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Abstract: With the ability for all-day, all-weather acquisition, synthetic aperture radar (SAR) remote
sensing is an important technique in modern Earth observation. However, the interpretation of
SAR images is a highly challenging task, even for well-trained experts, due to the imaging principle
of SAR images and the high-frequency speckle noise. Some image-to-image translation methods
are used to convert SAR images into optical images that are closer to what we perceive through
our eyes. There exist two weaknesses in these methods: (1) these methods are not designed for
an SAR-to-optical translation task, thereby losing sight of the complexity of SAR images and the
speckle noise. (2) The same convolution filters in a standard convolution layer are utilized for the
whole feature maps, which ignore the details of SAR images in each window and generate images
with unsatisfactory quality. In this paper, we propose an edge-preserving convolutional generative
adversarial network (EPCGAN) to enhance the structure and aesthetics of the output image by
leveraging the edge information of the SAR image and implementing content-adaptive convolution.
The proposed edge-preserving convolution (EPC) decomposes the content of the convolution input
into texture components and content components and then generates a content-adaptive kernel to
modify standard convolutional filter weights for the content components. Based on the EPC, the
EPCGAN is presented for SAR-to-optical image translation. It uses a gradient branch to assist in the
recovery of structural image information. Experiments on the SEN1-2 dataset demonstrated that the
proposed method can outperform other SAR-to-optical methods by recovering more structures and
yielding a superior evaluation index.

Keywords: SAR-to-optical image translation; deep learning; generative adversarial networks; edge-
preserving convolution

1. Introduction

With the continuous development of remote sensing technology, optical remote sens-
ing data and synthetic aperture radar (SAR) remote sensing data have been widely lever-
aged in disaster monitoring, environmental monitoring, resource exploration, and agri-
cultural planning, etc. [1–4]. Optical remote sensing image data are more representative
of what we can observe with the naked eye, which means that these data contain rich
spectral information, but capture depends heavily on the clarity of the environment. Heavy
clouds and bad weather seriously reduce the quality of optical remote sensing images,
and light conditions limit observation times, resulting in limited use of optical remote
sensing data [5]. By relying on the microwave band electromagnetic waves, SAR can
work in all weather and all light conditions to obtain SAR remote sensing data. However,
the interpretation of SAR images is a difficult task for people without professional training,
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which is not the case with optical remote sensing images. Firstly, there is usually a lot
of speckle noise in SAR images, generated by coherent interference of radar echoes from
target scatters, which makes effective information in SAR images difficult to obtain [6,7].
Secondly, while the SAR signal wavelengths (mm to cm) do not belong to the visible part of
the electromagnetic spectrum, which is familiar to human eyes, the easily distinguishable
features in optical images may appear similar in SAR images. Overall, the features in SAR
images are difficult to distinguish. In Figure 1, the water, building and paddy fields, which
can be well differentiated in optical images, are partly visible in the SAR image. The water
can be distinguished by the shape, but the building and paddy fields cannot be identified
according to the SAR image. Thirdly, SAR images inevitably involve geometric distortion
due to their special imaging mechanism, as SAR images are acquired through the reflected
electromagnetic wave signals that are received by moving sensors [8]. Furthermore, elec-
tromagnetic wave signals may be reflected several times before being received, which
makes the features in an SAR image sparse and distorted, often not matching the physical
structures in the real environment [9]. Therefore, the interpretation of SAR image features
is still a difficult task, despite the continuous improvement of remote sensing technology.

Figure 1. A comparison between SAR (right) and optical (left) images.

Due to the above points, it is necessary to leverage some technical means to increase
the readability of SAR images. In the past few decades, some methods have been proposed
to enhance the readability of SAR images based on the ideas of image enhancement and
image colorization. SAR image enhancement aims to make the target in an SAR image
more obvious through processing [10–12]. Odegard et al. [13] presented a method to reduce
the speckle noise in SAR images based on wavelet transform, but it may cause an increase
in the amount of natural clutter. An adaptive processing method was developed in [14],
which combines with filtering, histogram truncation and equalization steps. An example
application, the generation of a flood image, proved the validity of the method. SAR
image colorization tries to make SAR images resemble optical imagery by encoding the
pixels in the SAR images [15–17]. These methods are mainly for single-pol SAR images,
as single-pol SAR images are single-channel images that are visually close to grayscale
images. Image colorization is a process of entropy increase, which strongly depends on
the establishment of the model; therefore, performance degradation may occur in actual
use. The SAR images processed by the above method have improved visual features and
perform better in feature detection and recognition. However, differently from optical
remote sensing images, these processed images are only suitable for expert recognition and
untrained people still cannot recognize the features in the images [18].

Deep learning is the field of machine learning; of handling complex tasks by build-
ing neural network models, which have developed rapidly with the improvements of
computing ability in recent years [19]. Deep learning can be used to achieve image-
to-image translation tasks, which are regression tasks [20–23]. Some methods for the
SAR-to-optical image translation task have been presented. These convert the more readily
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available SAR images into optical images that are more compatible with human visual
perception [5,18,24–29]. They are mainly based on generative adversarial networks (GAN),
as GAN have the ability to produce images in line with real data distributions when there
is a big difference between the SAR image and the optical image. These methods can
generate grayscale or RGB optical images through SAR images by slightly adjusting the
network for the image-to-image translation task. As these methods often do not take into
account the special nature of image conversion and the network structure is not specifically
made for SAR images, the optical images obtained often lose the structural information
in SAR images and may contain conversion errors. Some work has been performed to
improve them. A feature-guided method combined with a loss function based on discrete
cosine transform (DCT) was developed in [30]. Zhang et al. [31] focused on the influences
of edge information and polarization on the recovery process of SAR-to-optical image
translation. However, the network structure is not specially designed for SAR-to-optical
image translation. In addition, the whole feature maps are convolved with the same
convolution filter, which is designed to reduce the parameters and complexity of neural
networks in a standard convolution layer. However, the details and structural information
of SAR images would be ignored while the content of each window is different but the
filter is the same. It can also be understood that the parameters of the convolution kernel
are globally optimal in an ideal situation, but are only sub-optimal for the contents in each
window. This can degrade the quality of the generated image, especially in a difficult task
such as SAR-to-optical image translation. Some methods try to predict convolutional filter
weights at each pixel with a separate sub-network [32,33], but they increase the number of
parameters, leading to more memory usage, longer training time and the corresponding
marked dataset.

In this paper, we propose an edge-preserving convolutional generative adversar-
ial network (EPCGAN) to enhance the structural information and visual clarity in the
generated optical image. Inspired by decomposition theory utilized in traditional image
enhancement methods and the pixel-adaptive convolution (PAC) [34], edge-preserving
convolution (EPC) is proposed to perform content-adaptive convolution on feature maps
while preserving the structural information. We first decompose the content of the fea-
ture map based on structural information extraction, and then perform content-adaptive
convolution on the obtained content components, which combines the decomposition
theory of traditional reinforcement methods with deep learning theory. The filter weight
in the content-adaptive convolution is obtained by multiplying the weights of standard
convolution kernel and the weights of edge-preserving kernel generated from the content
component in each sliding window. Combined with the proposed EPC, EPCGAN, which
has a gradient branch to assist the recovery of structural information, is proposed for the
SAR-to-optical translation task. The gradient branch continuously receives the content
information from the backbone network to simulate the gradient of a real optical image
and finally feeds back the gradient information to the backbone network to assist in the
image generation, which aims to make full use of the structural information in the SAR
image for the SAR-to-optical image translation. In order to verify the effectiveness of
our proposed edge-preserving convolution and edge-preserving convolutional generative
adversarial networks, we conducted comparative experiments and ablation studies on
the SEN1-2 dataset. Experimental results prove that our proposed method can obtain
better visual properties with more defined texture and better evaluation indexes than other
methods for SAR-to-optical image translation.

Specifically, the major contributions of this paper are as follows:

1. Edge-preserving convolution (EPC) is proposed for SAR-to-optical image translation.
It performs content-adaptive convolution on a feature graph while preserving struc-
tural information according to decomposition theory, leading to good structure in the
generated optical images.

2. For the situations in which SAR image interpretation is difficult, a novel edge-
preserving convolutional generative adversarial network (EPCGAN) for SAR-to-
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optical image translation is proposed, which can improve the quality of the structural
information in the generated optical image by utilizing the gradient information of
the SAR image and the optical image as a constraint.

3. The experiments on the training set selected from the SEN1-2 dataset [35] containing
multi-modal data (forests, rivers, waters, plains, mountains, etc.) prove the superiority
of the proposed algorithm. Meanwhile, ablation studies are given.

The organization of the remainder of the paper is as follows. Section 2 gives a compre-
hensive review of related methods. The proposed edge-preserving convolutional generative
adversarial network for SAR-to-optical image translation is introduced in Section 3. We
present the experiment results on the SEN1-2 dataset in Section 4 and comprehensive
analyses in Section 5. Finally, the conclusions are illustrated in Section 6.

2. Related Works
2.1. Image-to-Image Translation

Image-to-image translation refers to the conversion of an image into another type
of image, which has become one of top research topics in deep learning. Examples of
translation include converting sketches to real pictures and realistic images to anime
images [36–40]. Calculating the loss only through the content loss function, such as the
L1-norm loss function or L2-norm loss function, will lead to the output having poor
visual quality, which limit the results of the image-to-image translation task in the early
stage. Generative adversarial networks have been widely applied in image-to-image
translation, since the generator in GAN can generate images with excellent visual properties.
The conditional generative adversarial network (cGAN) is a widely used framework
for image-to-image translation tasks due to its ability to generate images based on not
only content but also style [41]. Isola et al. presented a novel network named Pix2pix
for image-to-image translation based on the cGAN framework, where the generator is
based on U-Net [20]. Then, a high-resolution network Pix2pixHD was developed in line
with Pix2pix, which can realize high-resolution image-to-image translation and semantic
editing [22]. Pix2pix and Pix2pixHD has shown excellent conversion capabilities in sketch-
to-real image conversion and style transfer experiments, but a large amount of paired
data from different domains is needed, which is sometimes hard to acquire. Based on
the ideas of symmetry and circulation, the networks named CycleGAN and DualGAN
were proposed, which can utilize unpaired datasets for training [21,23]. Both Pix2pix and
CycleGAN aim for one-to-one conversion, that is, the conversion from one domain to
another domain. When there are multi-domain images that need to be converted, it takes a
long time to retrain a model for each domain translation. Choi et al. presented a network
named StarGAN, which can realize multi-domain image translation and only requires one
training period [42]. Some methods also try to control some features in the output image
through encoded variables [43]. A lightweight network for image-to-image translation
was also proposed [44,45]. SAR-to-optical translation is also a part of image-to-image
translation. However, there are huge differences between SAR images and optical images
due to the datasets and speckle noise. Therefore, this particular case is indeed different
than most image-to-image translation tasks. Unfortunately, when a network designed
for “ordinary” image-to-image translation tasks is applied to SAR-to-optical translation,
the outcome is poor. Therefore, our method for SAR-to-optical translation is meaningful.

2.2. Deep Learning-Based Methods for SAR Data

Deep learning has been used in SAR image optimization for different reasons. Based
on the boundary equilibrium generative adversarial network (BEGAN) proposed in [46],
a generative adversarial network for SAR image generation was developed, and it was
demonstrated that synthetic data generated by the proposed network could improve the
accuracy of classification [47]. Chierchia et al. [48] presented a deep learning-based method
to remove the speckle noise in SAR images, and the network is based on the residual
network, which is presented in [49]. The results came close to those of some state-of-the-art
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denoising methods for SAR images, which proves the potential of deep learning-based
methods for SAR images. In order to enhance the quality of SAR images, the dialectical
generative adversarial network (Dialectical GAN) was proposed to generate TerraSAR-X
data with a ground-range resolution of 2.9 m and Sentinel-1 data based on a ground-
range resolution of 20 m, which is similar to the effect of super-resolution in computer
vision [50]. In addition, researchers also discussed the possibility of SAR-to-optical image
translation to enhance the utilization of SAR images. Most solutions are based on the cGAN
framework. Merkle et al. [25] proposed a method for optical and SAR image matching
by converting single-pol SAR images to optical images with a U-net architecture and
cGAN. Wang et al. [26] developed the SAR-GAN network consisting of two sub-networks
to perform the despeckling task and coloring task, respectively; however, the two-step
design idea ignores the different imaging principles of SAR images and optical images.
Multi-temporal SAR data have also been considered, He et al. [51] developed a method that
can generate optical images based on a meticulously designed residual network and cGAN.
Some methods first convert SAR images into optical images and then fuse the SAR-to-image
images with cloud images and SAR images to obtain cloud-free images, which contain
RGB information [29,52] or hyperspectral information [28]. Schmitt et al. [35] published the
SEN1-2 dataset, containing 282,384 pairs of corresponding image patches, which provides
sufficient training data for the SAR-to-optical image translation task. cGAN requires
strictly corresponding datasets, and the quality of datasets seriously affects the training
results. Mario et al. [5] leveraged an unsupervised learning network CycleGAN [21] for
SAR-to-optical image translation and discussed the fundamental limitations affecting SAR-
to-optical image translation. Wang et al. [18] presented the supervised cycle-consistent
adversarial network (S-CycleGAN) based on Pix2pix and CycleGAN to keep both the land
cover and structural information. Furthermore, some methods that consider SAR image
characteristics have been proposed. Zhang et al. [30] developed a feature-guided method
with DCT loss, and Zhang et al. [31] utilized edge information to assist with SAR-to-
optical image translation. However, these methods are usually simply modified versions of
networks for general image-to-image translation that were not designed for SAR-to-optical
image translation. In SAR-to-optical translation, we hope to recover an optical image with
good lines. However, SAR images contain strong speckle noise, the edges of the image
may be ignored in the standard convolution and the weight of the convolution kernel is
content-independent, resulting in the output image having poor definition and blurred
structural edges. Differently from the previously described methods, the proposed EPC
and EPCGAN were designed for SAR-to-optical translation based on the characteristics of
optical images and SAR images.

3. Methods

In this section, we first introduce the edge-preserving convolution. Then we present
the details of edge-preserving convolutional generative adversarial networks and loss
functions, accordingly.

3.1. Edge-Preserving Convolution

The convolutional neural network, a pioneering achievement, is described in [53]. It
is one of the most widely used network structures in deep learning. The feature maps
are convolved with a convolution kernel of specified size in a standard convolution layer.
The standard convolution layer has far fewer parameters and far less of a computational
load during training than fully connected layers, which effectively increases the depth of the
neural network and decreases the difficulty of training. The weights of the convolutional
layer are spatially shared but also content insensitive. Formally, the standard convolution from
image features X with c channels to image features X′ with c′ channels can be written as:

X′c′(p) = bc′ + ∑
p′∈Φ(p)

W
〈

p′ − p
〉
× Xc

(
p′
)
, (1)
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where W ∈ Rc′×c×k×k are the weights of the convolution kernel, p are pixel coordinates in
the image features, Φ(·) is the range of k× k around the pixel coordinate of input and bc′

denotes biases. With a slight abuse of notation, we use 〈p′ − p〉 to denote the indexing of
the spatial dimensions of an array with 2D spatial offsets. It can be seen from Equation (1)
that the weight of the pixel multiplication in the convolutional layer is only related to
the position. Once a convolutional neural network is trained, the same convolutional
filter bank is applied to all images and all pixels, regardless of their content. Therefore,
the structural information and details of the image are ignored, which limits the quality of
the output image from the network.

To solve this limitation, we draw lessons from the traditional edge-sensing decompo-
sition method for improving the convolution operation. Image decomposition techniques
are widely used in traditional edge-aware image operators to achieve image enhance-
ment [54–56], which is also used for the processing of SAR images [57,58]. Traditional
decomposition methods can be summarized as:

X̂ = E(X), (2)

X̃ = X− X̂, (3)

X′ = g
(

X̂
)
+ f

(
X̃
)

, (4)

where X̂ = E(X) is the content component; E(·) is the operation of extracting content
from an image, which is usually an edge-aware filter; X̃ = X− X̂ is the texture compo-
nent, which is the difference between image and content components; g(·) and f (·) are
different processes for the content component and texture component, which can be re-
ferred to as a non-linear function. These traditional edge-aware decomposition methods
leverage edge-aware filters to obtain the content component, which is usually considered
to consist of the low-frequency components of the image, and the texture component,
which is usually considered to consist of the high-frequency components of the image.
Applying different modifications to content components will result in the changes in con-
trast and tone adjustments of image, and the image can be sharpened by enhancing the
texture component.

While the gradient of the image is considered to contain the texture information of the
image, we first extract the gradient of the image as the texture component in the image and
keep the texture component unchanged, and then perform a convolution operation on the
content component. Since the goal of the module we designed is not to change the number
of channels in the feature map, the subsequent channels are unified to c. The standard
convolution of a content component and of the processing of content components can be
defined as:

X̂′c(p) = bc + ∑
p′∈Φ(p)

W
〈

p′ − p
〉
×
(

Xc(p)− X̃c(p)
)

(5)

Inspired by PAC algorithm in [34], an edge-preserving kernel k〈p′ − p〉 is proposed to
modify the standard convolutional filter weights adaptively, according to the features in the
content component. The edge-preserving kernel k〈p′ − p〉 is generated by the difference
between the value of the Xc(p) and the surrounding pixel value, which provides the
amplitude of the edge and small-scale detail. The edge-preserving kernel k〈p′ − p〉 can be
written as:

k
〈

p′ − p
〉
= e
− 1

2σ2

(
Xc(p′)−Xc(p)

υ(p)

)2

(6)

Equation (6) is actually a modified Gaussian function. The σ is the standard deviation,
which can control the degree of edge retention in the convolution. The α(p) is a regular-
ization parameter added to limit the range of differences. The regularization υ(p) can be
defined as:

υ(p) = max
p′∈〈p′−p〉

(∥∥Xc
(

p′
)
− Xc(p)

∥∥) (7)
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Combined with Equation (6), the processing of content components in edge-preserving
convolution can be defined as:

X̂′c(p) = bc + ∑
p′∈Φ(p)

k
〈

p′ − p
〉
×W

〈
p′ − p

〉
×
(

Xc(p)− X̃c(p)
)

(8)

The kernel W〈p′ − p〉 is the same as the standard convolution kernel, whose purpose is to
learn the corresponding relationship between the SAR image and the optical image through
training; the edge-preserving kernel k〈p′ − p〉, which is generated from the content of each
convolution window, can keep the edges in the content component by decreasing the
influence of pixels with amplitudes that differ from that of the center pixel in Equation (8).

After the content component undergoes the operation in Equation (8), we merged the
texture component, and the content component to obtain new features. Finally, the edge-
preserving convolution (Figure 2) can be written as:

X′c(p) = X̃c(p) +

bc + ∑
p′∈Φ(p)

k
〈

p′ − p
〉
×W

〈
p′ − p

〉
×
(

Xc(p)− X̃c(p)
) (9)

This operation can be used in image restoration or translation, which preserves edges in
each convolution and implements content-adaptive enhancement.

 

Figure 2. An overview of edge-preserving convolution. The gradient information is obtained via convolution, wherein
the kernel weight is fixed as a Sobel operator and is regarded as the texture component. In fact, we can also extract other
information from the image, such as the texture features and the curvature. EPC decomposes the input Xc into a content
component and texture component based on the obtained texture component, and then convolution is performed on the
content component X̂c. The convolution kernel w is modified by the edge-preserving kernel k that is generated from each
window in the content component X̂c; ⊗ denotes the convolution operation.

3.2. Edge-Preserving Convolutional Generative Adversarial Networks
3.2.1. Network Framework

In addition to speckle noise, there always exist great differences between optical
images and SAR images of the same scene, which are mainly due to their different imaging
concepts [5]. The physical properties of the objects’ surfaces will be highlighted in the SAR
image, but the optical image provides more structural details; hence, the design of network
is a problem that needs careful consideration. cGAN is an effective choice that can enhance
the visual likeness of output image by GAN and the intensity constraint of the conversion
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process with the pixel loss between the output image and the target image. However, while
some obvious features in the SAR image or optical image may not be obvious at all in
the other, the loss of strong constraints would make the network unstable and produce
blurry results with missing structural information of some objects. CycleGAN is another
choice, which does not rely on the strong constraint loss function between the output image
and the target image. CycleGAN can preserve the structural information well, but some
land cover information is lost and translation errors may occur without a strong constraint
loss function.

The edge-preserving convolutional generative adversarial network was designed
based on the CycleGAN framework, but strong constraint loss between the input image
and output image is added. In order to reduce the negative effect of strong constraint loss,
we add some other losses to reduce the impact of strong constraint loss. In addition, our
network also has a branch structure to make better use of the structural information in the
input image. The overall framework of EPCGAN is shown in Figure 3.

 

Figure 3. Our framework is based on the CycleGAN model. We added the loss of mean square error and other losses in the
mapping between the SAR image and optical image to achieve better results.

3.2.2. Generator

Based on the proposed EPC, we designed a generator that contains a gradient branch.
The backbone network utilizes the proposed EPC to extract features and merges the
information provided by the gradient branch to output the converted image. The gradient
part takes the gradient of the input image as the input, continuously integrates the auxiliary
information provided by the backbone network, and finally feeds back to the backbone
network for the final image reconstruction. Detailed information is shown in Figure 4.

The backbone network first leverages a 7× 7 convolution and the proposed EPC,
which can produce effective feature extraction of an image. After that, the size of the
feature map is reduced through the convolution layer to reduce the network parameters,
which has been proven to be effective in image-to-image translation [18]. We incorporate
the feature maps from the 3th, 6th and 9th blocks into the gradient branch as auxiliary
information and introduce the residual in the residual dense block (RRDB) proposed in [59]
to fuse the feature map of the backbone network with the output of the gradient branch.

The goal of the gradient branch is to estimate the conversion of the gradient map
between the SAR image and the optical image. The gradient branch first obtains the
gradient map from the input image, just as the proposed EPC does. The gradient map
can be obtained by calculating the differences between pixels, which can be realized by
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a convolutional layer with a fixed kernel. The acquisition of the gradient map can be
expressed as:

Fx(z) = F(x + 1, y)− F(x− 1, y);

Fy(z) = F(x, y + 1)− F(x, y− 1);

α(z) =
∥∥(Fx(z), Fy(z)

)∥∥
2 (10)

where α(·) stands for the operation to extract the gradient map, and z = (x; y) are the
coordinates in image F. The gradient branch will continuously combine the feature maps
in the backbone network in order to restore the gradient map, an implicit reflection of
whether the recovered regions should be sharp or smooth. In the generator, we provide the
feature map generated by the penultimate layer of the gradient branch to the backbone
network. At the same time, we apply these feature maps as input to generate the output
gradient map through a 1× 1 convolution layer.

 

Figure 4. The generator of EPCGAN. The generator shown is for SAR-to-optical translation. The gradient branch aims to
resolve the SAR image gradient map with its the optical image counterpart. It combines multi-level auxiliary information
from the backbone network to reduce parameters and outputs gradient information to assist the generation of the final
optical image.

3.2.3. Discriminator

The discriminator adopted the PatchGAN architecture, consisting of five convolu-
tional layers, which has effective discrimination ability with fewer parameters [20]. Each
convolutional layer is followed by a leaky ReLU, and a sigmoid output layer is set in
the end for classification. The advantage of this method is that only the local image is
discriminated, not the whole image, so that the image can be better judged better.

3.3. Loss Function

There exist two generators and two discriminators in our proposed EPCGAN to learn
the translation between SAR image domain X and optical image domain Y with paired data
samples {xi}N

i=1 ∈ X and {yi}N
i=1 ∈ Y. The generator G1 attempts to generate an image

G1(x) that looks similar to the optical image based on the input SAR image x, and the
discriminator Dy aims to distinguish real optical image y and generated optical image
G1(x). In the same way, generator G2 generates an image G2(y) that looks similar to
the SAR image from the input optical image y, and the discriminator Dx is designed to
distinguish real SAR image x from generated SAR image G2(y). The adversarial losses are
shown as below:

LGAN(G1, DY) = Ey∼pdata(y)[log DY(y)] +Ex∼pdata(x)[1− DY(G1(x))] (11)
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LGAN(G2, DX) = Ex∼pdata(x)[log DX(x)] +Ey∼pdata(y)[1− DX(G2(y))] (12)

Cycle consistency loss was proposed in CycleGAN [21]. For each input SAR image
x, it is converted to G1(x) by the generator G1, and then converted to G2(G1(x)) by the
generator G2. The input x is expected to be consistent with G2(G1(x)), and the cycle-
consistency loss is as follows:

Lcyc(G1, G2) = Ex∼pdata(x)‖G2(G1(x))− x‖1 +Ey∼pdata(y)‖G1(G2(y))− y‖1 (13)

Most SAR-to-optical image translation methods optimize well-designed networks
through common pixel loss, which can reduce the average pixel difference between gen-
erated optical images and real optical images, but may lead to fuzzy results with loss
of structural information. We also leverage the loss function to accelerate convergence
and improve SAR-to-optical performance. Since there are two generators in our network,
the pixel loss can be expressed as:

Lpix(G1, G2) = Ex,y∼pdata(x,y)‖G1(x)− y‖2 +Ey,x∼pdata(y,x)‖G1(y)− x‖2 (14)

In order to improve the perceptual quality of the generated image, the concept of
perceptual loss was proposed in [60]. The features containing semantic information are
extracted from the pretrained VGG network. The Euclidean distances between the features
of input images and generated ones are minimized in perceptual loss:

Lper(G1, G2) = Ex,y∼pdata(x,y)‖ϕi(G1(x))− ϕi(y)‖1 +Ey,x∼pdata(y,x)‖ϕi(G1(y))− ϕi(x)‖1 (15)

where ϕi(·) denotes the ith layer output of the pretrained VGG model.
If the model is only optimized by L1 loss or MSE loss in the image space, we usually

obtain images with blurry edges given an input test sequence where the ground truth has
sharp edges. In order to enhance the structural information of the generated optical image
as much as possible, we propose a gradient loss that is calculated by the gradient of the
generated image and the gradient of the target image as follows:

Lgrad(G1, G2) = Ex,y∼pdata(x,y)‖α(G1(x))− α(y)‖1 +Ey,x∼pdata(y,x)‖α(G1(y))− α(x)‖1 (16)

where α(·) denotes the operation of gradient extraction. In the proposed EPCGAN, the out-
put of the generator includes the output G1(x) of the backbone network and output
G1branch(x) of the gradient branch. The function of the gradient branch in the generator is
to extract effective structural information according to the input image to assist with image
translation. In order to restrict the function of the gradient branch, we utilize the distance
between the output of the gradient branch and the gradient graph of the target image to
constrain the updating of the gradient branch parameters:

Lbranch(G1, G2) = Ex,y∼pdata(x,y)‖G1branch(x)− α(y)‖1 +Ey,x∼pdata(y,x)‖G2branch(y)− α(x)‖1 (17)

In summary, we have two discriminators DX and DY, which are optimized with
LGAN(G1, DY) and LGAN(G2, DX). For the generator, LGAN and Lcyc are used to improve
the visual realism of the output image while maintaining the structures. The Lpix and Lper
are to provide corresponding constraints based on the pixel distance between the generated
image and the target image. Gradient loss and branch loss cooperate with each other to
improve the structural information of the output image according to the pixel distance
between the generated image and the target image. The overall objectives are defined
as follows:

G1, G2, DX , DY = argmin
G1,G2

max
DX ,DY

(
LGAN(G1, DY) + LGAN(G2, DX) + λcycLcyc(G1, G2)

+ λpixLpix(G1, G2) + λperLper(G1, G2)

+λgradLgrad(G1, G2) + λbranchLbranch(G1, G2)
)

(18)

where λcyc, λpix, λper, λgrad and λbranch denote the weight parameters of different losses.
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4. Experiments

In order to prove the effectiveness of the proposed method, we conducted experiments
with some methods for SAR-to-optical translation based on the same training set and test
set, which were selected from the SEN1-2 dataset [35].

4.1. Implementation Details
4.1.1. Dataset

The selection of the experimental dataset is a very important issue when proving the
robustness of any method. SEN1-2, containing 282,384 paired image blocks collected from
across the globe and throughout all meteorological seasons, has been proven to be usable
for SAR-to-optical translation tasks. These image blocks were obtained by medium-range
clipping from multiple paired SAR and optical images, and the size of each image block
is 256× 256 pixels. A common method of selecting datasets is to take some image blocks
from a picture as the training set and some other image blocks as the test set, under the
condition of ensuring that there are no overlapping pixels in the two kinds of image blocks.
When the paired data resources for the task are difficult to obtain, this method is indeed
reasonable. However, there is always a high degree of similarity between image blocks that
come from the same large picture. When the network is trained with image blocks from
the same picture as the test set, the model will perform better on the test set than it should,
and the robustness of the model cannot be reflected in such experimental results.

We selected 1551 pictures from SEN1-2 as the training set, which contained multiple
terrain types, including forests, lakes, mountains, rivers, buildings, farmlands, roads, and
bridges, etc. At the same time, we selected pictures to form four test sets, Test_1,Test_2,
Test_3 and Test_4, to evaluate the model. Test_1 contained 289 image blocks with various
terrains, which were used to evaluate the performance of the model. Some image blocks in
Test_1 and some image blocks in the training set came from the same large pictures, which
were collected by us and named Test_2. In addition, we also added Test_3 and Test_4,
which contained 62 image blocks and 111 image blocks, respectively. Those two datasets
show mountains and urban suburbs with complex layouts, and the image blocks in the
two datasets were from the large pictures that did not participate in the training of the
model; therefore, Test_3 and Test_4 were completely unseen datasets. They were used to
prove the robustness of our method. Details of each dataset are tabulated in Table 1.

4.1.2. Training Details

We trained and tested EPCGAN and the other SAR-to-optical methods on the same
dataset. For each model, we used the same preprocessing method, and random rotating
and flipping were utilized to avoid overfitting. ADAM optimizer [61] with β1 = 0.5,
β2 = 0.999 was used for the optimization of EPCGAN. In particular, the two generators
in EPCGAN shared the Adam optimizer, and the two discriminators also shared another
Adam optimizer. The EPCGAN was trained for 200 epochs at a batch size of 1 in the
experiments. We set the learning rates to 2× 10−4 for both generator and discriminator,
and linearly reduced them to zero starting from epoch 100. As for the weight parameters of
losses, the λcyc was set to 10 following the settings in [21], and λpix, λper, λgrad and λbranch
were set to 10 to balance the impressions of different losses. All the experiments were
implemented on PyTorch and trained on NVIDIA GTX 2080Ti GPUs.
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Table 1. The information of images involved in the SAR-to-optical translation.

Dataset Number Scene Content

train 1551 bridge rivers road mountain forests town farmland

Test_1 289 bridge rivers road mountain forests town farmland
Test_2 45 bridge rivers road
Test_3 62 mountain road
Test_4 111 farmland town rivers road

4.2. Results and Analysis

To evaluate the proposed EPCGAN quantitatively, we applied peak signal-to-noise
ratio (PSNR), mean square error (MSE) and structural similarity (SSIM) for comparison.
MSE represents the average gap between corresponding pixels. In order to make the
results easy to observe, we first reduced the image pixel value of (0–255) to (0–1) and then
calculated the MSE. The smaller the MSE, the smaller the distortion. The PSNR was based
on the MSE between corresponding pixels in the reconstructed optical image and the real
optical image. The higher the PSNR, the smaller the distortion. While the PSNR treated
each pixel equally, the score of PSNR often deviated from the visual quality acquired
by human eyes. Considering the human visual system, we also used SSIM to evaluate
the similarities in brightness, contrast and structure. The higher the SSIM, the smaller
the distortion. It is worth noting that our framework has the ability to convert optical
images into SAR images and convert SAR images into optical images. We only discuss the
translation from SAR images to optical images here.

We compare the proposed method quantitatively with some methods for SAR-to-
optical translation, including Pix2pix [20], CycleGAN [21] and S-CycleGAN [18]. Pix2pix
and CycleGAN are well-known methods for image-to-image translation that have been
proven to be feasible in SAR-to-optical translation in some previous works [5,24]. S-
CycleGAN was proposed in [18] for SAR-to-optical translation, which combines pixel loss
and cycle-consistency loss. The results of PSNR and SSIM values are presented in Table 2.
In each row, the best results are highlighted in bold. We can see in all the testing datasets
that the proposed EPCGAN achieved the best PSNR and SSIM performance. Pix2pix
could obtain good performance in PSNR compared with other methods and achieved
the second highest PSNR values on Test_3—second only to EPCGAN; however, the SSIM
values acquired by Pix2pix were the lowest on all the testing datasets due to the L1 loss
used in training. The L1 loss was calculated according to the difference between the pixels
of the generated picture and the target image, which is similar to the calculation principle
of MSE. Thus, Pix2pix is more like a PSNR-oriented SAR-to-optical method, with which it
is easy to produce relatively fuzzy results with high PSNR values.

We also visually compare these SAR-to-optical methods. From Figure 5, we see that
they have better structural information and visual effects than other methods. For the
first image, EPCGAN successfully restored the road, which is vaguely reflected in the
SAR image based on the input SAR image, indicating that our method is capable of
capturing structural characteristics in SAR images. At the same time, the edges of the
recovered port are more standardized than other methods, which proves that EPCGAN can
effectively constrain the edges of the graphics in the generated image through the gradient
branch. Making full use of the features and structural information in the input SAR image,
the EPCGAN generate results with better texture in the second and fourth image and more
natural and realistic results in the third image.

CycleGAN can generate images with good structural information, but unsatisfactory
partial translation results usually appear in the images (such as the port in the first image,
the building in the fourth image and the additional artifacts of the third image) due to
the lack of pixel loss calculated based on the generated image and the target image in
the training process. Pix2pix only uses L1 loss to update the network during the training
process, which leads to disappointing visual effects when Pix2pix is applied for SAR-to-
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optical translation. We cannot distinguish the river in the result generated by Pix2pix in the
fourth image as it includes a number of undesirable artifacts. The first image and fourth
image were from Test_3 and Test_4. The image blocks were not from the large picture
from which some blocks were chosen for the training set, which proves that Pix2pix may
have insufficient robustness when applied to SAR-to-optical translation. S-CycleGAN can
generate better results than Pix2pix and CycleGAN, but the structural information and
edges in the generated pictures often do not respond well. The visual comparison proves
that our proposed method can better utilize and maintain the structural information in the
SAR image based on the gradient branch and the proposed EPC, which helps to generate
optical images that are easier to detect and recognize.

Table 2. Image quality assessment (IQA) results of different methods. The best values for each quality
index are shown in bold.

IQA Dataset Pix2pix CycleGAN S-CycleGAN EPCGAN

PSNR

Test_1 17.0482 16.3082 17.9046 19.3627
Test_2 22.1012 22.4319 23.2056 23.8345
Test_3 16.2285 15.7547 16.1178 17.4944
Test_4 15.9798 15.4854 16.0738 17.0195

MSE

Test_1 0.0318 0.0322 0.0222 0.0151
Test_2 0.0069 0.0068 0.0057 0.0047
Test_3 0.0240 0.0285 0.0268 0.0197
Test_4 0.0296 0.0351 0.0272 0.0228

SSIM

Test_1 0.3481 0.3424 0.4107 0.4771
Test_2 0.4840 0.5331 0.5547 0.5799
Test_3 0.2833 0.3140 0.2998 0.3827
Test_4 0.2658 0.2944 0.2799 0.3399

4.3. A comparison of Textural and Structural Information

The gradient information of the image can well reflect the texture and structure of
the image. In order to demonstrate the effectiveness of our method in image texture
and structure restoration, we obtained the corresponding gradient map through the last
images generated by different methods in Figure 5, and the results are shown in Figure 6.
We can see that there are great differences in textural information between SAR image
and optical images, and that speckle noise in the SAR image seriously pollutes texture
information. Pix2pix had poor visual results on the unseen dataset. CycleGAN and
S-CycleGAN can reduce the influence of speckle noise, but the structures of roads and
buildings cannot be restored well. The proposed EPCGAN created the image with the best
textural and structural information. It is worth noting that there was also a gap between
the textural information of images generated by EPCGAN and optical images, which was
due to the lack of information contained in SAR images, and the reasons were discussed
in our introduction. Higher resolution SAR data are expected to reduce the impacts of
these factors.
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Figure 5. A visual comparison of different SAR-to-optical methods. The size of all images was 256 × 256. (a) SEN-1 SAR
image. (b) Pix2pix. (c) CycleGAN. (d) S-CycleGAN. (e) EPCGAN. (f) SEN-2 optical image.
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Figure 6. A gradient map of different SAR-to-optical methods. The size of all images is 256 × 256.

4.4. Model Complexity Analysis

In this section, the influence of the proposed EPCGAN on model complexity is studied.
We summarize the parameters and floating-point operations (FLOPs) of the proposed
EPCGAN and other methods for the SAR-to-optical translation compared in Section 4.2.
Model parameter numbers refer to the numbers of parameters in the network that needed
to be updated during training, which determined the neural network’s demand on video
memory. Generally, researchers hope to obtain better performance indicators with fewer
parameters, whereas fewer parameters representing the model can be more easily deployed
in industrial scenarios. FLOPs is the index that is used to measure the complexity of the
model. Since the SAR-to-optical translation was realized by the generator after the network
was trained, we only calculated the parameters and FLOPs of a single generator.

Figure 7 illustrates the PSNR values, SSIM values and parameter numbers of different
methods on Test_1. Compared with the other methods, the proposed EPCGAN had a
smaller model and better performance than them. It should be noted that the proposed EPC
achieved edge-preserving and content-adaptive convolution without introducing extra
parameters, whose parameters were equal to the convolutional layer with the same specifi-
cations.

Table 3 illustrates the training time and FLOPs of different methods. While achieving
the best results with good structure and texture information, the FLOPs of the EPCGAN
were higher, and more training time was required due to the use of RRDB and gradient
branches. It is worth noting that EPC will introduce the calculation of multiple variables
during back propagation, resulting in the extension of the network training time. We are
considering optimizing this part in future work.
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Figure 7. A comparison of the parameters of different SAR-to-optical methods.

Table 3. Training times and FLOPs of different methods.

Pix2pix CycleGAN S-CycleGAN EPCGAN

Training time (h) 3 9 12 31
FLOPs (G) 17.8 56.0 17.8 64.4

4.5. Ablation Experiment

In our method, the proposed EPC and gradient branch are used, both of which play
unique roles. In order to prove the effectiveness of gradient branch and EPC, we did an
ablation study to show the effects of the gradient branch and EPC. It should be noted that
in EPCGAN (without EPC), we only delete the EPC in the network structure, and all loss
functions are reserved for training. For EPCGAN (without gradient branching) we delete
the gradient branch, and the gradient loss is removed during training. We trained on the
same training set and tested on four test sets.

EPCGAN achieved the highest SSIM values on all test sets in Table 4, indicating that
the complete method had better results in terms of structure and vision. Both EPC and
gradient branch could effectively improve the quality of translated images, but due to the
difficulty of the task, EPCGAN with EPC and gradient branch could only achieve less
improvement than EPCGAN (without EPC) and EPCGAN (without gradient branch). We
also performed a visual comparison in the ablation experiment. For the second image in
Figure 8, without the EPC and gradient branch, the bridge in the generated optical image
was translated into having small irregular bends, which is inconsistent with the real scene.
The bridge in the image that was generated by the model without gradient branching
is less obvious due to the lack of the overall gradient auxiliary information provided by
the gradient branch. Additionally, without content-adaptive EPC, buildings that are not
obvious enough in the gradient map will also not be obvious enough in the generated
optical image. The complete EPCGAN generated the optical image with the best visual
effects and good structure.

Table 4. Image quality assessment (IQA) results of ablation experiments. The best values for each quality index are shown
in bold.

IQA Dataset Ours (w/o EPC and Gradient Branch) Ours (w/o EPC) Ours (w/o Gradient Branch) Ours

SSIM

Test_1 0.4199 0.4647 0.4602 0.4771
Test_2 0.4335 0.5195 0.5152 0.5799
Test_3 0.3375 0.3783 0.3650 0.3827
Test_4 0.3041 0.3362 0.3102 0.3399



Remote Sens. 2021, 13, 3575 17 of 23

 

Figure 8. A visual comparison of ablation experiments. The size of all images is 256 × 256.

5. Discussion
5.1. Goals and Difficulties for SAR-to-Optical Translation

SAR-to-optical translation is a difficult task due to the huge differences between SAR
images and optical images. In most image-to-image translation tasks that transform images
belonging to one domain to another domain, the images between the two domains are
different but often have a strong connection. For example, converting a character photo
into an anime photo is a task of image-to-image translation, the contours of the characters
provide a reliable basis for the generation of animation photos, and then CGANs can be
utilized to generate visually realistic corresponding pictures. However, the SAR-to-optical
translation is different for multiple reasons.

First of all, as we mentioned in Section 1, there exists a big gap between an SAR image
and its optical image due to the imaging principle. Some features in the optical image will
not be reflected in the SAR image. Accordingly, some obvious targets in the optical image
may be consistent with the surrounding environment in the SAR image. The SAR image can
provide detailed surface characteristics of the object, so the different coverage information
will be obvious in the SAR image. However, the same kind of coverage information may
have many different appearances in an optical image; for instance, deep water and shallow
water often appear almost the same in an optical image, and optical images obtained in
different weather conditions and lighting of the same place are very different. All these
factors create great difficulties for SAR-to-optical translation.

Secondly, there is severe speckle noise and possible geometric distortion in SAR
images. Speckle noise masks the real effective information to affect the feature extraction,
and distortion seriously affects the translation, usually resulting in a distorted generated
optical image.
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At last, differently from other image-to-image translation tasks whose goal is to
produce an overall visually realistic effect, we hope to obtain a sufficiently realistic optical
image through SAR-to-optical translation. However, due to the different resolutions of
remote sensing and the reasons mentioned above, it is difficult to recover optical images
with excellent visual effects.

Based on the points we discussed above, we can understand that SAR-to-optical
translation is a unique and difficult task. This leads to serious performance degradation
when many image-to-image translation methods are directly applied to SAR-to-optical
translation, and it is very necessary to design the network structure, loss function and
preprocessing method according to the characteristics of the SAR image. In addition,
because the optical image does not match the information in the SAR image, the goal of this
conversion should be to use as much information in the SAR image as possible to output
an optical image with a better structure. Our method was designed based on this.

5.2. Comparative Analysis of PAC and EPC

PAC is pixel adaptive convolution, proposed in [34], with excellent performance,
which modifies the weight of the filter by the content in each window. However, the weight
modification is not effectively restricted in PAC and the content may have an excessive
influence on the weight of the filter. Therefore, the feature map used to influence the
weight of the filter usually has a very small coefficient, which should be obtained through
multiple adjustments, to avoid excessive influence in the experiment in [34]. At the same
time, the coefficient may not be optimal for each image due to differences between images.
We effectively restrict the weight modification through regularization in EPC. In addition,
the structural information in SAR images may be lost or blurred when PAC modifies the
filter weight, and our method can effectively retain the texture information of the SAR
image. In order to prove the effectiveness of EPC, we conducted a comparative experiment
in which the only difference between the EPCGAN and EPCGAN(PAC) was which model
was chosen out of PAC and EPC.

Our method achieved the highest SSIM and PSNR values on all test sets (see Table 5),
indicating that the EPC method had better results for the mean square error, structure and
vision. We also provided a visual comparison in Figure 9. EPC can achieve clearer texture
edges and better visual effects.

Table 5. Image quality assessment (IQA) results of EPCGAN(PAC) and EPCGAN. The best values
for each quality index are shown in bold.

IQA Dataset EPCGAN (PAC) EPCGAN

PSNR

Test_1 18.9468 19.3627
Test_2 22.7652 23.8345
Test_3 17.3758 17.4944
Test_4 16.9336 17.0195

SSIM

Test_1 0.4575 0.4771
Test_2 0.5272 0.5799
Test_3 0.3631 0.3827
Test_4 0.3389 0.3399
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Figure 9. A visual comparison of EPCGAN(PAC) and EPCGAN.

5.3. Network Structure and Loss Function for SAR-to-Optical Translation

For the overall network framework, cGAN is the current optimal solution for SAR-to-
optical translation, which leverages GAN to enhance the visual quality of the generated
images. Nevertheless, the loss function needs to be designed according to the characteristics
of SAR-to-optical translation. The generated image will be blurry with poor structure if
only the pixel loss calculated based on the generated image and the target image is used
in training. Perceived loss, DCT loss and some other losses will be effective options that
first convert the output image and the target image before calculating the loss. In our
method, multiple loss functions are used, which have different effects. In order to prove the
correctness of our choice, we conducted an ablation study to show the effects of different
loss functions. For the combination of multiple loss functions, when one loss was removed,
its influence could clearly be reflected in the translation process.

An image quality assessment and a visual comparison are given in Table 6 and
Figure 10. When the MSE loss is not used, we obtained poor PSNR value, and the trans-
lation error in CycleGAN would also appear, which proves that MSE loss can effectively
constrain the translation process. It is worth noting that the MSE loss can be replaced with
L1 loss; both of them are calculated based on the error between pixels. When the VGG loss
is not used, the generated image is blurred, and the key target has unsatisfactory visual
quality. It is worth noting that the images generated with our method had good structural
edges due to the use of gradient loss. When the gradient loss was not used, we found
that the edge of the port was very irregular and blurred, which proves that our gradient
loss can help the recovery of the image edge. The rationality and effectiveness of our loss
function can be proved by this phenomenon.

It is effective to extract additional information from SAR images to assist with gener-
ating optical images. The edge information of SAR images contains a lot of information,
which is helpful for the generation of optical images. The proposed method provides
auxiliary information for the reconstruction of the optical image according to the gradient
map of the input image through the gradient branch, which is proved to be effective in the
experiment. In addition, owing to the limited information possessed by single-channel
SAR images, the use of multi-pol SAR images for image restoration is also a direction
worth exploring.
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Table 6. Image quality assessment (IQA) results of different loss functions. The best values for each quality index are shown
in bold.

IQA Dataset EPCGAN (w/o MSE Loss) EPCGAN (w/o VGG Loss) EPCGAN (w/o Grad Loss) EPCGAN

PSNR

Test_1 18.4377 18.6029 19.3625 19.3627
Test_2 22.2648 20.7552 22.5868 23.8345
Test_3 16.4162 17.4345 16.9904 17.4944
Test_4 15.6180 16.9060 16.9023 17.0195

SSIM

Test_1 0.4454 0.4369 0.4594 0.4771
Test_2 0.5174 0.4550 0.5587 0.5799
Test_3 0.3427 0.3722 0.3669 0.3827
Test_4 0.3357 0.3044 0.3362 0.3399

 

Figure 10. A visual comparison of different loss functions. (a) SEN-1 SAR image. (b) EPCGAN
(without MSE loss). (c) EPCGAN (without VGG loss). (d) EPCGAN (without grad loss). (e) EPCGAN.
(f) SEN-2 optical image.

6. Conclusions

In this paper, we summarized the difficulties and goals in SAR-to-optical translation
based on the discussion of the characteristics of optical images and SAR images. After that,
we proposed the EPCGAN and EPC for SAR-to-optical translation and conducted compara-
tive experiments and ablation studies that demonstrated excellent performance of WDCNN
against the other methods for SAR-to-optical translation. The trained standard convolution
is content agnostic, which will cause the model to ignore some of the content features that
we hope to be reflected in the generated optical image when facing complex SAR images.
By combining traditional decomposition methods, we developed a novel EPC to perform
content-adaptive convolution on SAR images while maintaining the texture characteristics
in the SAR image. The EPC decomposes the content of convolution windows based on the
texture component extracted by the edge extraction operator and achieves content-adaptive
convolution by multiplying convolutional filter weights with an edge-preserving kernel
generated from the content component in each window. Based on the proposed EPC, a new
model EPCGAN was introduced for SAR-to-optical translation tasks. EPCGAN has two
generators and two discriminators based on the CycleGAN framework, which can learn
SAR-to-optical translation and optical-to-SAR translation at the same time. Since an SAR
image contains very rich structural information, we designed the gradient branch in the
generator of EPCGAN to leverage the edge information in an SAR image, which contains
abundant useful information and basic features of the target structure. The introduction
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of edge information through the gradient branch and the proposed EPC effectively im-
prove the structural quality of the generated image. The graphics in the generated image
have clearer edges, and the generated image is more realistic and natural to our vision.
At the same time, EPCGAN has excellent robustness that can handle SAR images with
complex terrain, since EPC is content-adaptive. In addition, we discussed the impact of the
loss function and the specific network structure on the SAR-to-optical translation. These
findings provide an important reference for the design of a network structure and loss
function in SAR-to-optical translation tasks. In addition, our scheme provides ideas for
how to improve the structural information and visual quality of optical images and how to
make full use of the complex information in SAR images. Since the design of EPCGAN is
based on network structure, the proposed EPCGAN has the potential to be used in other
tasks and become a general method for GAN. We will consider conducting experiments
to explore the possibility of creating a general method of GAN and construct datasets to
conduct detection experiments to prove the utility of our method in practical applications
in the future.
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