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Abstract: In recent years, object detection has shown excellent results on a large number of anno-
tated data, but when there is a discrepancy between the annotated data and the real test data, the
performance of the trained object detection model is often degraded when it is directly transferred to
the real test dataset. Compared with natural images, remote sensing images have great differences in
appearance and quality. Traditional methods need to re-label all image data before interpretation,
which will consume a lot of manpower and time. Therefore, it is of practical significance to study the
Cross-Domain Adaptation Object Detection (CDAOD) of remote sensing images. To solve the above
problems, our paper proposes a Rotation-Invariant and Relation-Aware (RIRA) CDAOD network.
We trained the network at the image-level and the prototype-level based on a relation aware graph to
align the feature distribution and added the rotation-invariant regularizer to deal with the rotation
diversity. The Faster R-CNN network was adopted as the backbone framework of the network. We
conducted experiments on two typical remote sensing building detection datasets, and set three
domain adaptation scenarios: WHU 2012 → WHU 2016, Inria (Chicago) → Inria (Austin), and WHU
2012 → Inria (Austin). The results show that our method can effectively improve the detection
effect in the target domain, and outperform competing methods by obtaining optimal results in all
three scenarios.

Keywords: object detection; unsupervised domain adaptation; remote sensing images; rotation
invariance; graph convolutional neural network (GCN)

1. Introduction

Object detection is an important task in the field of computer vision [1–3]. It aims to
predict the category and the precision position of the object in the image. In recent years,
with the rapid development of deep convolutional neural networks [1], many excellent
algorithms based on them have emerged in the field of object detection [4–8], and have
achieved excellent performance on common datasets such as PASCAL VOC [9] and MS
COCO [10]. However, these methods still face huge challenges in real life. When an
object detection model trained on a dataset containing annotations is applied to a dataset
not seen by other models, the performance of the model is often affected due to domain
distribution discrepancy between the datasets. The most straightforward approach to this
is to extensively collect other multi-source data and then annotate it to retrain the model,
but, obviously, the time and labor costs are very high.

To reduce the discrepancy between domains among different datasets without ad-
ditional annotations, researchers propose some unsupervised Cross-Domain adaptation
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Object Detection (CDAOD) methods to transfer the information learned from a dataset
containing a large number of annotations (source domain) to a dataset without annotations
(target domain). In the field of computer vision, unsupervised CDAOD has been widely
studied for classification [11–14] and segmentation [15–19]. However, the object detection
task is different from these two problems, and the object detection task includes bounding-
box localization and object classification, which makes the CDAOD problem more complex.
The existing CDAOD methods can be roughly divided into the following four leading
categories: (1) Adversarial feature learning [20,21], (2) Pseudo-label self-training [22,23],
(3) Graph reasoning [24,25], and (4) Mean-teacher training [26]. However, the current
research is centered on natural images, virtual game images, animation images, etc., mainly
to solve the performance impact of the domain shift of different source images under illu-
mination, weather, and style. There are few successful applications in the remote sensing
field especially in the object detection task of remote sensing images. In the field of remote
sensing, there are few studies on unsupervised CDAOD. To the best of our knowledge, re-
cent works include the image-level domain transfer for multi-source remote sensing object
detection by Li et al. [27], based on the generation adversarial network, and Koga et al. [28]
proposed using the correlation alignment domain adaptation and adversarial domain
adaptation to the region-based vehicle detector.

CDAOD for remote sensing images is a very challenging task in the field of remote
sensing [29]. Most of the existing remote sensing open datasets come from Google images,
but with the launch of China’s satellite, there are more and more remote sensing image data
of various types. Traditional methods need to re-label the multi-source data, which will
consume a lot of manpower and time. Therefore, the research on CDAOD for multi-source
remote sensing images has important application prospects and value in both military and
civil fields. Due to the unique differences of optical remote sensing images in resolution
and image forming mode, the domain adaptation object detection of optical remote sensing
images is faced with unique challenges and constraints compared with natural images.

For the task of remote sensing the image CDAOD, because the remote sensing image
is taken from an overlooking angle, compared with the natural image, the direction of the
remote sensing image object in the image is arbitrary. However, the bounding box of our
object detection task is horizontal. With the convolutional neural network [3], there is only
translation invariance but no rotation invariance. Therefore, for remote sensing images,
the rotation diversity of the object is a challenge to the detection performance. It is also
very important to use inter-domain rotation invariance to better align objects of the same
category in different domains.

On the other hand, remote sensing images taken from an overlooking angle are mostly
ground objects with complex spectral texture features and high similarity with the detected
objects. Although the background of natural image is complex, it is easy to distinguish
from the detection object. In other words, the connection between objects and scenes in
remote sensing images is usually closer than that of natural images, such as airplanes with
airports, and ships with oceans. However, the region extracted by the common detection
network can only reflect limited modal information, such as the specific scale and direction.
Therefore, for the CDAOD of remote sensing images, we need to integrate the multi-modal
information reflected by different instances into the prototype representation.

To solve these problems, we proposed a Rotation-Invariant and Relation-Aware (RIRA)
CDAOD network of remote sensing images. This model can solve the above problems well,
and our contribution can be summarized as follows:

• We propose a novel algorithm framework to solve the problem of unsupervised
CDAOD in remote sensing images. The highest accuracy is achieved in three building
detection adaptation scenarios with obvious domain shift.

• We propose to use the rotation-invariant regularizer term in both the source domain
and the target domain to solve the problem of direction arbitrariness in remote sensing
images.
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• To aggregate regional information, a prototype-level domain alignment based on
relation-aware graph is proposed to make the instance information obtained by the
detection network more accurate.

2. Related Work

In this section, we will briefly review the most relevant work in the literature, including
CDAOD in both the computer vision and remote sensing fields.

2.1. Cross-Domain Object Detection in the Computer Vision Field

In the community of computer vision, by analyzing the previous methods, we found
that most of the previous studies used adversarial learning to align the feature distribution
of the images in the source and target domains at the image-level and instance-level. The
image-level refers to the shallow features such as the image background and scene layout.
Instance-level refers to high-level semantic features such as appearance and pattern of
objects. These methods eliminate domain shift in the feature extraction network of Faster R-
CNN and the region-based classification regression network, respectively. Chen et al. [20] is
the first work to propose the domain adaptation problem for the task of object detection. In
their work, they employ adversarial feature learning to align domain distribution features
at instance-level and image-level, respectively, and perform consistent regularization for
domain classifiers. This paper also explains the effectiveness of adversarial learning from
the perspective of probability theory. Saito et al. [21] argue that it is not necessarily
optimal to align features separately at different levels. Therefore, they propose strong
feature alignment at the local level and weak feature alignment at the global level for
the previous image-level feature extraction part. With the rise of graph convolutional
neural networks (GCN), the use of graphs to model relationships has become popular.
Therefore, Cai et al. [24] proposed a mean-teacher Object Relation (MTOR) method, which
used student–teacher training strategies to conduct model training and integrated graph
reasoning. Recently, Xu et al. [25] proposed a method to derive prototype features based on
graphs to achieve domain adaptation. This method aggregates information on RoI-Pooled
proposals and uses a category balance loss function to optimize the domain alignment
problem caused by category imbalance. Although these methods have achieved some
success in natural images (e.g., Cityscapes [30]), virtual images (e.g., Sim10K [31]), and
animation images (e.g., Watercolor [21]), they still cannot fully solve the problem of cross-
domain object detection in remote sensing images because remote sensing images often
show more complex structures.

2.2. Cross-Domain Object Detection in the Remote Sensing Field

In the field of remote sensing, there are few literature works on unsupervised CDAOD.
Li et al. [27] evaluated the image-level domain adaptation tasks based on a popular gener-
ative adversarial network (GAN), AgGAN and CycleGAN, and performed cross-domain
image segmentation based on U-Net and cross-domain object detection based on Faster
R-CNN, respectively. Experiments show that almost all methods fail to improve the per-
formance of Faster R-CNN in object detection, and the GAN-based method is the worst.
In our paper, we will also compare our method with the image-level domain adaptation
method based on AgGAN and CycleGAN. Koga et al. [28] applied correlation alignment
(CORAL) domain adaptation and adversarial domain adaptation to a region-based vehicle
detector, and the detection accuracy in the target region was improved by more than 10%.
In that paper, the adversarial domain adaptation algorithm is further improved by using
reconstruction loss to promote semantic feature learning. The accuracy of the proposed
method is slightly better than that of the accuracy achieved with the labeled training data
of the target domain. It can be seen from the two existing literature works that there is still
a lack of in-depth research on unsupervised CDAOD in the field of remote sensing, and
the experimental performance needs to be improved.
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3. Methodology

This section presents the proposed Rotation-Invariant and Relation-Aware (RIRA)
Cross-Domain adaptation Object Detection (CDAOD) network. We assume there are
two domains from different sources and with different distributions. The source domain
data have annotations for object detection, while the target domain does not. For the
rest of our paper, we denote the source domain dataset as DS =

{
xSi , bSi , ySi

}NS
i=1, where

NS is the total number of images in the source domain, xSi denotes the i-th image, bSi
denotes the bounding box annotation and ySi denotes corresponding category label in the
i-th source domain image. The total object category is denoted by C, so, including the
background class, ySi ∈ {1, 2, . . . , C + 1}. Furthermore, we set the target domain dataset as

DT =
{

xTi
}NT

i=1, where NT is the total number of images in the target domain and xTi is the
i-th target domain image.

The architecture of our proposed RIRA CDAOD network is illustrated in Figure 1.
Our proposed rotation-invariant module achieves object rotation invariance by optimizing
a new objective function, which explicitly applies rotation invariant regularization to force
training samples before and after rotation to share similar features. For the image-level
domain classifier network, we adopt the gradient reverse layer (GRL) [32] to minimize the
domain classification loss of the domain classifier and maximize the classification loss of
the feature extractor for adversarial training. For the prototype-level alignment network,
in order to obtain class-based prototypes, we use RoI-based proposals to construct graphs
with self-attention. Then, align at the prototype-level. Next, we will introduce each module
of the network in detail.

Figure 1. An overview of our Rotation-Invariant and Relation-Aware (RIRA) Cross-Domain adaptation Object Detection
(CDAOD) network for optical remote sensing images.

3.1. Rotation-Invariant Regularizer

Faster R-CNN [7] uses the translational invariant “anchor” mechanism to solve the
translational and scaling problems of the object, that is, for each position of the image, it
predicts nine possible candidate windows (three scales and three aspect ratios), which are
called anchors. The nine anchors are the same for any input image, so we only need to
compute them once. This mechanism reduces the size of model parameters and reduces
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the risk of overfitting on small datasets. The anchor mechanism could solve the scale
invariance well; meanwhile, the convolution part can solve the translation invariance, but
the Faster R-CNN network does not have the rotation invariance. For remote sensing
images, the connection between the object and the scene is often greater than that between
natural images, so it is of great significance to use rotation-invariant features to solve the
direction arbitrariness of remote sensing images.

In the recent research work of remote sensing object detection [33,34], rotation invariance
can significantly improve the detection effect for this problem. Through data augmenting,
we do not need to modify any network structure on the original Faster R-CNN framework,
but only need to redesign the objective function of the network. The objective function of the
model is optimized by combining the rotation-invariant regularizer in our paper.

Given a set of labeled source domain samples XS , we generate a set of source
training samples XS =

{
XS , TφXS

}
by using a simple rotation operation, where Tφ ={

Tφ1 , Tφ2 , · · · , TφK

}
represents a family of K rotation transformations, where Tφk denotes

the rotation operation of a training sample with the angle of φk ∈ φ, k = 1, · · · , K.
In the Faster R-CNN framework, the only modification to Faster R-CNN is from

the training of the object detection network (Fast R-CNN) [35]. In short, in addition to
minimizing the classification loss and bounding box regression loss, we also added a
rotation-invariant regularizer term to the CNN features to optimize the new objective
function. We define the regularization constraint in the source domain as

Lrot
S(XS , TφXS

)
=

1
2NS

∑
xSi ∈XS

∥∥∥Or

(
xi
S
)
−Or

(
Tφxi

S)∥∥∥2

2
(1)

where ‖·‖2 is the 2-norm of vectors; Or(·) denotes the output of the penultimate FC layer as
shown in Figure 1; Or

(
xi
S) is the CNN feature of the source training sample xi

S ; Or
(
Tφxi

S)
denotes the average CNN feature extracted from all rotated samples of the source training
sample xi

S , and it is defined as

Or
(
Tφxi

S) = 1
K ∑K

j=1 Or

(
Tφj xi

S
)

(2)

For images in the target domain, although there are no annotations, the rotation-
invariant feature design does not need labels, in the process of training, the source domain
and the target domain share feature parameters. we could perform the same operation in
the target domain. For the target domain, the optimization function is as follows:

Lrot
T (XT , TφXT

)
=

1
2NT

∑
xTi ∈XT

∥∥∥Or

(
xi
T
)
−Or

(
Tφxi

T )∥∥∥2

2
(3)

where Or
(

xi
T ) is the CNN feature of the target sample xi

T ; Or
(
Tφxi

T ) denotes the average
CNN feature extracted from all rotated samples of the target sample xi

T .
With the source domain and target domain rotation-invariant regularizer to optimize

the model, the operation can make the source domain and target domain easier to align.
Lrot
S and Lrot

T are part of the overall objective function.

3.2. Prototype-Level Alignment Based on Relation-Aware Graph

In this section, we will show how to implement prototype-level domain alignment
based on relation-aware graph. Based on the Region Proposal Network (RPN) [7] network,
a relation-aware graph is generated, which uses self-attention to construct the adjacency
matrix instead of the pre-defined adjacency matrix. After the graph is constructed, the
features of the proposal are aggregated according to the category to form the prototype
features. Prototype-level features are then used for domain distribution alignment.
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3.2.1. Region Proposal Generation

The RPN network is used to generate region proposals. The network judges that
anchors belong to foreground or background through softmax, and then uses bounding
box regression to correct anchors to obtain rough proposals. These proposals provide a
wealth of information such as the scale and scene style of the instance, but due to the
deviation of the bounding box, especially in the target domain, it often contains incomplete
instance information. Subsequent operations aim to extract more precise information about
instances from the region proposal through information aggregation. The details of RPN’s
network structure are shown in Figure 2.

3.2.2. Constructing Relation-Aware Graph

We built our relation-aware graph on the proposals extracted by RPN. Consider a
graph G = (V , E), where V corresponds to the set of nodes proposed by Np, and E ⊆ V ×V
represents the set of edges. A self-adapted adjacency matrix Arelation ∈ RNp×Np is used
to model the relations between proposals by performing self-attention. To better model
the relations between proposals, we refer to [36] to model the graph between objects
respectively from the geometric relationship and visual relationship, to obtain the Arelation.
Next, we will define the geometric and visual relationships.

Geometric relationship. The geometric relationship module models the spatial re-
lationship between two proposals by calculating geometric relationship features. This
module takes the relevant geometric features of the proposal as input, projects them into a
subspace, and measures the correlation between them by multiplying them by the geomet-
ric weight Wg ∈ Rdg×8, where dg is the dimension of the geometric relationship feature.
The formula is as follows:

Rg
ij = ReLU

(
Wgrg

ij

)
(4)

In order to prevent the geometric relationship from being affected by scale and shifting,
we define the relevant geometric features of the two region proposals as follows:

rg
ij =

[
wi, hi, wj, hj,

∥∥cxi − cxj
∥∥

wj
,

∥∥cyi − cyj
∥∥

hj
, log

(
wi
wj

)
, log

(
hi
hj

)]T

(5)

where wi and hi are the width and height of the i-th region proposal, respectively, normal-
ized by the image scale, so that 0 <wi, hi <1 and 1 6 i, j 6 Np. (cxi, cyi) is the location of
the center point of the i-th proposal. ReLU is used to truncate the feature response to zero.

Visual relationship. It is also necessary to explore the visual relationship between
the two region proposals, that is, the importance of the features of the node j to the node
i. The relationship can be learned adaptatively by self-attention without pre-defining the
adjacency matrix. The module input is a set of proposal features, F =

{
f1, f2, . . . , fNp

}
∈

RNp×d, where d indicates the dimension of node features.
We concatenate the features of the two RoIs to obtain a sufficient representation

to describe the relationship between the two RoIs, and convert the obtained features to
another high-dimensional space. To this end, a learnable and shareable transformation
matrix Wv ∈ Rdv×2d is applied to each pair of RoI features, where dv is the dimension of
visual relation features. Then, it can be calculated as follows:

Rv
ij = LeakyReLU

(
Wv
[
fi ‖ fj

])
(6)

where ‖ denotes the concatenation operation.
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Joint geometric and visual relations. The object relationship coefficient is calculated
as the weighted sum of geometric and visual relationship features, as shown below:

Arelation
ij =

Rg
ij · exp

(
Rv

ij

)
∑m Rg

mj · exp
(

Rv
mj

) (7)

Given the object relationship coefficient Arelation
ij between each pair of nodes, we can form

feature aggregation between RoIs through the Relation-Aware Graph Convolutional layer,
which allows each node to be affected by other nodes, based on their object relationship.

3.2.3. Graph-Based Region Aggregation

We obtained the self-adapted adjacency matrix Arelation, from which we can obtain the
normalized adjacency matrix Ãrelation. It can be calculated as follows:

Ãrelation
ij =

exp
(

Arelation
ij

)
∑k exp

(
Arelation

ik
) (8)

Next, we use GCN [37] to aggregate the information from the graph. Unlike standard
convolutions that operate on local Euclidean structures in an image, the goal of GCN
is to learn a function f (·, ·) on a graph G, which takes feature descriptions Fl ∈ RNp×d

and a self-adapted adjacency matrix Arelation as inputs, and updates the node features as
Fl+1 ∈ RNp×d′ . Every GCN layer can be written as a nonlinear function by

Fl+1 = f
(

Fl , Arelation
)

(9)

Employing the convolutional operation of f (·, ·) can be represented as

Fl+1 = σ
(

ÃrelationFlΘl
)

(10)

where Θl ∈ Rd×d′ is a transformation matrix to be learned and σ(·) denotes activation
function, which is activated by LeakyReLU in our experiments. For each RoI-pooled feature
corresponding to the classification probability vector p ∈ [0, 1]1×C and probability matrix
P ∈ [0, 1]Np×d, the information propagation process can be written as follows:

Pl+1 = σ
(

ÃrelationPlΘl
)

(11)

Thus, we can learn and model the accurate relation of the proposals by stacking multi-
ple GCN layers. In Equations (10) and (11), after region aggregation, Fl+1 ∈ RNp×d′ and
Pl+1 ∈ [0, 1]Np×d′ express more accurate instance-level information through information
propagation among neighboring proposals. The algorithm flow of how the relation-aware
graph convolution layer is constructed is shown as Algorithm 1.

3.2.4. Generating Prototype Features

Using the spatial correlation provided by self-adapted adjacency matrix Arelation,
proposals’ feature descriptions Fl+1 and probability matrix Pl+1 are aggregated. Now
that the feature representation is aggregated at the instance-level, we want to integrate
information reflected by the different instances into the prototype representation. To get
the prototype features, we use the following formula:

vc =
∑

Np
i=1 Pl+1

ic ·
[
Fl+1

i

]T
∑

Np
i=1 Pl+1

ic

(12)
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where vc ∈ R1×d′ denotes the prototype feature of class c. The prototype features generated
here will be used for subsequent domain alignment based on prototype features, producing
category-based prototype features in the source domain and target, respectively. Aligning
prototype features is performed by minimizing the distance between prototypes in different
domains of the same category and maximizing the distance between prototypes in different
categories. The derived prototypes serve as the proxy of each class during subsequent
domain alignment.

Algorithm 1: Relation-Aware Graph Convolutional Layer.
The number of the layer is L. Geometric transformation matrix: Wl

g ∈ Rdg .
Visual transformation matrix: Wl

v ∈ Rdv . The number of RoIs is Np. Layer
transformation matrix: Θl ∈ Rdin×dout .

Input: Input proposal features Fl ∈ RNp×d.
Probability matrix Pl ∈ [0, 1]Nb × d.
RoIs position {wi, hi, cxi, cyi}i=1,··· ,Np

.

Output: FL and PL.
for l = 1 to L do

a graph G = (V , E)
Geometric relationship:
Calculate Rg ∈ RNp×dg using Equation (4)
Visual relationship:
Calculate Rv ∈ RNp×dv using Equation (6)
Joint geometric and visual relations:
Calculate Arelation ∈ RNp×Np by Equation (7)
Calculate Ãrelation ∈ RNp×Np by Equation (8)
Graph-based region aggregation:
Calculate Fl+1 ∈ RNp×d′ and Pl+1 ∈ [0, 1]Np×d′ by Equations (10) and (11)

end

Figure 2. RPN’s network structure and visual representation of prototype alignment.

3.2.5. Category-Level Domain Alignment

To reduce domain discrepancy at the prototype-level, we reduced the intra-class
differences between the source and the target domain. Narrowing the distance between the
same class prototype of two domains is done by minimizing the intra-class loss, denoted
as Lintra. The definition of Lintra is as follows:

Lintra(DS , DT ) =
∑C+1

i=1

∥∥vSi − vTi
∥∥

2
C + 1

(13)
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In addition, we propose that the distances between prototypes of different classes
should also be restricted by an inter-class loss, namely Linter. In the inter-class loss, the
distance between prototypes of different classes is limited to larger than a margin. The
formula is defined as follows:

Linter(D, D′) =
1
C
( ∑

16i 6=j6C+1
max(0, m−

∥∥∥vD
i − vD′

i

∥∥∥
2
)) (14)

where D and D′ represent two domains from which prototype pairs belonging to different
categories can be selected. D and D′ can be the same domain. m is the margin value, which
is fixed at 1.0 in our experiment.

In the prototype-based domain adaptation total loss Lpro, all pairwise relationships
between the prototypes of two domains are considered, including intra-class loss Lintra
and inter-class loss Linter:

Lpro = Lintra(DS , DT ) +
1
3
(Linter(DS , DS )+

Linter(DS , DT ) + Linter(DT , DT ))
(15)

3.3. Image-Level Domain Alignment

In the previous subsection, we introduced prototype-level domain alignment after
information aggregation through the GCN network. In this subsection, we will refer to the
DA Faster R-CNN [20] idea to align feature representation distributions on the image-level.

In the Faster R-CNN model, image-level representation refers to the output of the
feature map after the images pass through the basic convolution layers. In order to eliminate
the mismatch of domain distribution on the image-level, we use the patch-based domain
classifier as shown in Figure 1.

Specifically, we use each activation from the feature map extracted by the feature
extractor to train our domain classifier. Each receptive field of activation corresponding
to the input image xi is a patch, so the domain classifier predicts the domain label on
the patch of each image. Image-level domain classification network is used to eliminate
image-level domain shift such as image style and illumination. Using the cross entropy
loss, the image-level adaptation loss function can be expressed as

Limg = − ∑
i,u,v

[
Di log p(u,v)

i + (1Di) log(1− p(u,v)
i )

]
, (16)

where Di represents the real domain label of the i-th image. When Di equals 0, the
image comes from the source domain. When Di equals 1, the image is from the target
domain. As shown in Figure 3, the domain classifier consists of three convolution layers,
and the last one followed by a Softmax layer outputs a probability feature map of two
channels. p(u,v)

i represents the predicted value of (u, v) position on the feature map of
the i-th image extracted by the feature extraction network of the image-level domain
classification network.

In order to align the domain distribution, it is necessary to optimize the parameters of
the domain classifier to minimize the domain classification loss and optimize the param-
eters of the feature extraction network to maximize the domain classification loss at the
same time for adversarial training. This operation is implemented by GRL [32], and the
gradient descent is used to train the domain classifier. When the gradient is transmitted
back to the basic network, the gradient is reversed.

Figure 3. The network structure of image-level domain classifier.
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3.4. Overall Training Objective

Detection Network. We choose the famous and powerful Faster R-CNN model as
our basic detector. Faster R-CNN is a two-stage detector, mainly divided into three parts:
(1) feature extractor, which uses convolutional neural network to extract image features,
(2) region proposal network (RPN), responsible for providing candidate regions RoIs,
and (3) a region of interest (RoI) header is responsible for classification and regression
fine-tuning of RoI generated by RPN. The total loss function of Faster R-CNN is defined as:

Ldet = Lrpn + Lreg + Lcls (17)

where Lrpn, Lreg , and Lcls are the loss functions for the RPN, RoI-based regressor, and
classifier, respectively.

Overall Training Objective. In our proposed network framework, the optimized loss
functions during training include detection network loss Ldet, rotation-invariant regularizer
losses Lrot

S and Lrot
T , image-level feature alignment domain loss Limg and prototype-level

alignment Lpro. We can write as below:

Ltotal = Ldet +
α

2

(
LSrot + LTrot

)
+ βLimg + γLpro (18)

where α, β, and λ are trade-off parameters to balance the Faster R-CNN detection loss
and our newly added domain adaptation components. The network can be trained in
an end-to-end manner using a standard SGD algorithm. The overall network in Figure 1
is used in the training phase. During inference, one can remove the domain adaptation
components and rotation-invariant component, and simply use the original Faster R-CNN
architecture with adapted weights.

4. Experiments and Results

In this section, we first describe the remote sensing image datasets we used, then
introduce the evaluation metrics, then introduce the experimental setup, and finally give
the quantitative and qualitative results on the three domain adaptation scenarios.

4.1. Datasets

In computer vision, many datasets have been used to evaluate unsupervised domain
adaptation for object detection task. In the field of remote sensing, although the task of
object detection is also widely studied, such as rotation-invariant object detection [33,34],
oriented object detection [38–41], multi-scale object detection [6,42,43], densely packed
object detection [44,45] and weakly supervised object detection [46,47], there are relatively
little research on cross-domain object detection tasks. In the field of remote sensing, there
have been many datasets used for object detection in high-resolution remote sensing images,
such as NWPU VHR-10 [48], DOTA [49] and DIOR [50], etc., but few datasets are suitable
for unsupervised CDAOD tasks Therefore, we use the WHU change detection dataset [51]
and the Inria aerial image dataset [52] with reference to the experimental settings of [27] in
our experiment. These two datasets and their preprocessing are described in detail below.

WHU change detection dataset [51]. The WHU change detection dataset contains
RGB images covering 20.5 square kilometers in Christchurch, New Zealand in 2012 and
2016, respectively. Christchurch, New Zealand was hit by a 6.3 magnitude earthquake in
February 2011. After the earthquake, many buildings were rebuilt or newly built. The
aerial image obtained in March 2012 contains 12,796 buildings, and the aerial image in
2016 contains 16,077 buildings. The resolution of these two images is 0.2 m, and the image
pixels are 32,507 × 15,354 as shown in Figure 4. Note that, since the WHU dataset was not
built specifically for the object detection task, we use the tightest rectangle in the instance
mask as the real bounding box.
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(a) 2012_train (b) 2016_train (c) change label

Figure 4. The WHU change detection dataset. (a) is the whole training image of 2012 of the WHU
change detection dataset, which is used as the source domain in our experiment; (b) is the whole
training image of 2016 of the WHU change detection dataset, which is used as the target domain in
our experiment; (c) is the ground-truth for the change in the WHU change detection dataset.

We cropped the WHU change detection dataset to a 256 × 256 pixel size RGB image.
After processing, the samples of the WHU dataset and its label as shown in Figure 5. The
image of 2012 is treated as the source domain and 2016 the target domain in our experiment.
After the WHU dataset was processed, there were 3839 images from 2012, of which 2598
were used for training and 1341 for testing. For 2016, there are a total of 4200 images,
including 2498 from the training set and 1702 from the test set. The details and split of the
datasets are shown in Table 1. In our unsupervised domain adaptation task, we did not
use the label of the target domain in the training stage.

Table 1. The split of the WHU dataset and the Inria dataset.

Dataset Domain Size (Pixels) Train Test Sum

WHU dataset 2012 (source) 256 × 256 2498 1341 3839
2016 (target) 256 × 256 2498 1702 4200

Inria dataset Chicago (source) 256 × 256 3023 2391 5414
Austin (target) 256 × 256 3023 2475 5498

(a) 2012_samples (b) 2016_samples

Figure 5. The samples of the WHU dataset and its corresponding label. (a) are samples of 2012;
(b) are samples of 2016.

Inria Aerial Image Labeling Dataset [52]. The Inria dataset is an aerial image dataset
of residential facades in different cities. The dataset includes cities in Europe and the
United States with varying residential densities, covering 810 square kilometers. Using the
Inria dataset, we expect to be able to account for the in-class variability that occurs over a
large geographic range. The dataset has two semantic categories, building and not building.
The image resolution of the dataset is 30 cm and includes RGB bands. In this dataset, only
the training set is labeled, and the training set contains five cities: Austin (30◦N, 97◦W),
Chicago (41◦N, 87◦W), Vienna (48◦N, 16◦E), Kitsap County (47◦N, 22◦W), Western Tyrol
(47◦N, 11◦E), each of which contains 36 images of 5000 × 5000 pixels.
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In the experimental setting, we selected 24 images from 36 images of Austin and
Chicago, two cities with dense buildings. The Chicago image was taken as the source
domain and Austin image was taken as the target domain. The preprocessed images
are cropped to a 256× 256 pixel. Chicago has a total of 5414 images, with 3023 in the
training set and 2391 in the test set. Austin had a total of 5498 images, 3023 training images,
and 2475 test images. Sample examples of the Inria datasets in Chicago and Austin are
shown in Figure 6. Similarly, for the Inria dataset, its own labeling is pixel level, so we use
the knowledge of connected domain to transform the mask labeling into the bounding
box labeling.

(a) Chicago (source domain) (b) Austin (target domain)

Figure 6. Samples of the Inria Aerial Image Labeling Dataset. Chicago image (a) was taken as the
source domain and Austin image; (b) was taken as the target domain.

4.2. Evaluation Metrics

Generally, the average precision (AP) introduced in VOC2007 [9] is used to evaluate
the object detector. The calculation method of precision and recall is as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

(19)

Precision is actually the ratio of true positives (positive samples are correctly identified
as positive samples) in the identified images. Recall is the proportion of all positive samples
in the test set that are correctly identified as positive samples.

To determine whether the detector’s prediction matches the ground-truth, an intersec-
tion over union (IoU) metric is used. The definition of this measure is as follows:

IoU =
Area of Overlap
Area of Union

(20)

The IoU metric is used to calculate whether a particular prediction is a true positive
or a false positive. When it is greater than the set threshold, it is judged as a true positive;
otherwise, it is judged as a false positive.

Furthermore, in order to compare the overall performance of all categories, the
category-wise mean average precision (mAP) index is used, and the calculation formula is
as follows:

mAP =
∑C

i=1 APc

C
, (21)
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where C is the total number of category. For our building detection datasets, category C is
equal to 1 so that the mAP is equal to the AP of house class.

4.3. Implementation Details

Training details. In our experiment, we use ResNet-50 [3] as the basic network
structure and Faster R-CNN as the frame network. Specifically, the models are initialized
using weights pretrained on the ImageNet [53]. The rotation-invariant regularizer is
embedded on the RoI pooling layer with 2048 neurons. This work is implemented by
Pytorch [54] deep learning framework and trained on a single Nvidia GeForce RTX 2080Ti
GPU with 12 GB RAM. As an optimizer for the training, we used a stochastic gradient
descent (SGD) optimizer [55] with the initial learning rate set to 0.001 and momentum is set
to 0.9 and weight decay is 5× 10−4. In our implementation, the batch size is set to 4, two
images for the source domain and two images for the target domain. The number of total
training epoch is set as 20, and the learning rate warm-up strategy [3] is used in the first 200
iterations of training. In the training process, for each image, 128 anchors are sampled with a
positive ratio of 0.25. For evaluation, we report mAP with an IoU threshold of 0.5. Our code
is modified based on DA-Faster’s [20] code (https://github.com/yuhuayc/da-faster-rcnn
(accessed on 25 August 2021)).

Parameter Settings. In the rotation-invariant regularizer module, we set rotation
transformations Tφ =

{
Tφ1 , Tφ2 , · · · , TφK

}
with φ = {45◦, 90◦, 150◦} to perform the rotation

operation on the training images in the source domain and the target domain to obtain
4× N samples. The bounding box visualization of the image before and after rotation is
shown in Figure 7 below. The missing values generated by the rotation of 45° and 150°
were filled with background.

(a) Original image (b) 0◦ rotation (c) 45◦ rotation (d) 90◦ rotation (e) 150◦ rotation

Figure 7. Visualization of bounding boxes of the original and rotated images. (a) is the original image
obtained from the Inria dataset; (b) is the visualization of the original image’s bounding box; (c–e)
are, respectively, the visualization of the rotated image’s bounding box.

4.4. Results

Scenario settings. To fully verify the effectiveness of cross-domain remote sensing
image object detection, we conduct experiments by using WHU and Inria datasets. The
source training images have their annotations and target training data images are unlabeled.
In detail, we provide three different domain shift scenarios experimental settings:

1. WHU 2012→WHU 2016, same data source and region, different times;

https://github.com/yuhuayc/da-faster-rcnn
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2. Inria (Chicago)→ Inria (Austin), same data source, different regions;
3. WHU 2012→ Inria (Austin), different data source, different regions.

Performance comparison. To validate the effectiveness of the proposed approach, we
compared our method with six baselines: Faster R-CNN model trained only on source
examples without any domain adaptation (Source-only), Faster R-CNN model with a
CycleGAN transfer adaptation (CycleGAN) [56], Faster R-CNN model with an AgGAN
transfer adaptation (AgGAN) [57], domain adaptation Faster R-CNN based on adversarial
training at the image level (DA-Faster*) [20], domain adaptation Faster R-CNN based on
adversarial training at the image and instance level (DA-Faster) [20], and Faster R-CNN
model trained on the labeled target samples (Oracle).

Ablation study. To further verify the effects of the rotation-invariant regularizer
module and the prototype-Level alignment based on the relation-aware graph on the
entire model, we conducted ablation studies. Among them, “img-level” represents the
domain alignment at the image-level, “ins-level” represents the domain alignment at the
instance-level, “pro-level” represents the domain alignment at the prototype-level, and
“rot-inv” represents the rotation-invariant regularizer module.

4.4.1. Cross-Time. WHU 2012 → WHU 2016

In this experiment, the WHU 2012 dataset and the WHU 2016 dataset serve as the
source domain and target domain, respectively. The results are reported in the test set of
the WHU 2016 dataset. It aims to perform adaptation across different times in the same
region, which is Christchurch, New Zealand. In this scenery, although the source area and
the target area are the same areas, with the development of social economy and urban
expansion, the buildings of the city have obvious changes.

In Table 2, the comparison between our method and other CDAOD methods is pre-
sented on the building category. It can be seen from Table 2 that our method outperforms
all the methods. Compared with DA-Faster and DA-Faster*, our method is 2.09% and 3.64%
higher, respectively. Compared with GAN-based methods, our method is 6.98% higher
than CycleGAN and 4.44% higher than AgGAN. Compared with the method without
domain adaptation (Source-only), our method achieves an AP of 77.09% and a gain of
+5.1%. The domain adaptation method DA-Faster performs well in the field of computer
vision, but it does not perform well when used directly on remote sensing images, which
is related to the complex structure of remote sensing images. It can be noted that this
cross-time urban building detection problem is actually a change detection problem. The
source domain and target domain have many similarities, so the overall detection accuracy
is relatively high.

Table 2. Mean average precision (%) of cross-time adaptation scenario, WHU 2012 → WHU 2016.

Method Img-Level Ins-Level Pro-Level Rot-Inv House AP

Source-only 0.7199

CycleGAN
√

(GAN-based) 0.7011
AgGAN

√
(GAN-based) 0.7265

DA-Faster*
√

0.7345
DA-Faster

√ √
0.7500

Our(pro)
√ √

0.7628
Our(inv)

√ √
0.7599

Our(pro+inv)
√ √ √

0.7709

Oracle 0.8143

It can be seen from the ablation experiments in Table 2 that the rotation-invariant
regularizer module (rot-inv) and the prototype-level alignment module (pro-level) in the
network we designed can significantly improve the domain adaptation performance of
the model, indicating that our model can well solve the task of CDAOD in remote sensing
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images. We can also know that the prototype-level alignment module is better than the
rotation-invariant regularizer module, which is 4.49% and 4% higher than the Source-only
method, respectively.

Figure 8 displays some typical qualitative detection results on the task WHU 2012
→ WHU 2016, in which Source-only, CycleGAN, AgGAN, DA-Faster, and our approach
are evaluated. As shown in the figure, the Source-only model can poorly localize objects.
DA-Faster predicts bounding box more accurately, but it incorrectly classifies the road
as a building, and produces some false positives. Our model successfully inhibits false
positives, and it is able to localize objects precisely even when severe occlusion occurs.

(a) Source-only (b) CycleGAN (c) AgGAN (d) DA-Faster (e) Ours (f) Oracle (g) GT

Figure 8. Visualization of detection results on the task WHU 2012 → WHU 2016.

4.4.2. Cross-Region. Inria (Chicago) → Inria (Austin)

Different urban remote sensing data, although the data collection method is the same,
due to the characteristics of the city itself will produce domain shift. To adopt a building
detection model from one city to another, during the training phase, we utilize the training
set of Chicago in Inria as the source domain and Austin in Inria as the target domain. We
report the performance in the test set of the Austin in Inria.

As shown in Table 3, we achieve an mAP of 51.54% on the cross-region adaptation
scenario task, which is the best result among all the approaches. In particular, we achieve
a remarkable increase of +14.14% gain over the Source-only. Other methods CycleGAN,
AgGAN, DA-Faster*, and DA-Faster correspond to Source-only gains of −4.45%, −2.15%,
0.39%, and 12.06%, respectively. It can be concluded that the method based on GAN does
not perform well in cross-domain object detection in remote sensing images. In the ablation
experiment, our mAP improves by +13.23% compared with Source-only if only using the
prototype-level alignment module (pro) and by +12.69% compared with Source-only if only
adding the rotation-invariant regularizer module (inv). It can be seen from the visualized
results in Figure 9 that the performance of our proposed method is greatly improved
compared to the baseline methods, and many false detections and missed detections have
been improved.
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Table 3. Mean average precision (%) of cross-region adaptation scenario, Inria (Chicago) → Inria
(Austin).

Method Img-Level Ins-Level Pro-Level Rot-Inv House AP

Source-only 0.3740
CycleGAN

√
(GAN-based) 0.3465

AgGAN
√

(GAN-based) 0.3525
DA-Faster*

√
0.3779

DA-Faster
√ √

0.4946

Our(pro)
√ √

0.5063
Our(inv)

√ √
0.5009

Our(pro+inv)
√ √ √

0.5154

Oracle 0.7061

(a) Source-only (b) CycleGAN (c) AgGAN (d) DA-Faster (e) Ours (f) Oracle (g) GT

Figure 9. Visualization of detection results on the task Inria (Chicago) → Inria (Austin).

4.4.3. Cross Data Source and Cross-Region. WHU 2012 → Inria (Austin)

Different places, different resolutions, and different data acquisition methods will
seriously incur the difference of ground objects in remote sensing images, resulting in
domain shift problem. To simulate this adaptation, in the training phase, we use the
training set of WHU 2012 dataset and Austin in Inria as the source and target domain,
respectively. The results are reported in the testing set of the Austin in Inria.

Table 4 displays the results on the cross data source and cross-region adaptation
task. As shown in the table, we achieved 47.29% of the mAP on this domain adaptation
task, achieving the best results. Specifically, compared with the Source-only model, we
achieved a significant gain increase of +18.15%. Among all GAN-based domain adaptation
methods, our mAP is +26.13% better than CycleGAN and +16.23% better than AgGAN.
Compared with the domain adaptation methods DA-Faster* and DA-Faster based on
adversarial training, our method improves 13.51% and 2.4%, respectively. This result
implies that the domain alignment performance at the image-level is not good. In addition,
we can also see in the visualization results in Figure 10 that our method has achieved
the best results. It is worth noting that comparing scenario 2 (Inria (Chicago) → Inria
(Austin)) and scenario 3 (WHU 2012 → Inria (Austin)), the AP of Table 4 is not as high
as that shown in Table 3 due to the huge discrepancy between the domains of scenario
3. These results show that our method can effectively improve the domain shift caused
by different data acquisition methods, resolution, scale, regional differences, and other
problems. From the ablation experiment in Table 4, it can be seen that the prototype-level
alignment (pro) and rotation-invariant regularizer (inv) modules can effectively improve
the overall performance of cross-domain object detection, and have an AP improvement of
13.23% and 12.69%, respectively, compared to Source-only.
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Table 4. Mean average precision (%) of cross data source and cross-region adaptation scenario, WHU
2012 → Inria (Austin).

Method Img-Level Ins-Level Pro-Level Rot-Inv House AP

Source-only 0.2914
CycleGAN

√
(GAN-based) 0.2116

AgGAN
√

(GAN-based) 0.3106
DA-Faster*

√
0.3378

DA-Faster
√ √

0.4478

Our(pro)
√ √

0.4489
Our(inv)

√ √
0.4486

Our(pro+inv)
√ √ √

0.4729

Oracle 0.7061

(a) Source-only (b) CycleGAN (c) AgGAN (d) DA-Faster (e) Ours (f) Oracle (g) GT

Figure 10. Visualization of detection results on the task Inria WHU 2012 → Inria (Austin).

5. Discussion

In Section 4.4, we have shown that the results of our proposed method are superior to
other domain adaptation methods, and can well handle the domain discrepancy of remote
sensing images. In this section, we will analyze the source of the error and do a sensitivity
analysis of the parameters.

5.1. Performance Analysis Focusing on Errors

In the previous sections, we have shown that both prototype-level alignment and
rotation-invariant regularizer help reduce domain discrepancy. To further validate the
individual effect of prototype-level adaptation and rotation-invariant feature, we analyze
the detection errors for models using different components on different levels.

We study Inria (Chicago) → Inria (Austin) case for the analysis. Since the Austin test
contains 2475 images, we select top-N predictions with highest confidence for the vanilla
Faster R-CNN model, our model with only prototype-level adaptation, and our model
with only rotation-invariant regularizer, respectively, where N is the number of the objects
in category. Inspired by [58], we categorize the detections into three error types: correct:
IoU with ground-truth ≥ 0.5. mis-localized: 0.3 ≤ IoU with ground-truth < 0.5, and
background: IoU with ground-truth < 0.3.

The results are shown in Figure 11. From the figure, we can observe that each compo-
nent (prototype-level alignment or rotation-invariant regularizer) increases the number
of correct detections (white color), and significantly reduces the number of false positives
(other colors). In addition, we have also observed that the model using rotation-invariant
regularizer (Rot. Only) produces higher mislocalization errors than the model using
prototype-level alignment (Pro. Only). The reason may be that prototype-level alignment
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aggregates features captured by RoI more directly, resulting in better alignment. As you
can see from the bar chart below, our approach reduces location errors and background
errors and turns false positives into true positives.

(a) Faster R-CNN (b) Ours (Pro. Only) (c) Ours (Rot. Only)

Figure 11. Analysis of Top-Ranked Detections on Inria (Chicago) → Inria (Austin). Pie chart: The
scores of the top N detections that are correct (Cor) or false positives due to poor positioning (Misloc)
or confusion with background or unlabeled objects (BG). Bar graph: Absolute AP improvement
obtained by eliminating all false positives of one type. ‘B’: Will not be confused with background
objects. ‘L’: If the bad positioning is removed, the first bar is an improvement; if the positioning error
is corrected and the false positive becomes a true positive, the second column is an improvement.

We continue the error analysis of the adaptation case on Inria (Chicago) → Inria
(Austin). Figure 12 shows the error analysis in the Austin test set. Comparing the baseline
Source-only with the DA-Faster, we observe that domain adaptation improves the detection
performance. Comparing DA-Faster and our proposed method, we observe that our
method slightly reduces localization errors and background errors.

(a) Source-only (b) DA-Faster (c) Ours

Figure 12. Visualization of performance for various methods on Inria (Chicago) → Inria (Austin).
The red solid line and the red dashed line respectively reflect the changes in the recall of the strong
standard (0.5 IoU) and the weak standard (0.1 IoU) as the number of inspections increases.

5.2. Analysis of P–R curve

In computer vision, precision and recall are two important performance indicators, and
we can use the P–R curve [59] to see the impact of these two factors on model performance.

From the P–R curve in Figure 13, it can be intuitively seen that our method (the outer-
most green curve in the figure) achieved the best results on the three domain adaptation
scenarios, while the GAN-based method (i.e., AgGAN and CycleGAN) did not have good
results. The DA-faster method with domain alignment from image-level and instance-level
union is superior to the method without domain adaptation (i.e., Source-only). It can be
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seen intuitively from the P–R curve in Figure 13 that our method (the outermost green
curve in the figure) has achieved the best results in the three domain adaptation scenarios,
with overall higher precision and recall than other methods. The next best method is the
DA-Faster method (orange curve), which is significantly better than Source-only (red curve)
without domain adaptation. However, GAN-based methods CycleGAN (purple curve) and
AgGAN (blue curve) performed poorly in domain adaptation on image style appearance
for our three cross-domain tasks.

(a) WHU 2012 → WHU 2016 (b) Inria (Chicago) → Inria (Austin) (c) WHU 2012 → Inria (Austin)

Figure 13. P–R curves of three different domain adaptation scenarios. The different colored curves in the figure represent
different cross-domain adaptation methods.

5.3. Parameter Sensitivity

In this experiment, we verified the sensitivity of our method to α, β, and γ, which
trades off between detection and domain adaptation loss. First of all, we discuss the choice
of the parameter α, which is used to balance the rotation-invariant loss with other losses.
Figure 14a shows the result of our method for parameter α when the other parameter β
and γ is fixed, and all results are evaluated on the three domain adaptation scenario. As
can be seen from the line chart, it is better to set the parameter α to 7 for the WHU 2012 →
WHU 2016 task and 2 for the other two tasks. For task Inria (Chicago) → Inria (Austin) and
task WHU 2012 → Inria (Austin), the change of parameter α from 1 to 10 does not have a
great impact on the detection effect. This may be because for these two tasks, the domain
discrepancy is larger than that of task WHU 2012 → WHU 2016.

Figure 14b shows results for parameter sensitivity of β and γ in Equation (18), and
we evaluate the AP value of the final building detection result. We conduct experiments
on adaptation task: Inria (Chicago) → Inria (Austin), where parameter α is set to 2, and we
evaluate the AP value of the building detection result. We achieve the best performance when
β = 0.15 and γ = 0.125 and the best accuracy is 75.78%. Under this parameter setting, the
image-level and relation-aware prototype-level alignment benefits domain adaptation most.

(a) The sensitivity of parameter α. (b) The sensitivity of parameter β and γ.

Figure 14. Parameter Sensitivity on α, β, and γ.
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6. Conclusions

It is risky to apply the object detector trained in one remote sensing scenario directly
to a new one because the gap between the two domains can seriously degrade the perfor-
mance of the model. In this paper, we propose a Rotation-Invariant and Relation-Aware
CDAOD network for optical remote sensing images. Our network uses a rotation-invariant
regularizer term to solve the problem of rotation diversity of remote sensing images, and
constructs a relation-aware graph to obtain the class-based prototype representation, so
as to obtain alignment at the prototype-level. In addition, we have added image-level
domain classifiers for feature alignment. We use the WHU change detection dataset and the
Inria aerial image dataset to demonstrate the effectiveness of our proposed method. Our
approach achieves optimal performance in all three cross-domain scenarios compared to
other competitive approaches. It shows that our method can adapt well to remote sensing
scenes with obvious domain discrepancy and provide an effective and feasible solution for
cross-domain object detection in remote sensing images.
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