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Abstract: A current hindrance to the scientific use of available bathymetric lidar point clouds is
the frequent lack of accurate and thorough segmentation of seafloor points. Furthermore, scientific
end-users typically lack access to waveforms, trajectories, and other upstream data, and also do not
have the time or expertise to perform extensive manual point cloud editing. To address these needs,
this study seeks to develop and test a novel clustering approach to seafloor segmentation that solely
uses georeferenced point clouds. The proposed approach does not make any assumptions regarding
the statistical distribution of points in the input point cloud. Instead, the approach organizes the
point cloud into an inverse histogram and finds a gap that best separates the seafloor using the
proposed peak-detection method. The proposed approach is evaluated with datasets acquired in
Florida with a Riegl VQ-880-G bathymetric LiDAR system. The parameters are optimized through
a sensitivity analysis with a point-wise comparison between the extracted seafloor and ground
truth. With optimized parameters, the proposed approach achieved F1-scores of 98.14–98.77%, which
outperforms three popular existing methods. Further, we compared seafloor points with Reson 8125
MBES hydrographic survey data. The results indicate that seafloor points were detected successfully
with vertical errors of −0.190 ± 0.132 m and −0.185 ± 0.119 m (µ ± σ) for two test datasets.

Keywords: bathymetric lidar; seafloor segmentation; clustering; inverse histogram

1. Introduction

The volume of bathymetric lidar point clouds available to coastal scientists, engineers,
and coastal zone managers is increasing rapidly. Many datasets are available on portals,
such as the National Oceanic and Atmospheric Administration (NOAA) Digital Coast [1],
state GIS clearinghouses, and others. However, a current impediment to effective use
of these bathymetric lidar point clouds is that many lack accurate point classification
(specifically, the segmentation of points into water surface, water column noise, and seafloor
points) [2,3]. Accurate segmentation of seafloor (or lakebed or riverbed, depending on
the area) points, often referred to as “bathymetric bottom”, is critically important to a
number of processing and analysis tasks, including hydrodynamic modeling, benthic
habitat mapping, and sediment transport studies [4–7].

There are a number of reasons why a given bathymetric lidar point cloud may lack
accurate point classification. In a few cases, point classification may never have been
performed. As just one example, while many studies have documented the presence
of bathymetry in geolocated photon returns from NASA’s ICESat-2 ATLAS [8–10], the
processing algorithms used to generate the point datasets make no attempt to assign
bathymetric point classes. More often (and especially in the case of airborne lidar) point
classification has been performed, but sometimes only through rough, automated routines,
which can result in a number of errors of both omission and commission in segmenting
bathymetric bottom points. Depending on the processing settings used by the data provider,
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the bathymetric bottom will often be under-segmented, meaning that actual bathymetric
returns end up in a noise class (see Figure 1). In turn, this can lead to sparse bathymetry and
poor or incomplete seafloor models. In other cases, depending on the processing stream
prior to a bathymetric lidar point cloud being made available to an end-user, the point
class assignments may simply have been lost (inadvertently removed) at some point in the
processing. Regardless of the cause, it is not at all uncommon for an end user to receive
a bathymetric lidar point cloud with no point classes assigned (just an undifferentiated
conglomeration of seafloor, water surface, and water column points), or with rough point
classification that may not meet scientific needs (Figure 1).
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Figure 1. Bathymetric point cloud data acquired in Marco island located in Miami, Florida, USA [11],
indicating possible under-segmentation of bathymetric bottom. Note the presence of a gap between
the lowest water column points and the bathymetric bottom, which is leveraged in this work.

For scientific end users who need to perform their own bathymetric bottom point
segmentation on a lidar point cloud, there are numerous challenges. First, end-users typ-
ically do not have access to the lidar waveforms, trajectories, or other “upstream” data
that would be available to the data acquisition organization or others in earlier stages of
the processing stream. Second, such users generally do not have access to specialized
software for bathymetric lidar processing or expertise in such processing. And, while
there are a number of commercial processing software tools that provide functionality
for manual point classification (often by presenting to the user profile views or vertical
slices of points, such that they can manually draw boxes around different point classes),
this is a very laborious process that would take time away from scientific analysis. For
these reasons, there is a current need for algorithms and workflows for straightforward,
automated segmentation of bathymetric bottom points in lidar point clouds. Desirable
characteristics of such algorithms are: (1) efficiency; (2) ease of implementation; (3) avoid-
ance of the need to have waveforms, trajectories, or other ancillary data; and (4) avoidance
of any assumptions regarding point distributions (for example, the requirement that points
be normally distributed). Some existing methods [2,3,12–14] that use machine learning
algorithms have demonstrated good results in seafloor segmentation, but do not meet the
needs outlined above, due to necessitating a large number of input variables (in some cases,
including full waveforms or waveform-derived features) and data labeling, which would
not be available to many scientific users of the data.

Fortunately, a salient characteristic of point clouds from conventional airborne, linear-
mode bathymetric lidar systems is the presence of a vertical gap between the lowest water
column points and the bathymetric bottom [15]. This gap is clearly discernable in Figure 1.
As explained in [15], the general cause of this gap is the range discrimination threshold, or
the size of the “dead zone” following each detected return before another return can be
resolved. In theory, the range resolution is given by υ wTx/2, where υ is the velocity of the
laser light in the applicable medium (air or water) and wTx is the transmit pulse width [16].
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In practice, the actual range resolution can be longer or shorter, depending on the ranging
hardware or software used [17,18]. For the Riegl VQ-880-G used to acquire the Florida
datasets used in this study, the transmit pulse width is 1.3 ns [19], such that the expected
width of the water column-seafloor gap is ~15 cm.

The existence of the water column-seafloor gap suggests the feasibility of a straightfor-
ward approach to seafloor point segmentation that meets all of the desired characteristics
listed above and can easily be applied by scientific end-users to existing bathymetric lidar
point clouds lacking accurate seafloor point segmentation. The approach developed and
tested in this work does not assume any particular statistical distribution of points. Instead,
it finds a gap between the seafloor and non-seafloor (e.g., water surface and water column)
points by investigating the distribution of the points in the z-direction. It is important to
note that the input for the proposed approach is solely geometric information (i.e., x, y, and
z coordinates) of the point cloud; it does not require waveforms, intensity values, aircraft
trajectories, or other data that may not be available to end-users.

2. Methods

We propose a simple, effective approach to seafloor segmentation from the bathymetric
lidar point cloud using an inverse histogram with the proposed peak detection method.
Note that all of the symbols used in the proposed algorithm are listed in Table A1. Prior
to organizing the point cloud into a histogram, it is desirable to discretize the point cloud
into smaller groups of points in x-y dimension to reduce the z-variations of the seafloor
over a localized area, and thus increasing the gap between the seafloor and non-seafloor
points. For this purpose, the original input point cloud is organized into a regularly spaced
2D grid cell structure using the x and y values. This step contains an inherent tradeoff in
selecting the grid cell size, λ. A smaller value of λ yields a more distinguishable z value
distribution between the seafloor and other points but increases the computational load
and over-segmentation. The selection of the input grid-cell size will be further discussed in
Section 3.

After organizing the point cloud into the grid cells, the proposed seafloor segmentation
is performed separately for the points of each grid cell. The points in a grid cell are sorted
in descending order of z-value to compute a histogram. The points may include some
outliers due primarily to birds or diffused noisy points, which can incur the largest gap
above the sea surface or below the seafloor. Since the proposed algorithm assumes that the
largest gap exists between the seafloor and non-seafloor points, it is desirable to discard
the outliers from the histogram-based clustering. To that end, the points within the lower
or upper bounds are identified with a pre-specified value, ω (%), as shown in Figure 2,
which limits the algorithm to find a gap only between the lower and upper bounds, such
that the outliers within the bounds are excluded from the histogram clustering. If ω is too
small, the lower or upper bounds may not be large enough to include all outliers within
the bounds, whereas too large of a ω value could lead to the largest gap within either the
lower or upper bound. The selection of the input bound rate will be discussed in Section
3. In addition, ω was used to remove the small bins that fall within the bottom percentile
of the bin containing the largest number of points in the histogram. Figure 2 shows an
example of the histogram created using a cell size of 10 m, where the bin size (β) and the
bound rate were determined to be 0.05 m and 2.5%, respectively.
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Figure 2. Histogram representing the number of points of a grid cell. The gap between the seafloor
and non-seafloor and the bins within the lower and upper bounds are highlighted in red.

Figure 2 also highlights the gap that best divides the seafloor and non-seafloor. In order
to identify the gap, we propose a peak detection using an inverse histogram. Figure 3
provides an example of the inverse histogram generated after removing the points within
the upper and lower bounds. The algorithm visits each bin (bi=2:n−1, where n is the total
number of bins) and evaluates the count of bi with its two neighbors (bi−1 and bi+1). If the
count of bi is greater than that of bi−1, bi is stored into a candidate peak (c) and evaluated
further with bi+1. If the count of bi is less than that of bi+1, the algorithm deletes c; otherwise,
if the count of bi is equal to bi+1, c is retained. Finally, if the count of bi is greater than bi+1,
c is stored as a detected peak. The algorithm iterates to grow c as long as the count of bi is
equal to bi+1, allowing a single peak to contain multiple bins. Algorithm 1 includes the
details of the proposed peak detection method. In Figure 3, the purple bins represent the
three peaks (p1, p2, and p3) detected using the proposed peak detection method.
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Figure 3. Examples of detected peaks (p1 , p2, and p3) in the inverse histogram.

After detecting the peaks, the one that best divides the seafloor and non-seafloor is
identified. For this purpose, the total number of points for each peak is counted from the
inverse histogram to select the peak with the largest number of points. This gives a larger
weight to the peak with a greater number of empty bins in the original histogram, enabling
one to maximize the gap between the seafloor and non-seafloor. For example, among the
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detected peaks (p1, p2, and p3) in Figure 3, the algorithm selects p1 with the largest number
of points in the inverse histogram as the best peak which corresponds to the gap in the
original histogram in Figure 2.

Algorithm 1. Peak Detection Method

1 Input: histogram bins (b), Output: peaks (p)
2 Set i← 2
3 Set j← 1
4 While i ≤ n− 1, where n is the total number of bins
5 If the count of bi > bi−1
6 While true
7 Add current bi to candidate peak (c)
8 If bi < bi+1
9 c is deleted

10 Break;
11 Else if the count of bi > bi+1
12 Add current c to detected peak (pj)
13 c is deleted
14 Set j← j + 1
15 Break
16 Set i← i + 1
17 End While
18 Set i← i + 1
19 End While
20 Return pj=1:l , where l is the total number of detected peaks

Subsequently, the median of the z-values of the bins contained in the selected best peak
is used as a threshold to divide the original histogram into the lower and upper segments,
respectively. Figure 4 shows that the original histogram is divided into two segments,
where the one with the lower mean z values is chosen as the seafloor. Note that if no peak
is found in the inverse histogram (i.e., there is only one peak in the original histogram),
there is a good chance that the cell does not contain the points returned from the seafloor.
Accordingly, in this case, the entire points in the cell are segmented into non-seafloor.
Finally, using the threshold, the original point cloud within the cell is segmented into the
seafloor and non-seafloor as shown in Figure 5. This process is repeated iteratively until all
of the cells are tested and segmented.
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3. Results

The proposed approach was tested on airborne lidar bathymetry (ALB) datasets ac-
quired offshore of Marco Island and Virginia Key, Florida, using the NOAA National
Geodetic Survey (NGS) Remote Sensing Division’s Riegl VQ-880-G system (532 nm wave-
length). Marco Island is a barrier island in the Gulf of Mexico in southwest Florida, with
offshore areas containing primarily sandy substrate and some seagrass beds [20]. Virginia
Key in Miami, Florida, is a barrier island in Biscayne Bay, and the location of NOAA’s
Atlantic Oceanographic and Meteorological Laboratory (AOML). Surrounding substrate
types include sand, mud, coarse shell, and rubble, with cover including seagrass [21]. The
Marco Island datasets were chosen to evaluate the algorithm on the near-shore area, while
Virginia Key datasets were chosen for the comparison with the multibeam echosounder
(MBES) hydrographic survey data. Figure 6 and Table 1 shows test sites and the details
of ALB datasets relevant to the experiment. Note that the Marco Island datasets were
provided in NAD83(2011) ellipsoid height, and the Virginia Key datasets were provided
in NAVD88 orthometric height at the time of file downloading. In Figure 6b, Virginia
Key datasets were transformed to NAD88 for consistency. Also, the ESRI ArcGIS satellite
background images and the ALB data in Figure 6a were obtained at different tidal levels.
Therefore, the digital elevation model was added to show the exact shoreline when the
lidar data was obtained. The reported accuracy of the ALB data is ±0.15 m (1σ) vertical
and ±1.0 m (1σ) horizontal [11,22]. Before the experiments, the outliers (e.g., returns from
birds, atmospheric particles, and/or system noise) in the datasets were reduced using
a statistical outlier removal filter in the point cloud processing software CloudCompare
v 2.11.3. The algorithm computes the average distance and standard deviation of each
point to its neighbors and then removes the outlier points using the sigma rules [23].
In this study, we empirically set the number of neighbors to 10 and the standard deviation
multiplier threshold to 3 (i.e., 3 sigma), considering the point density and noise level of
the datasets. The Marco Island datasets # 1 and 2 were used to evaluate the developed
approach’s sensitivity to the three input parameters (λ, β, and ω) and the datasets # 3 to 6
were used to evaluate the developed approach’s robustness against other three existing
clustering methods (Expectation and Maximization, Otsu, and k-means algorithms). For
ground-truthing, the seafloor points were labeled manually using the classification features
in Maptek I-Site Studio 7.0. For a robust comparison, we evaluated the methods under
challenging testing conditions with shallow areas of water depth < 5–7 m.
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Table 1. Data set and acquisition parameters. Note that the point densities refer to all returns (e.g., seafloor, water column,
and sea surface) and encompass overlapping flight lines. LMSL refers to the local mean sea level tidal datum.

Location
(Year)

Data
Set # Area (m2) # Points

Point
Density
(pts/m2)

Z Range
(NAD83 Ellipsoid

Height, m)

Max. Depth
(Rel.

NAVD88, m)

Max. Depth
(Rel.

LMSL, m)

Marco
(2016)

1 5064 257,834 50.92 −26.17~−22.66 −3.10 −2.90
2 15,265 836,335 54.79 −26.43~−22.59 −3.66 −3.16
3 11,514 673,645 58.51 −27.01~−19.74 −4.04 −3.83
4 13,398 890,363 66.45 −26.89~−21.33 −3.83 −3.63
5 12,778 777,058 60.81 −26.63~−21.17 −3.57 −3.36
6 12,834 949,882 74.01 −26.40~−20.63 −3.34 −3.13

Virginia
(2017)

1 1,593,068 42,186,907 26.48 −42.60~−24.94 −16.64 −16.36
2 1,181,184 29,621,845 18.59 −41.55~−25.31 −15.59 −15.31

The Virginia Key datasets were used to compare the seafloor point cloud segmented by
the proposed approach with the MBES data acquired by NOAA in 2009 using a Reson 8125
MBES. According to the metadata, the reported accuracy of the MBES data satisfied the
IHO Order 1 total uncertainty standards (95% confidence level) [24]. For direct comparison,
a vertical datum transformation using VDatum v4.1.1 from mean lower low water (MLLW)
to NAVD88 was performed. Note that due to the eight-year temporal offset between the
MBES and lidar data acquisition, we purposefully selected comparison sites far enough
offshore to be less impacted by nearshore processes (e.g., breaking waves and nearshore
currents) and shifting sandbars in the Virginia Key dataset.

3.1. Sensitivity Analysis

The optimal parameters of the proposed approach were determined through a sensi-
tivity analysis of the test variables listed in Table 2 using Marco Island datasets # 1 and #2.
The experiments were conducted in a MATLAB implementation running on a computer
with an Intel® Core™ i7-4712MQ CPU (2.3 GHz, 16 GB RAM). To evaluate the performance,
a pointwise comparison was performed between the segmented seafloor and the ground
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truth in terms of precision, recall, and F1 score calculations. We investigated all the combi-
nations of three parameters (λ, β, and ω) with five to six test variables, which results in a
total of 5 × 5 × 6 = 150 combinations.

Table 2. Test variables for sensitivity analysis.

Parameters Unit Test Variables

Cell size (λ) Meters 2, 4, 6, 8, 10
Bin size (β) Meters 0.02, 0.04, 0.06, 0.08, 010
Bound (ω) % 0, 1, 2, 3, 4, 5

The range of the test variables had been determined from the preliminary experimen-
tation. The cell size, λ, plays a pivotal role in the overall behavior of seafloor segmentation.
The smaller the value of λ, the more details of the seafloor can be segmented. However, the
smaller λ leads to a high computational load and over-segmentation for the cells containing
no points returned from the seafloor. We found that the cell sizes of less than 2.0 m led to
many cells containing no seafloor points, and therefore, the test variables were set between
2.0 and 10.0 m in 2.0 m increments. The test variables for β were set between 0.02 and 0.10 m
in 0.02 m increments. The larger the value, the fewer the bins that are evaluated, enabling
the computational load to be reduced. However, too large values may not preserve the
variability in the distribution, thus leading to a failure in the peak detection. Finally, the
test variables for ω were set between 0 and 5% in 1% increments. Too small of a value
may increase the chance of finding an incorrect gap, due to remaining outliers, whereas
too large of a value may increase the chance of having both the seafloor and non-seafloor
points in either an upper or lower bound. Note that the minimum value was set to 0% to
demonstrate the usefulness of ω compared with its absence results.

Tables 3 and 4 list the top and bottom 10 combinations of the seafloor segmentation
parameters in the descending and ascending order of F1 scores, respectively. The efficiency
in the tables does not include time elapsed for loading the lidar data. In Table 3, the
proposed approach achieved the best F1-score of 98.85% with the optimized parameter set
(λ: 10 m, β: 0.02 m, and ω: 1%). The cell sizes of both the top and bottom 10 combinations
tend to have large values of 10 m. This is due to the fact that, although large cell sizes help
prevent over-segmentation with small bin sizes, large bin sizes can lead large cell sizes to
more over-segmentation due to the low variability in the distribution. Tables 3 and 4 also
show that larger cell sizes are desirable for more efficient processing. The bin sizes of the
top 10 combinations in Table 3 have small values ranging from 0.02 to 0.04 m, whereas all
the bottom 10 combinations in Table 4 have the same largest value of 0.10 m. Compared
with the cell size, efficiency is less sensitive to the bin size (for example, 186 thousand
points/s with λ: 8 m, β: 0.02 m, ω: 3% in Table 3 and 249 thousand points/s with λ: 8 m, β:
0.10 m, ω: 3% in Table 4), so it is recommended to use small bin sizes. Finally, the bound of
the top 10 combinations in Table 3 tends to have small values between 1 and 2%, whereas
the bottom 10 combinations in Table 4 have large values between 3 and 5%. As with the
bin size, the efficiency is less sensitive to bound (for example, 301 thousand points/s with
λ: 10 m, β: 0.10 m, ω: 2% and 326 thousand points/s with λ: 10 m, β: 0.10 m, ω: 5% in
Table 4), so the use of small values is desirable.
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Table 3. Top 10 combinations of parameters for the seafloor segmentation with Marco dataset # 1
and 2.

Test Variables
Precision

(%)
Recall

(%)
F1-Score

(%)

Efficiency
(1000

points/s)
Cell Size

(m)
Bin Size

(m)
Bound

(%)

10 0.02 1 98.01 99.70 98.85 281
10 0.02 2 97.52 99.90 98.70 257
6 0.02 1 97.64 99.68 98.65 135
8 0.02 1 96.82 99.47 98.13 248

10 0.04 1 96.19 99.59 97.86 351
8 0.02 2 95.79 99.93 97.82 194
4 0.02 1 95.73 99.89 97.76 55
8 0.02 3 95.65 99.94 97.75 186
2 0.02 0 96.09 99.14 97.59 14
6 0.04 1 95.33 99.69 97.46 140

Table 4. Bottom 10 combinations of parameters for the seafloor segmentation with Marco dataset # 1
and 2.

Test Variables
Precision

(%)
Recall

(%)
F1-Score

(%)

Efficiency
(1000

points/s)
Cell Size

(m)
Bin Size

(m)
Bound

(%)

10 0.10 3 51.51 99.99 67.99 347
10 0.10 4 52.54 99.99 68.89 273
10 0.10 5 53.26 99.58 69.40 326
8 0.10 4 53.87 100.00 70.02 215

10 0.10 2 54.18 99.99 70.28 301
8 0.10 2 54.25 100.00 70.34 213
6 0.10 4 55.28 100.00 71.20 142
8 0.10 3 55.32 99.99 71.23 249
6 0.10 5 55.33 100.00 71.24 151
8 0.10 5 55.52 100.00 71.40 246

3.2. Comparison with Other Methods

With the optimized parameters (λ: 10 m, β: 0.02 m, andω: 1%) determined from the
sensitivity analysis, we further investigated the feasibility of the proposed approach with
the Marco Island datasets # 3 to 6. In Table 5, the performance of the proposed approach is
compared with three popular clustering methods, Expectation Maximization for Gaussian
Mixture Models (EM-GMM) [25,26], Otsu [27], and k-means [28]. Otsu’s method has been
widely adopted in image binarization. The algorithm organizes the pixel values into a
histogram. For every bin (1, 2, 3, . . . , m = total number of bins of the histogram), the
histogram is divided into a left histogram (1, . . . , n) and a right histogram (n + 1, . . . , m)
to calculate their variances, respectively. Finally, the algorithm returns n that results in two
histograms with minimum intra-class variance. Otsu’s method is known to work well on
the clustering of a bi-modal distribution [29]. k-means algorithm first reassigns points to
their nearest cluster centroid and then recalculates the cluster centroids. This process is
repeated to minimize the sum of point-to-centroid distances of all k clusters until a new
iteration does not reassign any points. k-means clustering can be improved by selecting
the initial seeds [30]. In this study, the bottom and top points in the z-axis were selected for
the seeds of the seafloor and non-seafloor, respectively. EM-GMM is similar to k-means
in the sense that it iteratively refines the clusters through the two steps: expectation and
maximization. However, unlike the k-means algorithm that uses the Euclidean distance,
EM-GMM is predicated on the underlying distributions being Gaussian. The expectation
step estimates the latent value (i.e., the probability of belonging to a certain cluster) for each
point, and the maximization step uses maximum likelihood to optimize the parameters of
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the Gaussian distributions [25,26]. Like the proposed approach, the three existing methods
were performed separately for the points of each grid cell with a cell size of 10 m.

Table 5. Performance comparison of four segmentation methods (Otsu, EM-GMM, k-means, and the
proposed) using Marco datasets # 3, 4, 5, and 6.

Dataset Methods Precision (%) Recall (%) F1-Score (%) Efficiency
(1000 points/s)

3

Otsu 69.20 99.94 81.77 378
EM-GMM 89.09 97.93 93.30 172
k-means 85.48 99.94 92.15 321
Proposed 97.32 98.97 98.14 424

4

Otsu 82.77 99.86 90.51 442
EM-GMM 91.73 99.13 95.29 167
k-means 96.51 99.86 98.16 442
Proposed 97.97 98.78 98.38 451

5

Otsu 82.49 97.31 89.29 489
EM-GMM 89.63 94.90 92.19 161
k-means 95.63 97.66 96.64 393
Proposed 98.69 98.86 98.77 477

6

Otsu 82.60 99.05 90.08 474
EM-GMM 83.36 96.54 89.47 163
k-means 90.23 99.08 94.45 411
Proposed 98.34 98.37 98.36 470

Overall, the experimental results in Figure 7 and Table 5 demonstrate that the proposed
approach outperforms the other methods in terms of the F1-scores while maintaining high
efficiency. The poor F1-scores (81.77–95.29% in Table 5) achieved with Otsu and EM-
GMM methods are primarily due to the fact that they assume a bi-modal distribution
for clustering, which does not hold true for many cases as can be seen in Figure 8a due
to the points returned from the water column. On the other hand, k-means, which uses
spatial extent to split the data, achieved F1-scores of 92.15–98.16%. While this performance
exceeded that of the Otsu and EM-GMM methods, it still did not match that of our approach
(98.14–98.77%) since k-means tends to not converge to solution especially for imbalanced
datasets as can be seen in Figure 8b. In addition, all the approaches including the proposed
one are susceptible to over-segmentation for the cells with no seafloor points (Figure 8c) or
with mixed bins that cannot be segmented using a single threshold (Figure 8d), which will
be studied in future works.
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3.3. Comparison with MBES Hydrographic Data

Finally, with the optimized parameters, the Virginia Key datasets # 1 and # 2 were
segmented and compared with the MBES hydrographic survey data collected over the
same area. The MBES datasets were provided online in a raster format with a cell size of
1 m [31]. The seafloor points segmented using the proposed approach were projected onto
the MBES data to calculate difference maps in the z-direction using the CloudCompare v
2.11.3. Since NOAA only provides the MBES datasets in the grid (rasterized) format for the
study site (Virginia Key), vertical accuracy was assessed by comparing the elevation of the
represented surface of the MBES dataset to elevations of the segmented ALB points at their
horizontal (x and y) coordinates [32].

The results indicate that seafloor points were detected successfully with errors calcu-
lated to be −0.190 ± 0.132 m and −0.185 ± 0.119 m (µ ± σ) for the Virginia Key datasets
# 1 and # 2, respectively. It is worth noting that the vertical datum transformation uncer-
tainty of ~7 cm [19,33] may have contributed to the computed errors. Figure 9a shows
the MBES dataset used for the comparison with the Virginia dataset # 1, Figure 9b shows
the difference map between the segmented seafloor and the MBES dataset, and Figure 9c
shows the histogram of the pixel values of the difference map, respectively. In Figure 9c,
it can be seen that the pixel values are distributed randomly over the test site.
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4. Discussion

Although the proposed approach was proven to be an effective means of seafloor seg-
mentation, there are some issues requiring further investigation. As with other clustering
methods, the proposed approach is set to split two clusters (i.e., seafloor and non-seafloor),
thereby leading to over-segmentation in some areas containing no points returned from
the seafloor. This could possibly be addressed by using other attributes in the bathymetric
point cloud data, such as intensity and return number, to identify and remove the over-
segmented clusters. Another issue is the mixed bins that cannot be split using a single
threshold. There is an inherent tradeoff in tackling both challenges since a large cell size
is required to reduce the cells with no seafloor points while a small cell size is conducive
to the mixed bins to ensure more distinguishable z variation between the seafloor and
non-seafloor. The authors are currently investigating the integration of a dynamic cell
sizing approach that detects those areas with no seafloor points and with mixed bins and
applies different cell sizes to improve the segmentation. Moreover, the proposed approach
can fail if the bathymetric lidar system has a very small transmit pulse width or small
receiver “dead zone”, since this will have the tendency to improve the range resolution
(decrease the distance between detected returns) and, hence, decrease the width of the gap
that we utilize for seafloor segmentation. While this was not an issue with the datasets
in this study, the ability to handle smaller gap widths is a necessary enhancement for the
wider use of the proposes approach. For example, integration of intensity values into the
z values may enable the increased gap size, and this will be investigated in upcoming
research.

Further, we visually inspected a number of subsets of the input point clouds along
with the algorithm output, as a means of qualitative assessment and, in particular, to gain
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insight any possible incorrect seafloor segmentation. A key finding from this analysis was
that in the few cases in which the algorithm did not detect the seafloor, the clear cause was
the lack of a distinct gap between the lowest water column (volume backscatter) points and
the bathymetric bottom. This makes sense, as the algorithm is predicated on the existence of
this gap. This leads to the question of when the expected gap would not exist. From visual
inspection of the point clouds, it was determined that there are two situations in which the
expected gap is not present: (1) there is no detectable seafloor in the point cloud, which
could be due to the water being deeper than the lidar extinction depth or the bottom return
signal dropping below the detection threshold due to low-reflectance substrates, slope, or
other seafloor characteristics [34]; or (2) there are (barely) detectable seafloor returns, but
they are simply too sparse to yield a bottom return peak in the histograms. Both of these
scenarios are cases in which the algorithm could not be expected to detect the seafloor,
thereby forcing the algorithm to over-segment seafloor from the sea surface or column.
Figure 10 shows an example of the seafloor points segmented from the Virginia Key area,
containing some over-segmented points (highlighted in red) due to the missing seafloor
returns. Note that Figure 10 is not the Virginia Key datasets used for the comparison but
obtained from another dataset to show the over-segmentation issue. Future work could
investigate the ability to utilize intensity data (beyond just the point cloud 3D spatial
coordinates) to reduce the over-segmentation. Another approach to densifying seafloor
returns, which involves interpolation of missing points with a priori information, will
be investigated in future work. It is also worth investigating the ability to constrain the
seafloor segmentation algorithm using estimates of maximum achievable depth, which, in
turn, may be estimated from knowledge of diffuse attenuation coefficient of downwelling
irradiance, Kd, and system and environmental parameters.
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5. Conclusions

In this study, we proposed and tested a novel clustering approach to seafloor segmen-
tation using bathymetric lidar data. The approach uses only the geometric information of
point cloud data and avoids any assumptions regarding statistical distributions of points.
The approach was evaluated with datasets acquired by a Riegl VQ-880-G bathymetric
lidar system. The experimental results obtained from comparisons against existing ap-
proaches demonstrated the robustness of the proposed approach in shallow areas with
high F1-scores ranging from 98.14 to 98.77% while maintaining high efficiency from 0.42 to
0.47 million points/s. The output of the proposed approach was also compared against
Reson 8125 MBES hydrographic survey data, and the results showed that the seafloor
point cloud was segmented successfully with vertical errors of −0.190 ± 0.132 m and
−0.185 ± 0.119 m (µ ± σ) for both test sites. Future work will consider expanding the
current workflow to classify the segmented seafloor points into specific objects, such as
coral reef, rock, sand, and noise. Further, it would be valuable to test the approach on
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bathymetric point clouds generated from other sources, such as structure from motion
(SfM) photogrammetric workflows.
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Appendix A

Table A1. Symbols used in the proposed algorithm.

Symbol Definition

λ Grid cell size (m)
β Upper and lower bounds in algorithm (%)
n Number of histogram bins
b Histogram bin
pi ith detected peak
c Candidate peak
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