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Abstract: Both wheat powdery mildew severities and nitrogen input levels can lead to changes in
spectral reflectance, but they have been rarely studied simultaneously for their effect on spectral
reflectance. To determine the effects and influences of different nitrogen input levels on monitoring
wheat powdery mildew and estimating yield by near-ground hyperspectral remote sensing, Canopy
hyperspectral reflectance data acquired at Feekes growth stage (GS) 10.5.3, 10.5.4, and 11.1 were used
to monitor wheat powdery mildew and estimate grain yield under different nitrogen input levels
during the 2016–2017, 2017–2018, 2018–2019 and 2019–2020 seasons. The relationships of powdery
mildew and grain yield with vegetation indices (VIs) derived from spectral reflectance data across
the visible (VIS) and near-infrared (NIR) regions of the spectrum were studied. The relationships of
canopy spectral reflectance or first derivative spectral reflectance with powdery mildew did not differ
under different nitrogen input levels. However, the dynamics of VIs differed in their sensitivities
to nitrogen input levels, disease severity, grain yield, The area of the red edge peak (Σdr680–760 nm)
was a better overall predictor for both disease severity and grain yield through linear regression
models. The slope parameter estimates did not differ between the two nitrogen input levels at each
GSs. Hyperspectral indices can be used to monitor wheat powdery mildew and estimate grain
yield under different nitrogen input levels, but such models are dependent on GS and year, further
research is needed to consider how to incorporate the growth stage and year-to-year variation into
future applications.

Keywords: canopy hyperspectral reflectance; wheat powdery mildew; nitrogen input levels; detection
models

1. Introduction

With the rapid development of remote sensing technology, hyperspectral remote
sensing has recently become an important means of surface vegetation research. Remote
sensing can be divided into near-ground remote sensing, aerial remote sensing, and satellite
remote sensing according to the platform, of which near-ground remote sensing, including
near-ground hyperspectral remote sensing, is the most studied in the monitoring of plant
diseases [1–10].

Wheat powdery mildew, caused by the obligate fungi Blumeria graminis f. sp. tritici
(Bgt), is one of the most important wheat diseases in the world [11,12]. Under greenhouse
conditions, the reflectance within the ranges of 490–780 nm was the most sensitive to the
powdery mildew severity [10]. Normalized difference vegetation index (NDVI) can also
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be used to estimate wheat powdery mildew [13]. Most of the hyperspectral reflectance of
healthy and mildewed wheat leaves in a laboratory was related to powdery mildew devel-
opment [14]. A hyperspectral imager was used to identify mildew infected and healthy
plant leaves [15]. Feng et al. [16] established a model relating wheat powdery mildew to
the dual-green vegetation index. Previous studies also investigated using hyperspectral
reflectance to detect wheat powdery mildew of several cultivars or at different planting
densities [17,18]. These studies showed that the area of the red edge peak (Σdr680–760 nm),
red edge slope (drred), differential vegetation index (DVI), soil adjusted vegetation index
(SAVI), triangular vegetation index (TVI), and several other spectral parameters were
highly correlated with powdery mildew severity, of which Σdr680–760 nm was the best. The
intercepts often differed among varieties or planting densities, but the slopes did not.

Nitrogen fertilizers play a vital role in enhancing and stabilizing crop growth and
yield [19]. Nitrogen application can cause changes in canopy reflectance [20–22]. Timely
assessment of canopy nitrogen content is critical for precision crop management to en-
sure productivity as well as minimize adverse environmental impacts [23]. The canopy
reflectance of wheat crops treated with different levels of nitrogen fertilizers decreased
in both the visible region and the mid-infrared region but increased in the near-infrared
region [24]. The whole-plant total N (between Feekes 3 and 6) could be used to predict
N fertilizer requirements in winter wheat [25]. Due to the high correlation of absorption
with chlorophyll (Chl) A, wheat N status could be estimated by the reflectance of wheat
canopy at 550, 680 nm, the red edge position, and the reflectance ratio between 430 nm and
680 nm [26]. It was suggested that drred can be used as an indicator of winter wheat growth
status, assisting in decision-making on fertilizers [27]. NDVI was a potentially useful
vegetation index for wheat canopy nitrogen status [28]. However, hyperspectral reflectance
of a canopy at different growth stages differed largely under varied N application rates
but was consistent among different cultivars [29]. Both leaf nitrogen accumulation and
canopy hyperspectral reflectance in wheat changed with N input levels, though consis-
tent across cultivars and seasons [30]. N input levels varied significantly among farmers,
and furthermore, large variability in N supply existed between and within fields [31,32].
These differences may potentially affect how the hyperspectral reflectance is to be used for
monitoring mildew development.

Both the differences of nitrogen input levels and wheat powdery mildew severities
can lead to changes in spectral reflectance. However, these two factors have been rarely
studied simultaneously. To determine the effects and influences of different nitrogen
input levels on monitoring wheat powdery mildew by near-ground hyperspectral remote
sensing, the following studies were conducted: (1) Field trials were conducted for four
consecutive seasons in 2016–2017, 2017–2018, 2018–2019, and 2019–2020 to study the use
of the near-ground hyperspectral remote sensing technology to monitor wheat powdery
mildew under different nitrogen input levels. (2) Then the obtained monitoring data were
used to explore the impacts of different nitrogen input levels on mildew monitoring by the
near-ground hyperspectral remote sensing.

2. Materials and Methods

Plot design and yield determination. Field experiments were conducted at the Lang-
fang Experimental Station, Institute of Plant Protection, Chinese Academy of Agricultural
Sciences (39.5◦N, 116.6◦E) in Hebei Province, China, in 2016–2017, 2017–2018, 2018–2019
and 2019–2020. Jingshuang 16, a winter wheat cultivar highly susceptible to powdery
mildew, was sown in rows (inter-row distance of 0.25 m) with a seeding rate of 120 kg/ha
on 7 October 2016, 2017, and 2018, and on 12 October 2019.

Two levels of nitrogen were used in all four seasons: standard regime (N1) and reduced
input regime (N2). In 2016–2017 and 2017–2018, N1 consisted of the application before
sowing: diammonium phosphate fertilizer (375 kg ha−1), urea (225 kg ha−1), potassium
sulfate (150 kg ha−1); and a further application of urea (225 kg ha−1) in the early spring at
growth stage (GS) 6 [33]. For N2, only 50% of the amount of fertilizers used in N1 were
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used. In 2018–2019 and 2019–2020, the same amount of nitrogen was used for N1 as in the
previous two seasons; but for N2, two-thirds of the amount of fertilizers used in N1 was
used–thereafter named as N3. All treatments received the same input for both phosphorus
and potassium fertilizers on the same dates as for nitrogen.

To create different levels of powdery mildew severities, there were six fungicide
treatments [six concentrations of ethirimol (270, 240, 180, 120, 60, and 30 g active ingredient
ha−1)] in addition to untreated control. Thus, in each season there were 14 treatments
(seven fungicide treatments at each of the two levels of nitrogen input). A random block
design (with three blocks) was used, giving a total of 42 plots, each plot was 5 m long and
4 m wide. Seedlings (sown in 10 cm pots) with sporulating Bgt lesions were maintained in
a greenhouse compartment and transplanted to the center of each plot on 19 March 2017,
23 March 2018, 19 March 2019, and 14 March 2020 as spreaders to ensure powdery mildew
development. The number of pots with Bgt spreaders corresponded to the concentrations
of ethirimol for each plot: 6, 5, 4, 3, 2, 1, 0 pots plot−1 for (0, 30, 60, 120, 180, 240, and
270 g active ingredient of ethirimol ha−1, respectively. This combination of ethirimol
concentration and inoculum strength was used to create varying severities of powdery
mildew. No other diseases and pests occurred in the field plots during the experimental
periods.

Ethirimol was applied at an appropriate concentration on 15 April 2017, 15 April 2018,
17 April 2019, and 12 April 2020. The untreated control plots were sprayed with water.
Manual weeding was carried out. At the harvest time, a subplot of 10 consecutive rows in
each plot was randomly selected for harvesting. Rainy weather conditions in 2017 around
GS 11.1 and 11.2 resulted in severe water lodging and, consequently, no grain yield data
were available for the 2016–2017 growing season. Grains were threshed and dried under
the sun before weighing.

Disease assessment. Powdery mildew was assessed at GS10.5.3, 10.5.4, and 11.1 in
each year. Five positions in each plot (four at the corners and one at the center) were chosen
for disease assessment; 20 plants at each position were assessed on a ‘0-to-9’ scale [34,35].
Disease index (DI) for a plot was estimated as:

DI = ∑i=9
i=0 i ∗ ni/9 ∗ ∑i=9

i=0 ni × 100 (1)

where n0, n1, . . . , n9 are the number of plants with mildew severity values of 0, 1, . . . 9,
respectively.

Reflectance measurement. Canopy percentage reflectance data were acquired with an
ASD Field Spec Pro spectrometer (Analytical Spectral Devices, Boulder, CO, USA) at the
same time when mildew was assessed. This spectrometer has a sampling interval of 1.4 nm
in the region of 350 to 1050 nm (3 nm spectral resolution) and 2 nm in the 1050 to 2500 nm
region (10-nm spectral resolution), with a field of view of 25◦. Both 1.4 nm and 2 nm
sampling intervals were automatically interpolated to 1 nm intervals by the instrument.
The sensor, facing downwards at the center of the plot, was positioned 0.5 m from the top of
the wheat canopy, covering a 22.16 cm diameter field of view. Measurements were taken on
clear, sunny days between 10:00 h and 14:00 h (Beijing time, GMT + 8:00). The instrument
was referenced to a calibrated spectral on a white reflectance panel about every 15 min,
allowing readings from different assessment dates to be compared. On each sampling date,
20 different positions near the center were used and the average value was used for further
analysis.

Data analysis. Through Viewspec Program software (ASD Company), the original
reflectance spectrum data of canopy, reflectance spectrum data, the reflectance curve, and
first derivative spectra were obtained. To identify indices for assessing wheat powdery
mildew severity, smoothed raw reflectance data were combined into nine spectral indices
(SIs), including two red edge parameters from the first derivative reflectance, three de-
rived from reflectance of broad-band, and four from reflectance of single-band (Table 1).
Among the nine indices, red edge slope(dλred), the area of the red edge peak (Σdr680–760 nm),
difference vegetation index (DVI), normalized difference vegetation index (NDVI), and
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triangular vegetation index (TVI) were useful for wheat powdery mildew monitoring
under certain conditions, whilst green normalized difference vegetation index (GNDVI),
nitrogen reflectance index (NRI), the transformed chlorophyll absorption and reflectance
index (TCARI), modified chlorophyll absorption ratio index (MCARI) were all related to
the Chl concentration as well as N concentrations. On the other hand, there were signifi-
cant differences in spectral reflectance indices of wheat at different GSs. Photochemical
reflectance index (PRI), which was widely used for estimation of plant stress changes, was
also analyzed, but the results were not shown because of its poor correlations with disease
severity and yield.

Table 1. Vegetation indices used in this study and their calculation.

Spectral Indices Description or Formula Literatures

Reflectance of green band (RGeen) Reflectance of green band within 560–600 nm
Reflectance of red band (RRed) Reflectance of red band within 650–680 nm

Reflectance of near-infrared band (RNIR) Reflectance of near-infrared band within 780–890 nm
Red edge slope (dλred) Maximum value of 1st derivative within the red edge [36]

The area of the red edge peak (Σdr680–760 nm) The area under the ist derivative curve in the red edge region [36]
Difference vegetation index (DVI) RNIR − RRed [37]

Normalized difference vegetation index (NDVI) (RNIR − RRed)/(RNIR + RRed) [38]
Green normalized difference vegetation index (GNDVI) (RNIR − RGeen)/(RNIR + RGeen) [39]

Nitrogen reflectance index (NRI) (R570 nm − R670 nm)/(R570 nm + R670 nm) [26]
Triangular vegetation index (TVI) 0.5[120(R750 nm − R550 nm) − 200(R670 nm − R550 nm)] [40]

The transformed chlorophyll absorption and reflectance index
(TCARI) 3[(R700 nm − R670 nm) − 0.2(R700 nm − R550 nm)(R700 nm/R670 nm)] [41]

Modified chlorophyll absorption ratio index (MCARI) (R701 nm − R671 nm) − 0.2(R701 nm − R549 nm)]/(R701 nm/R671 nm) [42]

Initial correlation analysis suggested that canopy reflectance Σdr680–760 nm is the best
overall predictor of wheat powdery mildew severity and grain yield. Thus, linear re-
gression of mildew DI and yield with Σdr680–760 nm was carried (SAS Institute Inc., Cary,
NC, USA). Initially, linear regression modeling was used to estimate the variability in
the mildew disease index or grain yield accounted for by nitrogen input levels, growth
stages, Σdr680–760 nm, and their interactions; in this analysis, the season was treated as a
blocking factor. This initial analysis suggested large effects of season and growth stage on
the mildew DI/yield − Σdr680–760 nm relationships. Thus, regression analysis was applied
to each combination of season and growth stage for testing the effects of nitrogen input on
mildew DI/yield − Σdr680–760 nm relationships through parallel curve analysis.

3. Results
3.1. Relationships between Powdery Mildew and Canopy Spectral Reflectance of Wheat

The overall patterns of correlation of canopy spectral reflectance with mildew DI were
similar at the three growth stages under both the standard and reduced nitrogen input
levels in all four seasons (Figure 1). Correlation between the spectral reflectance in the
visible red wavelengths (650–680 nm) and DI differed in its magnitude among seasons; for
the low nitrogen input treatment, the correlation was only significant at GS10.5.3 in 2017,
and GS11.1 in 2019 and 2020. There was no significant correlation between the reflectance
of the red band and DI for the standard nitrogen input treatment. The reflectance of
the near-infrared band (750–880 nm) was negatively correlated with DI: the correlation
coefficient was less than −0.50.
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3.2. Relationships between Disease Index and the First Derivative Spectrum 
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similar except for small differences between the two nitrogen input levels (Figure 2). Cor-
relation varied greatly at 353–500 nm among three growth stages, but was consistently 
large and negative (often < −0.5) at 500–550 nm. Most of the correlations at the green (560–
600 nm) and red band (650–670 nm) were large and positive, whereas most of the correla-
tions at the red-edge band (680–760 nm) were large and negative. 

 

Figure 1. Correlation coefficient of wheat powdery mildew indexs (DI) with spectral reflectance
of wheat canopy at GS10.5.3, GS10.5.4 and GS11.1 under two nitrogen input levels (standard and
reduced) in 2017–2020.

3.2. Relationships between Disease Index and the First Derivative Spectrum

The correlation of DI with the first derivative spectrum of canopy reflectance was
similar except for small differences between the two nitrogen input levels (Figure 2).
Correlation varied greatly at 353–500 nm among three growth stages, but was consistently
large and negative (often < −0.5) at 500–550 nm. Most of the correlations at the green
(560–600 nm) and red band (650–670 nm) were large and positive, whereas most of the
correlations at the red-edge band (680–760 nm) were large and negative.
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3.3. Correlation between Disese Index and Spectral Parameters

Figure 3 shows the correlation of mildew DI with spectral parameter variables. drred,
Σdr680–760 nm, DVI, NRI, and TVI were significantly correlated negatively with DI under
both nitrogen input levels at all three growth stages in the four seasons. Correlation coeffi-
cients ranged from −0.87 to −0.41, −0.89 to −0.45, −0.89 to −0.48, −0.78 to −0.44, and
−0.90 to −0.50 for drred, Σdr680–760 nm, DVI, NRI, and TVI, respectively. Most of the correla-
tion of DI with NDVI, GNDVI, TCARI, and MCARI was significant and negative, ranging
from −0.74 to −0.10, −0.68 to −0.01, −0.89 to −0.31, and −0.79 to −0.26, respectively.
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3.4. Relationships between Disease Index and Canopy Spectral Reflectance

Σdr680–760 nm was consistently correlated highly with DI and thus used in linear re-
gression. Table 2 shows the overall contribution of experimental factors to the observed
variation in wheat mildew DI. The effect of year, nitrogen input, and growth stage (i.e., on
the intercept) were significant, accounting for 8.5%, 1.8%, and 1.0% of the total variabil-
ity, respectively. The interaction between Σdr680–760 nm and growth stage was significant
(p < 0.001), suggesting the slope parameter in the DI- Σdr680–760 nm relationship varied with
the growth stage. However, the residual error was still large, accounting for 57.2% of
the variability in DI, including variation due to possible interaction of season with other
variables.
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Table 2. ANOVA summary of linear regression of wheat powdery mildew index (DI) on nitrogen input levels, growth
stages and Σdr680–760 nm (a spectral parameter derived from canopy reflectance).

Parameter Df Sum Sq Mean Sq F Value Pr (>F)

Σdr680–760 nm 1 44,753 44,753 172.47 2 × 10−16 ***
Year 3 18,520 6173 23.79 2.24 × 10−14 ***

Nitrogen input level 2 3906 1953 7.53 0.00061 ***
Growth stage 2 2237 1119 4.31 0.0139 *

Σdr680–760 nm * nitrogen input level 2 75 38 0.14 0.865
Σdr680–760 nm * growth stage 2 12,941 6471 24.94 4.94 × 10−11 ***

Nitrogen input level * growth stage 4 6521 1630 6.28 6.20 × 10−5 ***
Σdr680–760 nm * nitrogen input level *

growth stage 4 4713 1178 4.54 0.00131 **

Residuals 483 125,332 259

Total 503 218,998 435

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05.

Because of the significant interaction between growth stage and Σdr680–760 nm as well as
considerable among-season variability, we fitted regression models of DI with Σdr680–760 nm
for each combination of growth stage and season (Figure 4). Parallel curve analysis showed
that there was no significant difference in the slope between the two nitrogen input levels
at every GS in each season. There was no significant difference in the intercept between the
two nitrogen input levels except in GS10.5.4, GS11.1 in the 2018–2019 season, and GS10.5.3
in the 2019–2020 season (Table 3).
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Table 3. Linear regression of wheat powdery mildew index (DI) on Σdr680–760 nm at the two nitrogen input levels at different
growth stages in four seasons. Parallel curve analysis was conducted to assess the effect of nitrogen input on the intercept
and slope estimates.

Season Growth Stage Level 1 Level 2 Parallel Curve Analysis

2016–2017

10.5.3 y = −376.6x + 157.5 y = −206.4x + 95.6 F = 0.45, p = 0.716 for slope;
F = 1.14, p = 0.347 for intercept

10.5.4 y = −155.2x + 104.2 y = −241.9x + 140.0 F = 0.60, p = 0.617 for slope;
F = 1.73, p = 0.179 for intercept

11.1 y = −296.3x + 110.6 y = −210.1x + 94.7 F = 0.34, p = 0.795 for slope;
F = 2.15, p = 0.113 for intercept

2017–2018

10.5.3 y = −578.8x + 147.8 y = −312.0x + 96.3 F = 0.52, p = 0.673 for slope;
F = 0.47, p = 0.702 for intercept

10.5.4 y = −249.3x + 92.4 y = −651.6x + 153.7 F = 0.35, p = 0.790 for slope;
F = 1.22, p = 0.317 for intercept

11.1 y = −374.7x + 112.1 y = −299.2x + 101.3 F = 0.16, p = 0.923 for slope;
F = 0.88, p = 0.459 for intercept

2018–2019

10.5.3 y = −172.7x + 92.0 y = −198.0x + 101.6 F = 1.20, p = 0.325 for slope;
F = 1.86, p = 0.156 for intercept

10.5.4 y = −421.0x + 171.3 y = −301.5x + 118.8 F = 1.23, p = 0.315 for slope;
F = 5.77, p = 0.0027 for intercept

11.1 y = −1026.6x + 250.1 y = −468.8x + 125.5 F = 0.90, p = 0.452 for slope;
F = 5.06, p = 0.0052 for intercept

2019–2020

10.5.3 y = −134.3x + 104.8 y = −168.9x + 110.8 F = 1.38, p = 0.266 for slope;
F = 6.06, p = 0.002 for intercept

10.5.4 y = −245.3x + 127.6 y = −254.9x + 125.6 F = 2.19, p = 0.108 for slope;
F = 1.54, p = 0.223 for intercept

11.1 y = −451.1x + 161.3 y = −608.1x + 202.8 F = 1.45, p = 0.244 for slope;
F = 1.25, p = 0.307 for intercept

The df of Parallel curve analysis at every GS in each season was 20.

3.5. Correlation between Wheat Yield and Spectral Parameters

Correlations between grain yield and spectral parameter variables are given in Table 4.
Grain yield was positively correlated with drred, Σdr680–760 nm, DVI, NRI, TVI, NDVI,
GNDVI, TCARI, and MCARI, but there were differences in these correlation coefficients
among different nitrogen input levels and growth stages. Of which drred, Σdr680–760 nm,
DVI, NRI, and TVI were significantly positively with grain yield, in contrast, correlation of
grain yield with NDVI, GNDVI, TCARI, and MCARI was inconsistent.

3.6. Relationships of Grain Yield with Spectral Parameter Variables

Because of its consistent correlation with grain yield, Σdr680–760 nm was used in linear
regression. Table 5 shows the overall contribution of experimental factors to the observed
variation in grain yield. The effects of year, nitrogen input, and growth stage were all
significant (differing intercept) and accounted for 20.1%, 10.5%, and 3.4% of the total
variability, respectively. The interaction between Σdr680–760 nm and nitrogen input level or
growth stage both were significant (p < 0.001), suggesting the slope parameter in the yield-
Σdr680–760 nm relationship varied with nitrogen input level and growth stage. However, the
residual error accounted for 20% of the variability in yield.
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Table 4. Coefficients of correlation between spectral parameters under different nitrogen input levels
at three growth stages over three seasons and grain yield.

Year Parameter
Level 1 Level 2

GS10.5.3 GS10.5.4 GS11.1 GS10.5.3 GS10.5.4 GS11.1

2018

drred 0.71 ** 0.68 ** 0.63 ** 0.54 * 0.64 ** 0.38
Σdr680–760 nm 0.65 ** 0.60 ** 0.65 ** 0.51 * 0.63 ** 0.46 *

DVI 0.77 ** 0.79 ** 0.60 ** 0.52 * 0.58 * 0.32
NDVI 0.73 ** 0.75 ** 0.58 ** 0.54 * 0.51 * 0.28

GNDVI 0.71 ** 0.73 ** 0.47 * 0.52 * 0.60 ** 0.2
NRI 0.79 ** 0.77 ** 0.79 ** 0.62 ** 0.65 ** 0.39
TVI 0.68 ** 0.62 ** 0.66 ** 0.52 * 0.64 ** 0.46 *

TCARI 0.3 0.38 0.54 * 0.37 0.56** 0.50 *
MCARI 0.31 0.38 0.54 * 0.37 0.56 ** 0.50 *

2019

drred 0.70 ** 0.63 ** 0.69 ** 0.74 ** 0.70 ** 0.66 **
Σdr680–760 nm 0.60 ** 0.64 ** 0.82 ** 0.76 ** 0.74 ** 0.76 **

DVI 0.62 ** 0.42 0.36 0.60 ** 0.55 ** 0.45 *
NDVI 0.60 ** 0.36 0.4 0.57 ** 0.54 * 0.51 *

GNDVI 0.59 ** 0.32 0.27 0.56 ** 0.52 * 0.43
NRI 0.63 ** 0.43 0.61 ** 0.61 ** 0.59 ** 0.66 **
TVI 0.65 ** 0.65 ** 0.80 ** 0.77 ** 0.73 ** 0.73 **

TCARI 0.46 * 0.31 0.79 ** 0.50 * 0.75 ** 0.75 **
MCARI 0.45 * 0.31 0.80 ** 0.50 * 0.75 ** 0.75 **

2020

drred 0.83 ** 0.87 ** 0.88 ** 0.90 ** 0.83 ** 0.72 **
Σdr680–760 nm 0.82 ** 0.84 ** 0.90 ** 0.88 ** 0.84 ** 0.77 **

DVI 0.82 ** 0.84 ** 0.90 ** 0.89 ** 0.85 ** 0.76 **
NDVI 0.4 0.26 0.42 0.59 ** 0.60 ** 0.37

GNDVI 0.31 0.15 0.31 0.56 ** 0.52 * 0.23
NRI 0.54 * 0.44 * 0.44 * 0.55 ** 0.72 ** 0.62 **
TVI 0.81 ** 0.84 ** 0.89 ** 0.86 ** 0.84 ** 0.77 **

TCARI 0.84 ** 0.64 ** 0.63 ** 0.87 ** 0.72 ** 0.47 *
MCARI 0.49 * 0.46 * 0.56 ** 0.36 0.43 0.31

Significance levels for the correlation coefficients: 0.01 < p ≤ 0.05 (*), p ≤ 0.01 (**).

Table 5. ANOVA summary of linear regression of grain yield on nitrogen input levels, growth stages and Σdr680–760 nm

(a spectral parameter derived from canopy reflectance).

Parameter Df Sum Sq Mean Sq F Value Pr (>F)

Σdr680–760 nm 1 59.63 59.63 668.89 <2.2 × 10−16 ***
Year 2 32.11 16.06 180.10 <2.2 × 10−16 ***

Nitrogen input level 2 16.77 8.38 94.04 <2.2 × 10−16 ***
Growth stage 2 5.37 2.68 30.10 8.26 × 10−13 ***

Σdr680–760 nm * nitrogen input level 2 1.36 0.68 7.62 0.000573 ***
Σdr680–760 nm * growth stage 2 8.61 4.30 48.28 <2.2 × 10−16 ***

Nitrogen input level * growth stage 4 2.11 0.53 5.93 0.000126 ***
Σdr680–760 nm * nitrogen input level * growth stage 4 1.55 0.39 4.34 0.00194 **

Residuals 358 31.91 0.089

Total 377 159.47 0.42

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05.

Because of the significant interaction between Σdr680–760 nm and nitrogen input level
or growth stage as well as considerable among-season variability, models relating grain
yield to Σdr680–760 nm were fitted to an individual combination of growth stage and season
(Figure 5). Parallel curve analysis showed that there was no significant difference in the
slope at every GS between the two nitrogen input levels in each season; however, there was
a significant difference in the intercept between the two nitrogen input levels in GS10.5.3,
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GS11.1 in 2017–2018 season, GS10.5.3 in the 2018–2019 season, and GS11.1 in the 2019–2020
season (Table 6).
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Table 6. Linear regression of grain yield on Σdr680–760 nm at the two nitrogen input levels at different growth stages in three
seasons. Parallel curve analysis was conducted to assess the effect of nitrogen input on the intercept and slope estimates.

Season Growth Stage Level 1 Level 2 Parallel Curve Analysis

2017–2018

10.5.3 y = 13.63x + 0.54 y = 5.36x + 1.50 F = 0.59, p = 0.627 for slope;
F = 3.74, p = 0.020 for intercept

10.5.4 y = 6.37x + 1.91 y = 10.91x + 0.68 F = 0.36, p = 0.780 for slope;
F = 0.68, p = 0.569 for intercept

11.1 y = 8.60x + 0.72 y = 4.74x + 1.71 F = 0.39, p = 0.761 for slope;
F = 4.92, p = 0.0061 for intercept

2018–2019

10.5.3 y = 3.44x + 2.57 y = 3.31x + 2.0 F = 1.81, p = 0.164 for slope;
F = 11.56, p < 0.001 for intercept

10.5.4 y = 7.56x + 1.38 y = 4.42x + 2.0 F = 1.76, p = 0.173 for slope;
F = 0.21, p = 0.888 for intercept

11.1 y = 17.01x + 0.37 y = 6.98x + 1.97 F = 2.34, p = 0.0911 for slope;
F = 0.74, p = 0.536 for intercept

2019–2020

10.5.3 y = 2.99x + 2.49 y = 5.06x + 1.26 F = 1.09, p = 0.366 for slope;
F = 0.45, p = 0.722 for intercept

10.5.4 y = 7.95x + 1.50 y = 5.99x + 1.95 F = 0.79, p = 0.508 for slope;
F = 2.35, p = 0.0895 for intercept

11.1 y = 10.50x + 1.62 y = 10.87x + 1.14 F = 2.5, p = 0.0764 for slope;
F = 11.33, p < 0.001 for intercept

The df of Parallel curve analysis at every GS in each season was 20.
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4. Discussion

Canopy hyperspectral reflectance data were acquired at Feekes growth stage (GS)
10.5.3, 10.5.4, and 11.1 under different nitrogen input levels in four consecutive seasons.
The trend of the relationships between canopy spectral reflectance and wheat powdery
mildew was basically consistent under different nitrogen input levels, especially the re-
flectance in the near-infrared band (750–880 nm) was significantly correlated negatively
with wheat powdery mildew. Cao et al. [17,18] also found that there was a significant nega-
tive correlation between spectral reflectance in the near-infrared band and disease index
of wheat powdery mildew. On the other hand, different N rates markedly influenced the
characteristics of spectral reflectance of the wheat canopy, with different spectral responses
in near-infrared regions [30], these results indicated that it was feasible to monitor wheat
powdery mildew with near-infrared reflectance under different nitrogen input levels. The
first derivative processing can reduce the low frequency background noise and improve
the overlapping spectral resolution [43], in this study, it was found that the disease index of
wheat powdery mildew was significantly correlated with the first derivative spectrum of
most green light bands, red light bands, and red edge bands, this indicated that the occur-
rence of wheat powdery mildew can be monitored by using the first derivative spectrum of
visible light band. Malthus and Madeira [44] also found that the first derivative spectrum
of the visible light band can be used to monitor field bean leaves infected by botrytis fabae.

Most spectral variables derived from the canopy hyperspectral reflectance data were
highly correlated to the disease index of wheat powdery mildew and grain yield under
different nitrogen input levels, the mathematical calculation methods of these variables
may relate to the variation in performance of the vegetative indices in disease detection. For
drred and Σdr680–760 nm were significantly correlated with disease index of wheat powdery
mildew at GS10.5.3, 10.5.4, and 11.1 in the four/three seasons under the two nitrogen input
levels, this can be explained by the fact that Σdr680–760 nm is calculated from wavelengths
between 680 and 760 nm and most of the correlations between the first derivative spectrum
at 680–760 nm and disease index of wheat powdery mildew were significant (Figure 2).
The drred was less correlated with disease index than Σdr680–760 nm this was because drred
on the rate of reflectance increases between visible and near-infrared. For SIs calculated
based on the combination of reflectance of broad-band, especially includes NIR wavebands,
DVI had more significant correlations with disease index than NDVI and GNDVI in all
seasons under the two nitrogen input levels, indicating that DVI was more appropriate
for disease detection, this was accordant with its mathematical calculation methods of
DVI which has been shown to have a low error with dense canopies [40]. TVI, calculated
from the differences in reflectance of 550 nm, 670 nm, and 750 nm wavelengths, had a
significant correlation with disease index and grain yield, three typical peak inflection
points exist near 550 nm, 670 nm, and 750 nm bands in every nitrogen input level and
growth stage. The performance of NRI was consistently correlated with disease index and
grain yield during the four/three growing seasons, indicating that NRI is able to detect
wheat powdery mildew under different nitrogen input levels.

The parallel curve analysis of disease/yield-Σdr680–760 nm models within individual
seasons at a single growth stage showed that there were no significant differences in the
slope among nitrogen input levels, but some significant differences in the intercept of
the models, indicated that there were differences between canopy reflectance at different
nitrogen input levels, which is consistent with previous studies [45,46], and existing studies
have suggested that varied N management practices result in differences in leaf area
index, biomass, leaf chlorophyll, and tissue N concentrations that in turn contribute to
the differences in canopy spectral reflectance [24]. However, when analyzed over all the
four/three season, suggested that both the intercept and slope estimates in the DI/yield-
Σdr680–760 nm relationship could be affected greatly by growth stage and/or nitrogen input,
particularly wheat yield. These differences are primarily due to the fact that growth stage
and year effects were implicitly incorporated into the models when models were fitted to
individual seasons at a single growth stage.
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Although remote sensing is a potential alternative for detecting wheat powdery mildew,
rather than a visual assessment of plants, further work is necessary before the method can be
adopted for practical use, such as the influence of some other factors on spectral monitoring
or relational model of wheat powdery mildew needs to be clarified. Our study found that
there existed certain differences in the intercepts of wheat powdery mildew monitoring
models by canopy hyperspectral reflectance under different nitrogen input levels and
growth stages, moreover, studies also had found that there were some differences in the
detecting models under different wheat varieties [17] and different planting densities [18],
these results indicated that the wheat variety, planting density, growth stage and nitrogen
input level could cause differences in hyperspectral reflectance monitoring models of wheat
powdery mildew, and such differences would greatly limit the application of hyperspectral
reflectance in monitoring wheat powdery mildew in the field.

The exact relationship of lgR (remote imaging parameter) with disease severity and
grain yield varied considerably from year to year, which raised an important question
about the consistency of using remote imaging information to estimate disease severity and
grain yield [47]. In the present study, the main season effect accounted for 8.5% and 20.1%
of the variability in mildew DI or yield, respectively; hence the intercept estimate varied
significantly between seasons. In addition, there still existed large residuals in powdery
mildew or grain yield regression models, accounting for 57.2% and 20% of the respective
variability in DI and or yield. This large residual variation may also include the possible
interaction of the season with other variables. The present study thus suggested that the
relationship can be used to estimate relative disease severity and yield within a given year
and growth stage and that these models still could be useful if we have information about
the initial level of disease to adjust the relative disease level into an absolute level, although
it is much difficult to estimate the absolute level of disease severity. The large seasonal
effect on the observed relationships of mildew severity/yield with canopy reflectance raises
an important issue, namely, how to develop and/or apply a common model to different
seasons without losing many predictive accuracies. Further research is needed to consider
how to incorporate the year-to-year and growth stage effects into future applications.

5. Conclusions

This study demonstrated that canopy hyperspectral reflectance can be used in wheat
powdery mildew detection and estimate grain yield under different nitrogen input levels.
However, the dynamics of VIs differed in their sensitivities to nitrogen input levels, disease
severity and grain yield. The area of the red edge peak (Σdr680–760 nm) was a better overall
predictor for both disease severity, and grain yield through linear regression models. The
slope parameter estimates did not differ between the two nitrogen input levels at each
GSs, but some significant differences in the intercept indicated that there were differences
between canopy reflectance at different nitrogen input levels, mainly due to the growth
stage and year-to-year variation. Further research is needed to consider how to incorporate
the year-to-year and growth stage effects into future applications.
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