algorithm was used to retrieve an LAI map at the 30 m resolution
from the cloud-free Landsat-8 image, and then the STNLFFM was adopted to generate
LAI maps at the resolutions of 30 m and 8-days from the 30-m LAI map and time-series
MODIS LAI maps. Similar to the above generation of LAI maps, time-series EVI maps at 30
m resolution were also obtained from an EVI image from the Landsat-8 data and MODIS
EVI data using SG and STNLFFM. Based on the method in [51], time-series FPAR maps
at 30 m resolution were obtained by fusing an NDVI image from the Landsat-8 data and
time-series MODIS FPAR data in conjunction with topographic features.

• Topographic maps

Several topographic maps, including elevation, slope, aspect, watershed boundary,
and sky-view factor (SVF), were obtained from SRTM DEM. In the derivation of the
watershed boundary map, the threshold value of flow-accumulation was set as 2500 to
retain the 1 km2 footprint area of the three observation towers. SVF was calculated using
the method of Zaksek et al. (2011) [68]:

SVF =
1
n

n

∑
i=1

(1− sin hi) (33)

where n and hi are the number of directions and the vertical altitude angle, respectively.
More descriptions about the calculation of SVF can be found in the online service (https:
//iaps.zrc-sazu.si/en/rvt#v, accessed on 1 December 2020).

2.3. Model Implementation

In this work, the MOD17, TL-LUE, MTL-LUE, TG, MTG, BEPS, and BTL models were
all run at the spatial resolution of 30 m. As for the time resolution, MOD17, TL-LUE,
MTL-LUE, BEPS, and BTL models were run at the daily step, whereas the time step of TG
and MTG was 8-day. The main input data of these seven models are shown in Table 2. In
this work, the NEE measurements are not enough to build reliable models for tower-based
GPP estimation [76,80]. Due to the unavailability of tower-based GPP, this work calibrated
the model parameters of MOD17, TL-LUE, MTL-LUE, TG, MTG, BEPS, and BTL using
reference values from previous studies (as shown in Supplementary Table S1). Zhou et al.
(2016) [35] optimized the sensitive parameters of the TL-LUE and MOD17 models at global
tower sites, which could provide reliable values of model parameters. Moreover, MTL-LUE
has the same unknown parameters as the TL-LUE model. The different canopy albedo (i.e.,
α) values across vegetation types were set according to Wu et al. (2015) [37], and all other
parameter values for MOD17, TL-LUE, and MTL-LUE in different vegetation types were
obtained from Zhou et al. (2016) [35]. Xie and Li [23] optimized the sensitive parameters of
TG (mTG) and MTG (mMTG) at 16 mountainous sites, and Dong et al. (2017) [81] calibrated
the minimum, optimum, and maximum LST for vegetation photosynthesis at 155 tower
sites. In this work, the parameter values of TG and MTG across vegetation types were
obtained from Xie and Li [23] and Dong et al. (2017) [81]. Liu et al. (2018) [82] adopted
BEPS to simulate carbon and water fluxes over China during 2003–2012, and their GPP
estimates matched well with tower-based GPP at 38 sites. In this work, the key parameter
values of BEPS across vegetation types were mainly obtained from Liu et al. (2018) [82]
and He et al. (2019) [83]. In the BTL model, the biophysical parameters were set to the

https://iaps.zrc-sazu.si/en/rvt#v
https://iaps.zrc-sazu.si/en/rvt#v
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same values in BEPS, and the values of the hydrological parameters were set according to
Govind et al. (2009) [18].

Table 2. Main input data of MOD17, TL-LUE, MTL-LUE, TG, MTG, BEPS, and BTL.

Model
Input Data

Tower-Based (Daily) Vegetation-Related (30 m) Topography-Related (30 m)

MOD17 Rtotal
a, Tmin

b, VPDdaytime
c LC, LAI -

TL-LUE Rtotal, Tmin, VPDdaytime LC, LAI -
MTL-LUE Rtotal, Tmin, VPDdaytime LC, LAI Elevation, slope, aspect, SVF

TG - LC, EVI, LST -
MTG - LC, EVI, LST, FPAR Elevation, slope, aspect
BEPS Rtotal, Pre d, Tmin, Tmax

e, Tave
f LC, LAI, soil type -

BTL Rtotal, Pre, Tmin, Tmax, Tave LC, LAI, soil type Elevation, slope, aspect, watershed
a daily total incoming solar radiation; b daily minimum air temperature; c daytime average VPD; d daily total precipitation; e daily
minimum air temperature; f daily average air temperature.

2.4. Model Comparison

In this work, MOD17, TL-LUE, MTL-LUE, BEPS, and BTL models were run at a daily
time step, while TG and MTG were run at an 8-day time step. The annual GPP maps
were summed from those daily (i.e., MOD17, TL-LUE, MTL-LUE, BEPS, and BTL) or 8-day
maps of GPP estimates (i.e, TG and MTG). The multiple annual GPP maps from the seven
models were then adopted for the model comparison. The relationships between multiple
annual GPP maps and topographic maps (i.e., elevation, slope, aspect, and SVF) were also
analyzed, to further illustrate the model responses to surface topography.

3. Results
3.1. Spatial Characteristics of Multiple Annual GPP Estimates

Spatial distributions of annual GPP estimates from the MOD17, TL-LUE, MTL-LUE,
TG, MTG, BEPS, and BTL models over Wanglang Reserve are shown in Figure 3, and their
statistics are presented in Table 3. In general, multiple annual GPP estimates from the seven
models over Wanglang Reserve showed similar spatial distributions. As for the three LUE
models, the annual GPP estimates from the MTL-LUE model had a higher spatial variation
(CV = 26%) than those from TL-LUE (CV = 20%) and MOD17 (CV = 19%) for all pixels. The
annual GPP estimates from MTG and BTL models also presented a higher spatial variation
than those from TG and BEPS, with CV values increased by 8% and 22%, respectively.

Table 3. Mean (gC m−2yr−1), standard deviation (SD, gC m−2yr−1), and coefficient of variation (CV, %) values of multiple
annual GPP estimates in forest, shrub, grass, and all pixels.

Model
Forest Shrub Grass All

Mean SD CV Mean SD CV Mean SD CV Mean SD CV

MOD17 1431 152 11 1006 143 14 1457 341 23 1401 267 19
TL-LUE 1021 116 11 829 134 16 1123 278 25 1039 207 20

MTL-LUE 1148 208 18 713 168 23 1006 306 30 1059 276 26
TG 527 192 36 218 153 71 159 177 112 370 255 69

MTG 411 192 47 295 235 80 110 139 126 296 228 77
BEPS 663 169 25 707 143 20 756 177 23 699 175 25
BTL 901 443 49 871 412 47 1088 463 43 963 457 47

At the watershed scale, GPP estimates from the seven models presented different
annual values. The GPP estimates from MTL-LUE had a lower annual value than those from
the MOD17 model for the forest, shrub, and grass pixels, with the mean value decreasing
by 283, 293, and 451 gC m−2yr−1, respectively. Compared to the TL-LUE model, the GPP
estimates from MTL-LUE had a higher annual value for forest pixels (increasing mean
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value by 127 gC m−2yr−1), but a lower annual value in for shrub pixels (decreasing mean
value by 116 gC m−2yr−1) and grass pixels (decreasing mean value by 117 gC m−2yr−1).
Compared to the TG model, the GPP estimates from MTG had a higher annual value for
shrub pixels (increasing mean value by 77 gC m−2yr−1), but a lower annual value for forest
pixels (decreasing mean value by 116 gC m−2yr−1) and grass pixels (decreasing mean
value by 49 gC m−2yr−1). The GPP estimates from BTL had a higher annual value than
those from the BEPS model for the forest, shrub, and grass pixels, with the mean value
increasing by 238, 164, and 332 gC m−2yr−1, respectively.

Figure 3. Spatial distributions of annual GPPMTL-LUE (a), GPPTL-LUE (b), GPPMOD17 (c), GPPMTG (d),
GPPTG (e), GPPBTL (f), and GPPBEPS (g) over Wanglang Reserve. The annual values were summed
from those daily (i.e., MOD17, TL-LUE, MTL-LUE, BEPS, and BTL) or 8-day (i.e., TG and MTG)
estimates during DOY 1–273 in 2020.

3.2. Comparisons among Multiple Annual GPP Estimates

As shown in Figure 4, the relationships between annual GPPMTL-LUE and GPPMOD17
(R2 = 0.77, RMSE = 368 gC m−2yr−1, rRMSE = 35%), GPPMTL-LUE and GPPTL-LUE (R2 = 0.65,
RMSE = 165 gC m−2yr−1, rRMSE = 16%), and GPPMTG and GPPTG (R2 = 0.78, RMSE = 141 gC
m−2yr−1, rRMSE = 48%) were all closer than that between annual GPPBEPS and GPPBTL
(R2 = 0.33, RMSE = 465 gC m−2yr−1, rRMSE = 48%). The GPPMOD17 of almost all the pixels
had a higher annual value than the GPPMTL-LUE, and the GPPTL-LUE of most pixels also had
a higher annual value than the GPPMTL-LUE. The difference between annual GPPMTL-LUE
and GPPMOD17 in forest pixels was lower than that in shrub and grass pixels, with the
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rRMSE decreasing by 16% and 19%, respectively. The rRMSE between annual GPPMTL-LUE
and GPPTL-LUE presented a similar value in the forest (15%), shrub (18%), and grass (16%)
pixels. The GPPTG of most forest and grass pixels had a higher annual value than the
GPPMTG, whereas the GPPTG of most shrub pixels had a lower annual value than the
GPPMTG. Although the rRMSE between annual GPPBEPS and GPPBTL showed a similar
value in the forest (47%), shrub (44%), and grass (50%) pixels, the R2 between annual
GPPBEPS and GPPBTL in forest pixels was higher than that in shrub and grass pixels by
0.13 and 0.33, respectively. The GPPBEPS of most forest and grass pixels presented a lower
annual value than the GPPBTL.

Figure 4. Comparisons between annual GPPMTL-LUE and GPPMOD17 (the first row), GPPMTL-LUE and GPPTL-LUE (the second
row), GPPMTG and GPPTG (the third row), and GPPBTL and GPPBEPS (the forth row) in forest (a), shrub (b), grass (c), and
all (d) pixels.
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As shown in Figure 5, the relationships between annual GPPBTL and GPPMTL-LUE (R2 = 0.29,
RMSE = 399 gC m−2yr−1), and GPPMTL-LUE and GPPMTG (R2 = 0.34, RMSE = 798 gC m−2yr−1)
were closer than that between annual GPPBTL and GPPMTG (R2 = 0.02, RMSE = 821 gC
m−2yr−1). The GPPMTG of almost all pixels had a higher annual value than the GPPBTL and
the GPPMTL-LUE, and the GPPMTG of the most pixels was similar to GPPBTL. The difference
between annual GPPBTL and GPPMTL-LUE in grass pixels was lower than that in shrub
and forest pixels, with rRMSE decreased by 11% and 17%, respectively. Forest and shrub
pixels showed a lower rRMSE value between annual GPPMTL-LUE and GPPMTG than grass
pixels by 23% and 22%, respectively. Forest and shrub pixels showed a lower rRMSE
value between annual GPPMTL-LUE and GPPMTG than grass pixels by 23% and 22%. The
difference between annual GPPBTL and GPPMTL-LUE in grass pixels was also larger than
that in shrub and forest pixels, with rRMSE decreased by 31% and 26%, respectively.

Figure 5. Comparisons between annual GPPBTL and GPPMTL-LUE (the first row), GPPBTL and GPPMTG (the second row),
and GPPMTL-LUE and GPPMTG (the third row) in forest (a), shrub (b), grass (c), and all (d) pixels.
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3.3. Relationships between Annual GPP Estimates and Topographical Factors

As shown in Figure 6a,e,i,m, the ratio between GPPMTL-LUE and GPPMOD17 showed
similar relationships with topographical factors in forest, shrub, and grass pixels, which can
be mainly summarized as (1) decreasing with an increase in elevation or slope, (2) increasing
with an increase in SVF, and (3) presenting no apparent relationship with aspect. More
specifically, a slight decrease was observed in the ratio between GPPMTL-LUE and GPPMOD17
when the slope varied from 0◦ to 40◦, and then the ratio decreased rapidly in the slope
range of 40◦–80◦. The ratio between GPPMTL-LUE and GPPMOD17 decreased when the
elevation varied from 2500 m to 3500 m, whereas it showed no obvious variation in the
elevation range of 3500–4500 m.

Figure 6. Relationships between annual GPP estimates and elevation (a–d), slope (e–h), aspect (i–l), and SVF (m–p). The first
to the forth row indicate the GPPMTL-LUE/GPPMOD17, GPPMTL-LUE/GPPTL-LUE, GPPMTG/GPPTG, and GPPBTL/GPPBEPS,
respectively. For each vegetation type in the subfigure, the solid line and ribbon represent the mean and standard deviation
values in each elevation (calculated at the interval of 100 m), slope (calculated at the interval of 1◦), aspect (calculated at the
interval of 10◦), and SVF (calculated at the interval of 0.01) ranges.

As shown in Figure 6b,f,j,n, the ratio between GPPMTL-LUE and GPPTL-LUE in forest
pixels presented a higher value than that in shrub and grass pixels, and its relationships with
topographical factors were similar in the forest, shrub, and grass pixels. The ratio between
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GPPMTL-LUE and GPPTL-LUE decreased with elevation increasing or SVF decreasing, and
no obvious relationship was found with aspect. A slight decrease was also observed in the
ratio between GPPMTL-LUE and GPPTL-LUE when the slope varied from 0◦ to 40◦, and then
the ratio decreased rapidly in the slope range of 40◦–80◦.

As shown in Figure 6c,g,k,o, the ratio between GPPMTG and GPPTG in shrub pixels pre-
sented a higher value than that in forest and grass pixels, and showed similar relationships
with topographical factors in forest, shrub, and grass pixels. In general, the ratio between
GPPMTG and GPPTG (1) decreased with increasing slope or decreasing SVF, (2) increased
gradually and then decreased with the aspect varying from 0◦ to 360◦, and (3) decreased
gradually when the elevation varied from 2500 m to 3500 m, and then increased when the
elevation varied from 3500 m to 4000 m.

As shown in Figure 6d,h,l,p, the ratio between GPPBTL and GPPBEPS presented similar
relationships with topographical factors in forest, shrub, and grass pixels, which can be
mainly summarized as (1) decreasing rapidly with increasing elevation, (2) increasing
gradually with increasing slope, (3) decreasing and then increasing with the aspect varying
from 0◦ to 360◦, and (4) increasing gradually with increasing SVF.

4. Discussion
4.1. Improvements of MTL-LUE, MTG, and BTL in Simulating GPP over Mountainous Areas

LUE models, VI-based models, and process-based models are the three main ap-
proaches for spatial-continuous GPP estimation, such as the MOD17, TL-LUE, TG, and
BEPS models. However, most of these three GPP models overlook the effect of topography
on the vegetation photosynthesis process, and treat the terrestrial surface as flat areas. Over
the last decade, Xie and Li [22], Xie and Li [23], and Govind et al. (2009) [18] have proposed
a mountain LUE model (i.e., MTL-LUE), a mountain VI-based model (i.e., MTG), and a
mountain process-based model (i.e., BTL) to improve the GPP estimation over mountain
areas. The GPP estimates from these three mountain GPP models have been proved to
better match tower-based GPP than those from the original models (i.e., TL-LUE, TG, and
BEPS) at the site scale.

In this study, three LUE models (i.e., MOD17, TL-LUE, and MTL-LUE), two VI-based
models (i.e., TG and MTG), and two process-based models (i.e., BEPS and BTL) were
adopted to obtain GPP estimates for a mountainous watershed (i.e., Wanglang Reserve).
Results showed that multiple annual GPP estimates from different models presented
a similar spatial distribution over Wanglang Reserve. The annual GPP estimates from
mountain GPP models were found to have a higher spatial variation than those from the
original models, highlighting that incorporating topographic information into GPP models
might improve the understanding of the high spatial heterogeneity of the vegetation
photosynthesis process over mountainous areas.

4.1.1. Improvement of MTL-LUE over MOD17 and TL-LUE

MOD17 is a big-leaf LUE model with the assumption that the whole canopy can
absorb direct and diffuse solar radiation simultaneously. Various studies suggested that
sunlit leaves, which absorb both direct and diffuse radiation, are easily light-saturated,
and the photosynthetic capacity of shaded leaves, which only absorb diffuse radiation,
is normally constrained by low APAR [10,29–31]. TL-LUE and MTL-LUE are both two-
leaf LUE models with different treatments of sunlit and shaded leaves. In the TL-LUE
model, an empirical relationship established from the diffuse and total incoming radiation
measurements at four sites [29], is adopted to separate the direct and diffuse radiation
from the total radiation [33,35]. This empirical relationship may cause biased separation
of direct and diffuse radiation over mountainous areas because (1) the direct radiation is
affected by local solar zenith angle (which can be expressed by slope and aspect) [38,84]
and (2) the diffuse radiation would reduce when the hemispherical sky dome is partially
blocked (can be expressed by SVF) [38,40,85]. Moreover, TL-LUE also neglects the effect
of topography on the portion of sunlit and shaded canopy areas, which may lead to bias
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in the separation of sunlit and shaded LAI, because the sunlit canopy area can be altered
by the relative positioning of geotropic trees [43–45]. The MTL-LUE model incorporates
topographic attributes (i.e., slope, aspect, and SVF) into the TL-LUE model to improve the
characterization of direct and diffuse radiation (as shown in Figure 7a) and the separation
of sunlit and shaded LAI (as shown in Figure 7b).

Figure 7. Effect of topography on incoming solar radiation (a), canopy shadow (b), and water (c) over
mountainous areas.

At the watershed scale, the GPP estimates from MTL-LUE were found to have a
lower annual value than those from MOD17 in all the forest, shrub, and grass pixels,
with the mean value decreasing by 127 gC m−2yr−1. The lower annual GPP estimates
from MTL-LUE may stem from the fact that the MTL-LUE model considers the decrease
of incoming solar radiation caused by the shielding of topography: (1) direct radiation
varies with the geometric relationship between the tilt of ground surface and the solar
position and (2) diffuse radiation decreases with the tilt of the ground surface itself and
surrounding terrain. Results also indicated that the GPP estimates from MTL-LUE were
observed to have a similar value with those from TL-LUE. Over mountainous areas, the
difference between GPP estimates from MTL-LUE and TL-LUE at the watershed scale
depends on the gap between the GPP variations of sunlit and shaded leaves: (1) the sunlit
GPP estimates from MTL-LUE would be higher in the sunlit terrain (due to the higher
sunlit LAI and direct radiation) and lower in the shaded terrain (due to the lower sunlit
LAI and direct radiation) than those from TL-LUE and (2) the shaded GPP estimates from
MTL-LUE would be lower in the sunlit terrain (due to the lower shaded LAI and lower
diffuse radiation) and higher in the shaded terrain (due to the higher shaded LAI) than
those from TL-LUE.

Our finding that the ratio between annual GPP estimates from MTL-LUE and MOD17
(or TL-LUE) decreased with increasing slope or decreasing SVF, is expected because more
heterogeneous terrain (e.g., a higher slope and a lower SVF) would cause a greater decrease
in received solar radiation. When the elevation varied from 2500 m to 3500 m, although
the diffuse radiation increased due to the increase of SVF (as shown in Figure 8), direct
radiation would decrease because of the increased slope, which may be the reason for
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the decrease in the ratio between annual GPP estimates from MTL-LUE and MOD17 (or
TL-LUE).

Figure 8. Relationships between elevation and slope and SVF over Wanglang Reserve. The solid line and ribbon represent
the mean and standard deviation values in each elevation range (calculated at the interval of 100 m), which was obtained
from the DEM, slope, and SVF maps at the 30 m resolution.

4.1.2. Improvement of MTG over TG

TG is a VI-based model which uses the combination of EVI and LST to obtain GPP
estimates [12]. In the model application, the LST input of TG is always provided by MODIS
products at coarse spatial resolutions, which may lose a large portion of topographic
characteristics over mountainous areas [51]. The MTG model incorporates an elevation-
corrected factor and a radiation-corrected factor into the TG model to address the effect of
elevation on temperature [52,53] and characterize the contribution of the incoming solar
radiation to the spatial variation in temperature [52,54], respectively.

At the watershed scale, the GPP estimates from MTG had a higher annual value than
those from TG in shrub pixels, while they presented a lower annual value than those from
TG in forest pixels and grass pixels. As for the effect of elevation on temperature, higher
GPP estimates from MTG can occur in situations when (1) the elevation is low and the LST
is smaller than the optimum photosynthesis temperature and (2) the elevation is high and
the LST is higher than the optimum photosynthesis temperature. Lower GPP estimates
from MTG can occur in situations when (1) the elevation is low and LST is greater than the
optimum photosynthesis temperature and (2) the elevation is high and LST is lower than
the optimum photosynthesis temperature. As for the contribution of the incoming solar
radiation to the spatial variation in temperature, higher incoming solar radiation would
lead to a higher GPP estimate from MTG.

Results also indicated that the ratio between annual GPP estimates from MTG and TG
decreased with increasing slope or decreasing SVF, possibly because a higher slope and a
lower SVF would lead to lower incoming solar radiation. The ratio between annual GPP
estimates from MTG and TG was observed to decrease and then increase with elevation
varying from 2500 m to 4000 m, as incoming solar radiation decreased and increased due to
the increase of slope in the elevation range of 2500 m to 3500 m, and the decrease of slope in
the elevation range of 3500 m to 4000 m over Wanglang Reserve, respectively. The finding
in this study that the ratio between annual GPP estimates from MTG and TG increased
gradually and then decreased with aspects varying from 0◦ to 360◦ may be caused by the
high incoming solar radiation in the sunlit terrain and low incoming solar radiation in the
shaded terrain during the growing season.

4.1.3. Improvement of BTL over BEPS

BEPS is a two-leaf process-based model using biological, climatic, and soil variables
to characterize the vegetation photosynthesis process [29,34], which has been adopted as
an effective tool to simulate the carbon and water fluxes over the globe [66,67]. In the
BEPS model, each pixel is assigned the same value of radiation and temperature. BTL
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is an eco-hydrological model that integrates BEPS with a spatially distributed hydrolog-
ical model, which was designed to obtain accurate estimations of the carbon and water
fluxes over mountainous areas [18]. BTL improves the GPP estimation from BEPS over
mountainous areas mainly through adding: (1) the effect of elevation on temperature,
i.e., lower temperatures in pixels at higher elevation in the watershed than those at lower
elevations [52,53], (2) spatial heterogeneity of incoming solar radiation, i.e., shaded terrain
always receives less radiation than the sunlit terrain [38–41,86], and (3) the movement of
soil water, by assuming that each pixel is connected to its surrounding 8 pixels, i.e., soil
water of pixels with a higher elevation in the watershed could move to pixels with a lower
elevation (as shown in Figure 7c) [18,20,87].

Results showed that the GPP estimates from BTL had a higher annual value than
those from the BEPS model for the forest, shrub, and grass pixels, with the mean value
increasing by 264 gC m−2yr−1. Over mountainous areas, the difference between GPP
estimates from BTL and BEPS at the watershed scale depended on the combined spatial
effect of various environmental indicators on the vegetation photosynthesis process. The
capacity of vegetation photosynthesis was not directly associated with incoming solar
radiation, temperature, or soil water. For example, when considering the single effect of
incoming solar radiation on GPP, if the incoming solar radiation itself is high, a further
increase in radiation would only result in a subtle GPP increase due to light saturation [29].
However, higher radiation would increase evapotranspiration and decrease soil water, and
thus the GPP would decrease. Therefore, at higher radiation, GPP variability depends on
the gap between the GPP increase (resulting from higher radiation) and the GPP decrease
(resulting from lower soil water). The ratio between annual GPP estimates from BTL
and BEPS was found to increase as SVF and elevation increased, and as slope decreased,
possibly due to a higher SVF leading to higher incoming solar radiation, and a lower slope
leading to increased soil water [20]. The lower ratio between annual GPP estimates from
BTL and BEPS was observed in the aspect range of 90◦–110◦, with the possible reason being
that the radiation in this aspect range is most suitable for vegetation photosynthesis (i.e.,
GPP increased a lot by high radiation and decreased little by lower soil water).

4.2. Comparisons of GPP Estimates from MTL-LUE, MTG, and BTL

To improve GPP estimation over mountainous areas, we propose the use of MTL-
LUE, MTG, and BTL by incorporating topographic characteristics into the LUE, VI-based,
and process-based models. Their improvement at site scale (more closely aligning with
tower-based GPP) has been proved in previous studies [18,22,23], and their improvement
at the watershed scale has also been illustrated in the above section. Besides discussing the
improvement of these three mountain GPP models at the watershed scale, one of the other
objectives of this work was to compare the GPP estimates from MTL-LUE, MTG, and BTL
over mountainous watersheds. Results showed that the relationships between annual GPP
estimates from BTL and MTL-LUE (R2 = 0.29, RMSE = 399 gC m−2yr−1) and MTL-LUE and
MTG (R2 = 0.34, RMSE = 798 gC m−2yr−1) were closer than that between BTL and MTG
(R2 = 0.02, RMSE = 821 gC m−2yr−1). In general, the discrepancy of annual GPP estimates
among MTL-LUE, MTG, and BTL might result from model parameters and structure.

The GPP discrepancies of these models may stem from differently calibrated values of
sensitive parameters, such as the maximum LUE in MTL-LUE [35,88], the slope between
GPP and the combination of temperature and greenness in MTG [12,46,50], and the maxi-
mum carboxylation rate in BTL [89,90]. The sensitive parameters in MTL-LUE, MTG, and
BTL are different, and their ecological definitions are also different. One solution is to
calibrate these sensitive model parameters with tower-based GPP data, thus increasing
the uniformity of the GPP estimates from these three different models. In this work, the
NEE measurements were not enough to build reliable models for tower-based GPP esti-
mation [76,80]. As shown in Figure 9, a standardized index for annual GPP estimates was
used to address the discrepancies caused by model parameters. The standardized index of
multiple annual GPP estimates was observed to present a similar spatial distribution over
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Wanglang Reserve, suggesting that the calibration of model parameters in different models
is important for GPP estimation over mountainous areas. Further work should be carried
out to obtain more reference values of the sensitive model parameters across vegetation
types as there are more mountainous observations.

Figure 9. Spatial distributions of the standardized index of annual GPPMTL-LUE (a), GPPTL-LUE (b),
GPPMOD17 (c), GPPMTG (d), GPPTG (e), GPPBTL (f), and GPPBEPS (g) over Wanglang Reserve. The
description of the standardized index can be found in Supplementary Equation (S1).

Different model structures adopted in MTL-LUE, MTG, and BTL may be another
source for the GPP discrepancies. MTL-LUE is developed from radiation conversion effi-
ciency, mainly assuming that (1) GPP is directly related to the APAR and actual LUE [24],
(2) sunlit leaves can absorb both direct and diffuse radiation whereas shaded leaves only
absorb diffuse radiation [10,29–31], (3) direct radiation varies with the geometric relation-
ship between the tilt of ground surface and the solar position [38,84] and diffuse radiation
decreases by the tilt of the ground surface itself and surrounding terrain [38,40,85], and
(4) the portion of sunlit and shaded canopy areas is affected by the relative positioning
of geotropic trees [43–45]. The main assumptions in the MTG model are that (1) EVI
can effectively describe water stress, because vegetation suffering from drought always
senesces or partially loses foliage to conserve water [12,91,92], (2) LST can well characterize
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the summer drought stress and the photosynthetic inactivation for strongly evergreen
vegetation, because the representative characteristics of the summer drought periods and
the inactive photosynthetic periods are high temperature [93] and low temperature [12],
(3) the temperature tends to decrease with as elevation increases, and (4) incoming solar ra-
diation (only including the direct radiation) varies with the geometric relationship between
the tilt of the ground surface and the solar position [38,84] and a higher incoming solar
radiation would lead to a higher temperature [52,54]. BTL is an eco-hydrological model
which assumes that (1) the capacity of vegetation photosynthesis is associated with vari-
ous environmental indicators (i.e., temperature, radiation, and soil water) and ecological
processes (i.e., evapotranspiration), (2) sunlit leaves can absorb both direct and diffuse ra-
diation whereas shaded leaves only absorb diffuse radiation [10,29–31], (3) topography has
a redistributing effect on the spatial distribution of incoming solar radiation [38–41,86] and
temperature [52,53], and (4) soil water of pixels with a higher elevation in the watershed
could move to pixels with a lower elevation [18,20,87].

MTL-LUE, MTG, and BTL are developed from the model structure of TL-LUE/MOD17,
TG, and BEPS, respectively. Besides these above assumptions associated with topography,
all others are the original assumptions in MOD17, TL-LUE, TG, and BEPS. As shown in
Figure 10, the discrepancy of annual GPP estimates among MOD17, TL-LUE, TG, and
BEPS, was also observed, suggesting that the GPP discrepancy over mountainous areas
may be caused by the different original model structures used in MOD17, TL-LUE, TG, and
BEPS. Moreover, the modeling strategies used to describe the complex effect of topography
on the vegetation photosynthesis process are also different in MTL-LUE, MTG, and BTL.

Figure 10. Color-coded correlation matrixes for annual GPPMTL-LUE, GPPTL-LUE, GPPMOD17,
GPPMTG, GPPTG, GPPBTL, and GPPBEPS over Wanglang Reserve. The correlation matrixes were
calculated from the annual GPP maps of MOD17, TL-LUE, MTL-LUE, TG, MTG, BEPS, and BTL.

4.3. The Existing Limitations and Future Prospects

Currently, obtaining accurate leaf-sun angle values is difficult, especially over moun-
tainous areas. Most GPP models assume the mean leaf-sun angle as a constant, which
might create uncertainties in the final GPP estimates. Our future work would try to find
improvements in GPP estimation with the use of more accurate leaf-sun angle values in the
carbon modeling process. In this work, several topographic maps were obtained from the
30 m SRTM DEM, and it should be noted that any uncertainties in the original DEM data
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could lead to bias in the results. Besides the surface topography, vegetation heterogeneity
(LAI and LC) is also important in GPP estimation [94]. Over mountainous areas, LAI
and LC maps have been reported to present high uncertainties because of the high levels
of cloud, aerosol, and snow in remote sensing observations [95,96]. Future work should
develop reliable algorithms to obtain reliable LAI and LC maps at fine resolutions.

5. Summary

LUE models, VI-based models, and process-based models are the three main ap-
proaches for spatial-continuous GPP estimation. In this work, three LUE models (i.e.,
MOD17, TL-LUE, and MTL-LUE), two VI-based models (i.e., TG and MTG), and two
process-based models (i.e., BEPS and BTL) were adopted to obtain GPP estimates for a
mountainous watershed (i.e., Wanglang Reserve). At the watershed scale, the annual GPP
estimates from MTL-LUE, MTG, and BTL were found to have higher spatial variation than
those from the original models (increasing the spatial coefficient of variation by 6%, 8%,
and 22%), highlighting that incorporating topographic information into GPP models might
improve understanding of the high spatial heterogeneity of the vegetation photosynthesis
process over mountainous areas. Obvious discrepancies were also observed in the GPP
estimates from MTL-LUE, MTG, and BTL, with determination coefficients ranging from
0.02–0.29 and root mean square errors ranging from 399–821 gC m−2yr−1. Our study
highlights the importance of considering surface topography when modeling GPP over
mountainous areas, and suggests that more attention should be given to the discrepancies
in GPP estimates from different models.

The BTL model considers the combined spatial effect of various environmental indica-
tors and ecological processes on the vegetation photosynthesis process. The limitation of
BTL over large areas is that it’s complicated model structure requires a large number of
input data and ecological parameters. MTL-LUE only considers the process of radiation
conversion, and it also requires meteorological data as input. Although the understanding
of the vegetation photosynthesis process in MTG is not as detailed as that in BTL and
MTL-LUE, the MTG model takes advantage of extensive remotely sensed data and topo-
graphical information (i.e., estimating GPP without ground data), and can also be used to
obtain mountain GPP over large areas. Based on the results over Wanglang Reserve, the
following strategies are suggested for GPP estimation over large-scale mountainous areas:
(1) if relevant ecological parameters and meteorological data are sufficient and reliable, the
BTL model is the best choice, (2) if only reliable meteorological data are available in the
study area, the MTL-LUE model is more suitable than BTL and MTG, and (3) if there is no
reliable ground data in the study area, the MTG model can be used as the simulation tool.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13183567/s1, Supplementary Figure S1: Observation towers of shrubland; Supplemen-
tary Table S1: Main model parameter values used for different vegetation types; Supplementary
Equation (S1): Calculation of the standardized index of annual GPP.
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