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Abstract: Optical remote sensing (about 0.4~2.0 µm) indexes of soil moisture (SM) are valuable for
some specific applications such as monitoring agricultural drought and downscaling microwave SM,
due to their abundant data sources, higher spatial resolution, and easy-to-use features, etc. In this
study, we evaluated thirteen typical optical SM indexes with aircraft and in situ observed SM from
two field campaigns, the Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12)
and 2016 (SMAPVEX16) conducted in Manitoba, Canada. MODIS surface reflectance products
(MOD09A1) and Sentinel-2 multispectral imager Level-1C data were utilized to calculate the optical
SM indexes. The evaluation results demonstrated that (1) the Visible and Shortwave Infrared Drought
Index (VSDI) and Optical TRApezoid Model (OPTRAM) outperform the other eleven optical SM
indexes as compared with aircraft and in situ observed SM. They also presented well consistence in
temporal variation with the in situ observed SM. (2) The VSDI achieved comparable performance
with the OPTRAM while the former has very simple calculation expression and the latter requires
complex process to determine the dry and wet boundaries. (3) Both the VSDI and OPTRAM utilize
two sensitive bands of soil and vegetation moisture, i.e., Red and SWIR bands, whereas the other
eleven SM indexes only employ one sensitive band. This may be the main reason of the evaluation
results. (4) Based on this recognition, improvements of the VSDI and OPTRAM were created and
validated in this study through adding more sensitive band to VSDI and combining NDVI and
modified VSDI into a new feature space for calculating the optical SM index as with OPTRAM. The
results are conducive to selecting and utilizing the current numerous optical SM indexes for SM and
drought monitoring.
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1. Introduction

Soil moisture (SM) plays a very significant role in land surface water and energy cycles
as well as in maintaining the stability of land surface ecosystem [1–3]. It is a very essential
parameter in various study fields such as agricultural production [4], drought monitoring
and prediction [5–7], water resource management [8], weather prediction [9], and climate
change [10]. Remote sensing is a very important technology used to observe SM because
of its unique features such as large-scale, long-term, spatially distributed, and regular
observations [11], etc.

According to the electromagnetic wavelength, the remote sensing methods for SM
can be roughly classified into optical data-dominated methods (ODM, about 0.4~2.0 µm),
thermal data-dominated methods (TDM, about 8~14 µm), and microwave data-dominated
methods (MDM, about 0.03 to 30 cm). Among them, MDM are usually considered the
most promising techniques owing to their longer wavelength and clear physical basis [12].
Most of the available global SM products are derived from MDM. However, SM derived
by microwave techniques usually suffers from coarser spatial resolution [13,14]. Active
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microwave methods have potential to provide high-resolution SM, but they are highly
influenced by surface roughness, canopy structure, and vegetation water content [15].
Such context leads researchers to seek a highly effective way to downscale the passive
microwave SM into a higher-resolution level [11,13,16,17]. Generally, TDM and ODM
play a significant role in providing higher-resolution SM indexes which could be used as
downscaling factors. Moreover, TDM and ODM normally have a longer observation history
and possess the advantages of abundant data sources, which is very important for drought
and soil moisture monitoring [7,18]. Additionally, it was thought that a limited body of
literature exists on the exploitation of optical observations for skin SM estimations, despite
the numerous optical remote sensors currently in orbit [12]. Therefore, it is necessary to
furtherly explore ODM for promoting research of remote sensing of SM.

Basically, ODM utilize the variation of spectral reflectance of soil and vegetation to
reflect the variation of SM. In earlier studies, a “darkening effect” was found which means
that the spectral reflectance of the soil decreases as the SM increases [19]. Furthermore, the
“darkening effect” was found to be conditional. In other words, the “darkening effect” was
found to work when the SM was at a lower level. After the SM reached a critical point, the
“darkening effect” did not work and the soil reflectance was found to increase as the SM
increased. Fortunately, the “darkening effect” are generally observed under natural field
conditions. Based on the variation of spectral reflectance, ODM can be divided into the
spectral analysis method and the SM index method referring to previous research [20,21].

The spectral analysis method places emphasis on constructing empirical, semi-empirical,
and physical relationships between soil reflectance and SM. For example, a linear relation
between absorbance at 1.94 µm and soil water content was found to be adequate for
moisture determinations [22]. Liu et al. [23] constructed a semi-empirical relationship
between SM and the ratio of spectral reflectance at a given moisture level to that at the
dry soil level. A physical model was created by Lobell and Asner [24] who constructed
an exponential relationship between SM and soil reflectance. Moreover, Jacquemoud
et al. [25] designed a radiative transfer model called SOILSPEC, which can describe the
optical properties of soil from 450 nm to 2450 nm regarding the variation of SM.

On the other hand, the optical SM index method focuses on building various spectral
indexes to highlight the information from SM and exclude the information from other
influencing factors on soil reflectance. It has been reported that there are some bands
sensitive to the variation of SM especially in the red and shortwave infrared (SWIR)
spectrum [26]. As a result, various SM indexes were proposed using the differences among
varied spectral bands. According to our best knowledge, there are 13 typical optical SM
indexes which include the Perpendicular Drought index (PDI) [27], Modified Perpendicular
Drought Index (MPDI) [28], Distance Drought Index (DDI) [29], Moisture Stress Index
(MSI) [30], Normalized Difference Water Index (NDWI) [31], Global Vegetation Moisture
Index (GVMI) [32], Land Surface Water Index (LSWI) [33], Normalized Multi-band Drought
Index (NMDI) [34], Shortwave Angle Slope Index (SASI) [35], Optical TRApezoid Model
(OPTRAM) [36], Visible and Shortwave Infrared Drought Index (VSDI) [26], Water Index
Soil (WISOIL) [30], and Surface Water Capacity index(SWCI) [37].

The above-mentioned SM index method is the mainly concern of this study because:
(1) there are abundant data resources of multispectral remote sensing for generating these
SM indexes; (2) they are easy to use for monitoring drought and the variation of SM;
(3) it is a convenient way to obtain high spatiotemporal resolution information of SM and
agricultural drought. According to the above reviews, we found that there are various
optical SM indexes, and they were designed based on different band combinations and
different mathematical forms. Facing so many SM indexes, we cannot help but ask: what is
the logic behind these optical SM indexes, what are the differences and relations among
them, and how should they be arranged into different categories? These are important
questions are worth further exploration, especially when users outside of the remote
sensing community are faced with so many choices. Therefore, it is necessary to conduct
comparison analysis among the various optical SM indexes. However, very few studies
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exist which compare the abovementioned 13 typical SM indexes. Most of the studies only
evaluate a few of them. Moreover, the performances of these SM indexes have scarcely been
evaluated with continuously distributed SM in space from the aircraft experimentation.
Most of them were evaluated with in situ observations of SM; in spite of that, the remotely
sensed SM indexes are continuously distributed in space [38,39]. Comparisons of spatially
distributed SM indexes with in situ observed SM suffer from the scale mismatch issue, in
view of which the SM usually exhibits a high spatial heterogeneity due to the effects of soil
texture, structure, topographic features, land cover patterns, etc. [40]. For example, only
four indexes: VSDI, LSWI, SWCI, and NMDI were compared with each other in [26] and
they were evaluated with an in situ observed SM index. The OPTRAM was only compared
with the traditional thermal–optical trapezoid model in [36] and SM measured with a
network of electromagnetic sensors installed at a ~5 cm depth employed as reference. The
above issues motivated us to evaluate and analyze the 13 abovementioned typical optical
SM indexes with aircraft experimental observations. The primary objective of this study
is to revisit their basic physics, clarify their differences and relations, and provide some
modifications for better utilization of optical SM indexes for SM and drought monitoring.

2. Materials
2.1. Aircraft Experiment Observations

In order to obtain continuously distributed SM in space with a similar spatial resolu-
tion to optical SM indexes, we collected the gridded SM obtained from two aircraft field
campaigns SMAPVEX12 and SMAPVEX16 in Manitoba, Canada. The two field campaigns
belong to the SMAP (Soil Moisture Active Passive, an Earth satellite mission) post-launch
calibration and validation activities, which are intended both to assess the quality of the
mission products and to support analyses that lead to their improvement. The field cam-
paign was performed every few years such as the Soil Moisture Active Passive Validation
Experiment 2012 (SMAPVEX12), 2015 (SMAPVEX15), 2016 Manitoba (SMAPVEX16 Man-
itoba), 2016 Iowa (SMAPVEX16 Iowa), and 2019–2021 (SMAPVEX19-21). We selected
SMAPVEX12 and SMAPVEX16 Manitoba because (1) both of them were located in Man-
itoba, Canada; (2) they provided gridded SM for free. The SMAPVEX19-21 data are the
latest data for this research. However, no gridded SM was provided in SMAPVEX19-21
at the time of this study. More information about the field campaigns comes from the
following website:(https://nsidc.org/data/smap/validation/val-data.html (accessed on
17 June 2021).

The airborne field campaigns generally carry the Passive/Active L-band Sensor
(PALS), which includes both passive and active L-band sensors that view the land surface at
a constant incidence angle of 40◦ [41–43]. The gridded SM retrieved from PALS corresponds
to the soil moisture in the top ~5 cm and it was critically validated in the above experiments.
It was reported that the SM retrieval performance in non-forested area for SMAPVEX12
is: RMSE (root mean square error) 0.058 m3/m3, bias −0.015 m3/m3, ubRMSE (unbiased
RMSE) 0.056 m3/m3, and R (Pearson correlation) 0.87 [44]. The SM uncertainty estimates
were reported that the uncertainty of the SM retrieval is within reasonable limits which
means that 90% of the data have an uncertainty less than 0.04 m3/m3 [45]. The areas of
these field campaigns and their land cover types are presented in Figure 1.

The SMAPVEX12 campaign covered approximately 6 weeks from 6 June to 7 July in
2012. This campaign is located in an agricultural region in south-central Manitoba, Canada.
Each grid cell of the aircraft SM in SMAPVEX12 has a nominal area of approximately
1500 m × 1500 m. The SMAPVEX16 Manitoba experiment spanned more than one month
from 8 June to 22 July in 2016. It has the same location as the SMAPVEX12 experiment. The
aircraft observed SM from SMAPVEX16 Manitoba has a spatial resolution of 500 m × 500 m.
In addition to the aircraft SM, we also collected the in situ observed SM during the field
campaigns. The spatial distribution of these stations is also presented in Figure 1.

https://nsidc.org/data/smap/validation/val-data.html
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Figure 1. Spatial distribution and land cover type of (a) SMAPVEX12 and (b) SMAPVEX16-Manitoba.

2.2. Remote Sensing Data

Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance prod-
ucts (MOD09A1) and Sentinel-2 multispectral imager (MSI) Level-1C data were utilized in
this study. The MOD09A1 data have a spatial resolution of 500 m which can match the spa-
tial resolution of aircraft SM. There are 7 bands of surface reflectance in MOD09A1 which
include the Red band (620–670 nm), NIR band (841–875 nm), Blue band (453–479 nm),
Green band (545–565 nm), SWIR1 band (1230–1250 nm), SWIR2 band (1628–1652 nm) and
SWIR3 band (2105–2155 nm). The HEG (HDF-EOS To GeoTIFF Conversion Tool) was
used for preprocessing the original MOD09A1 products. In order to match up aircraft
SM in SMAPVEX12, the averaging method was used to aggregate 500 m into 1500 m.
The collected Sentinel-2 products are at the level of Level-1C, which is top-of-atmosphere
reflectance in cartographic geometry. We used Sen2cor to implement radiation calibration
and atmospheric correction to create bottom-of-atmosphere reflectance data. There are
13 spectral bands in MSI data where band 2, 3, 4, and 8 are the Blue, Green, Red, and
NIR bands. Band 11 and 12 of MSI are two SWIR bands centered on around 1613.7 nm
and 2202.4 nm corresponding to the SWIR2 and SWIR3 of MOD09A1, respectively. For
MOD09A1, the aircraft SM were matched with it when their time values intersected. For
Sentinel-2 Level-1C, the aircraft SM were matched when their time values were the closest.
The metadata information of the study data is presented in Table 1.

Table 1. Materials used in this study.

Sources Parameters Products Temporal Coverage Spatial
Resolution

Temporal
Resolution

SMAPVEX12 Soil Moisture
Aircraft PALS SM 12 June 2012 to 19 July 2012 1.5 km /

In situ SM 7 June 2012 to 19 July 2012 / /
Land cover

classification Land cover data 12 June 2012 1.5 km /

SMAPVEX16-
Manitoba

Soil moisture
Aircraft PALS SM 8 June 2016 to 22 July 2016 500 m /

In situ SM 8 June 2016 to 22 July 2016 / /
Land cover

classification Land cover data 8 June 2016 500 m /

MODIS Surface reflectance MOD09A1 7 June 2012 to 19 July 2012 and
8 June 2016 to 22 July 2016 500 m 8-day

Sentinel-2 TOA reflectance Level-1C 10 June 2016 and 21 June 2016 10 m, 20 m, 60 m 5-day
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3. Methods
3.1. Optical SM Indexes

The 13 typical optical SM indexes were implemented and evaluated in this study,
which include PDI, MPDI, DDI, MSI, NDWI, GVMI, LSWI, NMDI, SASI, OPTRAM, VSDI,
WISOIL, and SWCI. Table 2 lists the specific algorithms of these SM indexes and their
correlation with SM, where the correlation was represented with N to indicate negative
correlation and P for positive correlation.

Table 2. The optical SM indexes used in this study and their correlation with SM.

Index Equation Correlation References

PDI PDI = 1√
M2+1

(RRed + M× RNIR) N Ghulam, Qin and Zhan [27]

MPDI MPDI = (RRed+M×RNIR)− fv(Rv,Red+M×Rv,NIR))

(1− fv)
√

M2+1
N Ghulam, Qin, Teyip and Li [28]

DDI DDI = |OD|
(1+NDVI)

N Yang, Qin, Jin and Yao [29]

MSI MSI = RSWIR2
RNIR

N Bryant, Thoma, Moran, Goodrich,
Keefer, Paige and Skirvin [30]

NDWI NMWI = RNIR−RSWIR1
RNIR+RSWIR1

P Gao [31]

GVMI GVMI = (RNIR+0.1)−(RSWIR2+0.02)
(RNIR+0.1)+(RSWIR2+0.02)

P Ceccato, Gobron, Flasse, Pinty and
Tarantola [32]

LSWI LSWI = RNIR−RSWIR2
RNIR+RSWIR2

P Xiao, Zhang, Braswell, Urbanski, Boles,
Wofsy, Moore Iii and Ojima [33]

NMDI NMDI = RNIR−(RSWIR2−RSWIR3)
RNIR+(RSWIR2−RSWIR3)

N/P Wang and Qu [34]

SASI SASI = βSWIR1 × (SWIR2− NIR) N Khanna, Palacios-Orueta, Whiting,
Ustin, Riano and Litago [35]

OPTRAM W = id+sd×NDVI−STR
id−iW+(sd−sw)×NDVI

P Sadeghi, Babaeian, Tuller and Jones [36]

VSDI VSDI = 1− ((+(RSWIR2 − RBlue) + (RRed − RBlue)) P Zhang, Hong, Qin and Liu [26]

WISOIL WISOIL= RSWIR2
RSWIR1

N Bryant, Thoma, Moran, Goodrich,
Keefer, Paige and Skirvin [30]

SWCI SWCI = RSWIR2−RSWIR3
RSWIR2+RSWIR3

P DU, Wang, Zhou and Wei [37]

Where R represents the surface reflectance at various remote sensing bands in MOD09A1.
M is the slope of the soil line. fv is the fractional vegetation coverage. Rv,Red and Rv,NIR were
0.05 and 0.5, respectively. OD is the distance from a point in NIR and Red space to the origin
point. βSWIR1 is the angle formed at vertex SWIR1 by the NIR-SWIR1-SWIR2 reflectance
bands. STR is the SWIR Transformed Reflectance, STR = (1− RSWIR2)

2/(2 ∗ RSWIR2).
OPTRAM is derived from the STR and NDVI space. When NDVI is 0, the value of dry
side is id, and the value of wet side is iw. sd and sw are the slopes of dry side and wet side,
respectively. N stands for negative correlation. P stands for positive correlation.

3.2. Evaluation Methods

The evaluation was conducted three-fold. Firstly, MODIS-derived SM indexes were
compared with continuously distributed aircraft SM from SMAPVEX12 and SMAPVEX16.
Secondly, they were also evaluated with the in situ observed SM during the two aircraft
experiments. Thirdly, Sentinel-2 MSI-derived SM indexes were compared with the aircraft
SM from SMAPVEX16. Since the optical SM index provides an indicator of the SM rather
than the absolute value of SM, Pearson’s correlation coefficient (R) between the optical SM
index and the aircraft or in situ SM was used as a measurement. The higher absolute value
of R indicates better consistence and as a result demonstrates better performance. Box chart
statistics of R were used to represent the performance at the statistical level. Additionally, a
linear equation was used to fit optical SM indexes and aircraft or in situ SM which can be
expressed as:

θ = a× SMI + b (1)
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where θ represents the aircraft or in situ SM; SMI is the optical SM index; a and b are
coefficients. Several measurements were employed to measure the performance of SMI
in fitting aircraft or in situ SM, which include the coefficient of determination (R2), Root
Mean Square Error (RMSE), normalized RMSE (nRMSE), Mean Absolute Error (MAE), and
F-value test for comparative analysis (F). Mathematically, higher R2 and F with smaller
RMSE/nRMSE and MAE represent better modeling accuracy and better performance of
the SMI. The following equations were used to calculate R2, RMSE, nRMSE, MAE, and F:

R2 = 1−

n
∑

i=1
(θi − θi

′)
2

n
∑

i=1

(
θi − θ

)2 (2)

RMSE =

√√√√√ n
∑

i=1
(θi − θi

′)
2

n
(3)

nRMSE =
RMSE

θmax − θmin
(4)

MAE =

n
∑

i=1
|θi − θi

′|

n
(5)

F =
S2

θ′

S2
θ

=

1
n−1 ∑n

i=1

(
θi
′ − θ′

)2

1
n−1 ∑n

i=1
(
θi − θ

)2 (6)

where θ and θ are measured SM and its average; θ′ and θ′ are estimated SM and its average;
θmax and θmin are the measured maximum and minimum SM; n is the sample number.

4. Results
4.1. Comparing MODIS-Derived SM Indexes with Aircraft SM

Figure 2 presents the spatial distribution of the aircraft SM and the optical SM indexes
on 19 June 2016 during the SMAPVEX16 Manitoba experiment. Figure 2a is the aircraft
SM which indicates that there are some low-value areas of SM in the lower left part and
some high-value areas in the upper right part of the study area. Figure 2b–l are the spatial
distribution of SM indexes PDI, MPDI, DDI, MSI, NDWI, GVMI, LSWI, NMDI, SASI,
WISOIL and SWCI, respectively. Figure 2m shows the OPTRAM model and Figure 2n
shows the VSDI index. We have adjusted the color table in all subfigures to unify the
indication of SM variation. It can be clearly seen that the OPTRAM and VSDI index
achieved the best performance in presenting the spatial variation of SM compared with the
aircraft SM. The other indexes presented worse performance than OPTRAM and VSDI in
indicating the spatial variation of SM.

In another evaluation, scatter plots between the aircraft SM and optical SM index were
presented. As shown in Figure 3, the comparisons were conducted on 15 June 2012 during
the SMAPVEX12 experiment. The optical SM index with negative correlation with SM is
expressed as a negative value in Figure 3. Similar to the results in Figure 2, we found that
OPTRAM achieved the highest R at the value of 0.61 and the VSDI index achieved an R of
0.56. The other indexes had smaller R values.
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In order to evaluate the results comprehensively, we constructed box plot statistics
on the R values between the aircraft SM and the optical SM indexes, which are illustrated
in Figure 4. The statistics were constructed on the whole study period of all aircraft
experiments (Figure 4a) and each aircraft experiment (Figure 4b,c). The optical SM index
with negative correlation with SM is also expressed as a negative value. During the
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SMAPVEX12, the R values of OPTRAM ranged from 0.4 to 0.6 and the R of VSDI varied
between 0.38 and 0.58. The PDI, MPDI, and DDI achieved the worst performance since their
R values varied from −0.2 to 0.1. The other indexes achieved a performance better than the
PDI, MPDI, and DDI but worse than the OPTRAM and VSDI. The same phenomenon was
found during the SMAPVEX16 Manitoba.
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whole study period in (a) all experiments, (b) the SMAPVEX12 experiment, (c) the SMAPVEX16
Manitoba experiment.

Table 3 lists the average R2, RMSE, nRMSE, MAE, and F values of each SMI as
compared with the aircraft SM. As can be seen from the table, the R2 and F of the OPTRAM
index is the largest followed by the VSDI index and the smallest R2 and F values were
found for the DDI, PDI, and MPDI indexes. Similarly, the OPTRAM and VSDI achieved
the lowest values for RMSE, nRMSE, and MAE. They are 7.01%, 16.37%, and 5.53% for
the OPTRAM and 7.13%, 16.65%, and 5.65% for the VSDI, respectively. In summary, the
comparisons with aircraft SM indicated that the OPTRAM and VSDI achieved the best
performance statistically. The PDI, MPDI, and DDI achieved the worst performance and
the performances achieved by the other SM indexes varied between them.
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Table 3. Comparisons between aircraft SM and optical SMIs with MODIS data.

SMIs R2 RMSE nRMSE MAE F

OPTRAM 0.20 7.01% 16.37% 5.53% 461.02
VSDI 0.18 7.13% 16.65% 5.65% 407.20

NDWI 0.11 7.37% 17.26% 5.79% 158.60
NMDI 0.10 7.47% 17.48% 5.90% 241.43
GVMI 0.10 7.50% 17.52% 5.96% 149.65
LSWI 0.09 7.54% 17.63% 5.99% 131.55
MSI 0.08 7.57% 17.69% 6.04% 130.03
SASI 0.07 7.61% 17.79% 6.04% 99.70

WISOIL 0.06 7.70% 17.96% 6.16% 92.83
SWCI 0.06 7.74% 18.06% 6.20% 131.31
DDI 0.03 7.83% 18.28% 6.04% 107.55
PDI 0.03 7.83% 18.28% 6.26% 89.40

MPDI 0.03 7.84% 18.32% 6.29% 95.09

4.2. Evaluating MODIS-Derived SM Indexes with In Situ Observed SM

Figure 5 presents the evaluation results with in situ observed SM, where subfigure (a)
is the result for all experiments, (b) is for the SMAPVEX12 experiment, and (c) is for the
SMAPVEX16 experiment. As shown in Figure 5a, the OPTRAM model and VSDI index
had the highest R value with in situ measured SM. The other indexes had lower R values
and the worst performance was found for the DDI, PDI, and MPDI indexes. The same
phenomenon was also found for Figure 5b,c.
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Table 4 lists the average R2, RMSE, nRMSE, MAE, and F values of each SMI as
compared with the in situ SM. Again, the OPTRAM and VSDI achieved the biggest R2

and F values and the lowest RMSE, nRMSE, and MAE values. They achieved the best
performance. The PDI, MPDI, and DDI still achieved the worst performance and the
performance achieved by the other SM indexes varied between them.

Table 4. Comparisons between in situ SM and optical SMIs with MODIS data.

Sources R2 RMSE nRMSE MAE F

OPTRAM 0.17 7.08% 17.34% 6.57% 168.79
VSDI 0.16 7.16% 17.42% 6.98% 159.79

NDWI 0.10 7.41% 18.01% 6.84% 97.94
NMDI 0.09 7.53% 18.15% 6.93% 84.55
GVMI 0.10 7.39% 17.98% 6.80% 102.09
LSWI 0.10 7.41% 18.01% 6.84% 97.90
MSI 0.10 7.41% 18.03% 6.82% 96.18
SASI 0.08 7.51% 18.23% 6.97% 75.76

WISOIL 0.09 7.47% 18.17% 6.90% 83.18
SWCI 0.07 7.61% 18.42% 6.98% 58.16
DDI 0.05 7.75% 18.65% 7.24% 40.71
PDI 0.05 7.71% 18.59% 7.21% 46.65

MPDI 0.02 7.84% 18.93% 7.28% 13.14

The above evaluations demonstrate that the OPTRAM model and VSDI index achieved
the best performance among the various optical SM indexes. They were subsequently
selected to conduct a temporal variation analysis. Taking three stations for example,
Figure 6 presents the temporal variation of the in situ observed SM and OPTRAM/VSDI
index. A fluctuating variation of in situ observed SM can be found in Figure 6. Furthermore,
the temporal variations of OPTRAM and VSDI indexes were found to be consistent with
that of in situ observed SM. The results in Figure 6 demonstrate the validity of OPTRAM
and VSDI indexes in depicting the temporal variation of SM.
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4.3. Comparing Sentinel MSI-Derived SM Indexes with Aircraft SM

For further evaluation, the optical SM indexes calculated by Sentinel-2 MSI data were
compared with aircraft SM. The optical SM indexes that can be calculated with Sentinel-2
MSI data are PDI, MPDI, DDI, MSI, NDWI, GVMI, LSWI, NMDI, OPTRAM, VSDI, and
SWCI. Figures 7 and 8 show the scatter plot between the optical SM index and aircraft
SM on 11 June and 20 June 2016. There is only one day difference between the Sentinel-2
MSI imaging date and aircraft SM date. As shown in Figure 7, the R value between VSDI
index and aircraft SM data around 0.34, and that of the OPTRAM index is around 0.32. The
other indexes had R values less than that of VSDI and OPTRAM. In Figure 8, the R value
of the VSDI index is 0.29 and that of the OPTRAM is 0.25. Again, they achieved the best
performance among the various optical SM indexes.

Remote Sens. 2021, 13, 4638 13 of 20 
 

 

SWCI. Figures 7 and 8 show the scatter plot between the optical SM index and aircraft SM 
on 11 June and 20 June 2016. There is only one day difference between the Sentinel-2 MSI 
imaging date and aircraft SM date. As shown in Figure 7, the R value between VSDI index 
and aircraft SM data around 0.34, and that of the OPTRAM index is around 0.32. The other 
indexes had R values less than that of VSDI and OPTRAM. In Figure 8, the R value of the 
VSDI index is 0.29 and that of the OPTRAM is 0.25. Again, they achieved the best perfor-
mance among the various optical SM indexes. 

 
Figure 7. (a–k) Scatter plot between the aircraft SM and Sentinel MSI-derived SM indexes on 11 June 2016 during the 
SMAPVEX16 Manitoba experiment. 
Figure 7. (a–k) Scatter plot between the aircraft SM and Sentinel MSI-derived SM indexes on 11 June 2016 during the
SMAPVEX16 Manitoba experiment.



Remote Sens. 2021, 13, 4638 13 of 19
Remote Sens. 2021, 13, 4638 14 of 20 
 

 

 
Figure 8. (a–k) Scatter plot between aircraft SM and Sentinel MSI-derived SM indexes on 20 June 2016 during the SMA-
PVEX16 Manitoba experiment. 

As regards the VSDI and OPTRAM, we think they are comparable with each other. 
That is because (1) during the evaluation of MODIS-derived SM indexes, the OPTRAM 
was a little better than the VSDI; (2) during the evaluation of Sentinel MSI-derived SM 
indexes, the VSDI was a little better than the OPTRAM. Moreover, Figure 9 shows the 
spatial distribution of the aircraft SM, OPTRAM and VSDI on 11 June and 20 June 2016. 
Sentinel-2 MSI data have higher spatial resolution and thus show more detailed spatial 
distribution. As shown in Figure 9, aircraft SM, OPTRAM and VSDI have similar spatial 
distribution. 
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SMAPVEX16 Manitoba experiment.

As regards the VSDI and OPTRAM, we think they are comparable with each other.
That is because (1) during the evaluation of MODIS-derived SM indexes, the OPTRAM was
a little better than the VSDI; (2) during the evaluation of Sentinel MSI-derived SM indexes,
the VSDI was a little better than the OPTRAM. Moreover, Figure 9 shows the spatial
distribution of the aircraft SM, OPTRAM and VSDI on 11 June and 20 June 2016. Sentinel-2
MSI data have higher spatial resolution and thus show more detailed spatial distribution.
As shown in Figure 9, aircraft SM, OPTRAM and VSDI have similar spatial distribution.
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5. Discussion
5.1. Implications

The above results indicate that VSDI and OPTRAM have comparable performance,
and they outperform the other optical SM indexes. We think that this phenomenon can be
interpreted by the spectrum features of soil and vegetation. Figure 10 presents the spectrum
features of vegetation and soil with differing water content. The spectral reflectance curves
were obtained from the spectral libraries provided by ENVI software.
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We can find that, when vegetation suffers water stress, absorption in blue and red
bands decreases, and changes in the red spectrum are more sensitive than those in the blue
spectrum. The reflectance of NIR is mainly sensitive to changes in the internal structure
of leaves which show a smaller response to changes in water content. In contrast, the
reflectance of SWIR bands increased significantly when leaves were deficient in water.
Regarding the spectral response to soil moisture changes, we found that the whole spectral
reflectance of soil decreases with the increase in soil moisture content. The variation range
of soil reflectance with the change in soil moisture is relatively small in the region of the
visible light spectrum, but relatively great in a longer wavelength region. As a result, SWIR
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and Red bands are relatively sensitive bands to the change in soil and vegetation moisture,
while the NIR and Blue bands are relatively insensitive bands to soil and vegetation
moisture change.

Based on the above recognition, the optical SM indexes can be classified into the
following five categories. Table 5 shows the classification of typical optical soil moisture
indices. This classification is based on varied combinations of remote sensing bands. PDI,
MPDI, and DDI can be organized into one category, since they use the Red band as the
measurement or sensitive band and NIR as the reference or the insensitive band. The
second category includes MSI, NDWI, GVMI, LSWI, NMDI, and SASI because they employ
SWIR bands as the measurement band and NIR as the reference band. WISOIL and SWCI
are recognized as one category since they only used SWIR bands. For OPTRAM and VSDI,
the Red band and SWIR band were combined as measurement band which is different
from the other indexes. There are two sensitive bands used in OPTRAM and VSDI, while
there is usually only one sensitive band used in the other optical SM indexes, which may
be the main reason why they achieved the best performance in the above evaluations.
However, we think OPTRAM and VSDI should be organized into different categories
because different reference bands were used in them, i.e., NIR for OPTRAM and Blue for
VSDI.

Table 5. Classification of the typical optical SM indexes.

Categories Index Bands Used

Categories 1
PDI NIR, Red

MPDI NIR, Red
DDI NIR, Red

Categories 2

MSI NIR, SWIR2
NDWI NIR, SWIR1
GVMI NIR, SWIR2
LSWI NIR, SWIR2
NMDI NIR, SWIR2, SWIR3
SASI NIR, SWIR1, SWIR2

Categories 3 WISOIL SWIR1, SWIR2
SWCI SWIR2, SWIR3

Categories 4 OPTRAM NIR, Red, SWIR2

Categories 5 VSDI Blue, Red, SWIR2

5.2. Improvements

Firstly, we would like to improve the VSDI index since that (1) it achieved very good
performance in the above evaluations, and (2) its mathematical expression is very simple
which may not highlight the difference between sensitive and insensitive bands of soil and
vegetation moisture. Consequently, the following expressions were created which can be
labeled Modified VSDI 1 (MVSDI1), MVSDI2, MVSDI3, MVSDI4, and MVSDI5.

MVSDI1 = 1− ((RSWIR2 − RBlue) + (RSWIR1 − RBlue) + (RRed − RBlue)) (7)

MVSDI2 =
((RBlue − RSWIR2)− (RBlue − RRed))

((RBlue − RSWIR2) + (RBlue − RRed))
(8)

MVSDI3 =

√
(RBlue − RSWIR2)

(RBlue + RSWIR2)
× (RBlue − RRed)

(RBlue + RRed)
(9)

MVSDI4 =
(RBlue − RSWIR2)

(RBlue + RSWIR2)
(10)

MVSDI5 = [(RBlue − RSWIR2)× (RBlue − RSWIR1)× (RBlue − RRed)]
1/3 (11)
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where RBlue, RRed, RSWIR1, and RSWIR2 are spectral reflectance at the corresponding bands
of MOD09A1, respectively.

Figure 11 presents the comparisons between VSDI, modified VSDIs, and aircraft SM.
An interesting phenomenon can be found in Figure 11 that the varied modifications in
mathematical expression of VSDI do not improve the performance of VSDI. Specifically,
MVSDI2, MVSDI3, MVSDI4, and MVSDI5 did not outperform the VSDI and MVSDI1 in
the evaluations with SMAPVEX12 data, SMAPVEX16 data, and All experiments data. In
contrast, MVSDI1 achieved better performance than the VSDI in the above evaluations.
Notice that MVSDI1 and VSDI have the same mathematical expression while the former
adds a sensitive band, i.e., SWIR1.
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Furthermore, we tried to improve the OPTRAM because the blue band, a robust
reference or insensitive band for soil and vegetation moisture, is not integrated into it. As
we know, OPTRAM is derived from the STR and NDVI space, which is a derivative of
the Land surface temperature (LST) and NDVI space. Their basic theory is to strip the
interference of vegetation on the SM’s indicator, STR or LST. In view of this basic theory,
we constructed two new indexes by creating VSDI and NDVI space, as well as creating
MVSDI1 and NDVI space. Based on the two new spaces and referring to the calculation of
OPTRAM, the two new indexes can be obtained. Temporarily, we labeled them NDVI-VSDI
and NDVI-MVSDI1.

Figure 12 presents the comparisons between OPTRAM, modifications of OPTRAM
(i.e., NDVI-VSDI and NDVI-MVSDI1), and the aircraft SM. We found that the NDVI-VSDI is
only slightly better than the OPTRAM, as compared with the aircraft SM. However, NDVI-
MVSDI1 achieved a significantly better performance than the OPTRAM for all experiments.
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6. Conclusions

In this study, 13 optical SM indexes that were constructed with the spectral reflectance
around 0.4~2.0 µm were compared with aircraft and in situ SM observations from two
airborne field campaigns, SMAPVEX12 and SMAPVEX16 in Manitoba, Canada. The results
can be summarized as follows:

(1) The VSDI and OPTRAM indexes achieved the best performance among the thirteen
optical SM indexes as compared with aircraft and in situ observed SM. They also
presented results consistent in temporal variation with the in situ observed SM.

(2) The VSDI and OPTRAM presented comparable performance with each other; while
the former has very simple calculation and expression, the latter requires a complex
process to determine the dry and wet boundaries.

(3) The VSDI and OPTRAM indexes both capitalize on two bands (i.e., the Red and SWIR
bands) of the soil and vegetation spectrum sensitive to water content, whereas the
other eleven SM indexes only employ one sensitive band (i.e., Red or SWIR band).
This may be the main reason for the evaluation results. A classification of the optical
SM indexes was proposed according to the combination of the sensitive band and
insensitive band.

(4) Based on the classification, improvements to the VSDI and OPTRAM were proposed
and validated in this study, by adding a more sensitive band to the VSDI and combin-
ing the NDVI and modified VSDI into a new feature space for calculating optical SM
indexes such as OPTRAM.

The optical SM indexes have the features of convenience, efficiency and high spatial
resolution, which are of great significance to monitoring agricultural drought, soil moisture,
as well as the ecological environment. This study provides a reference to select and utilize
the current numerous optical SM indexes. The improvements attempted in this study open
avenues for further optimization of optical SM indexes. It is worth noting that the studied
optical SM indexes were designed for soil and vegetation areas. They may not work for the
areas with bare rock, built-up areas, areas with snow or ice, etc.
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