
Citation: Zhang, Z.; Qu, Z.; Liu, S.; Li,

D.; Cao, J.; Xie, G. Expandable

On-Board Real-Time Edge

Computing Architecture for Luojia3

Intelligent Remote Sensing Satellite.

Remote Sens. 2022, 14, 3596. https://

doi.org/10.3390/rs14153596

Academic Editor: Prem

Prakash Jayaraman

Received: 14 June 2022

Accepted: 25 July 2022

Published: 27 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

Expandable On-Board Real-Time Edge Computing Architecture
for Luojia3 Intelligent Remote Sensing Satellite
Zhiqi Zhang 1,2 , Zhuo Qu 1, Siyuan Liu 1, Dehua Li 3,*, Jinshan Cao 1 and Guangqi Xie 1,2

1 School of Computer Science, Hubei University of Technology, Wuhan 430068, China;
zzq540@hbut.edu.cn (Z.Z.); quzhuo19@hbut.edu.cn (Z.Q.); liusy218@hbut.edu.cn (S.L.);
caojs@hbut.edu.cn (J.C.); xiegqrs@whu.edu.cn (G.X.)

2 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing,
Wuhan University, Wuhan 430079, China

3 School of Computer Science, Huanggang Normal University, Huanggang 438000, China
* Correspondence: lidehua@hgnu.edu.cn; Tel.: +86-186-2718-6880

Abstract: Since the data generation rate of high-resolution satellites is increasing rapidly, to relieve the
stress of data downloading and processing systems while enhancing the time efficiency of information
acquisition, it is important to deploy on-board edge computing on satellites. However, the volume,
weight, and computability of on-board systems are strictly limited by the harsh space environment.
Therefore, it is very difficult to match the computability and the requirements of diversified intelligent
applications. Currently, this problem has become the first challenge of the practical deployment of on-
board edge computing. To match the actual requirements of the Luojia3 satellite of Wuhan University,
this manuscript proposes a three-level edge computing architecture based on a System-on-Chip (SoC)
for low power consumption and expandable on-board processing. First, a transfer level is designed
to focus on hardware communications and Input/Output (I/O) works while maintaining a buffer
to store image data for upper levels temporarily. Second, a processing framework that contains a
series of libraries and Application Programming Interfaces (APIs) is designed for the algorithms to
easily build parallel processing applications. Finally, an expandable level contains multiple intelligent
remote sensing applications that perform data processing efficiently using base functions, such as
instant geographic locating and data picking, stream computing balance model, and heterogeneous
parallel processing strategy that are provided by the architecture. It is validated by the performance
improvement experiment that following this architecture, using these base functions can help the
Region of Interest (ROI) system geometric correction fusion algorithm to be 257.6 times faster than
the traditional method that processes scene by scene. In the stream computing balance experiment,
relying on this architecture, the time-consuming algorithm ROI stabilization production can maintain
stream computing balance under the condition of insufficient computability. We predict that based on
this architecture, with the continuous development of device computability, the future requirements
of on-board computing could be better matched.

Keywords: on-board; real-time; edge computing; system architecture; remote sensing

1. Introduction

The traditional pattern of obtaining useful information from remote sensing satellites
contains three major steps: on-board data generation, data downloading, and on-ground
data processing. On the one hand, with the growth in the spatial resolution, spectral
resolution, and temporal resolution of modern remote sensing satellites, the data generation
rate is increasing rapidly. This situation brings massive stress to data downloading and
processing systems, and the information acquisition delay is also becoming longer. On the
other hand, users are increasingly demanding the timeliness of information acquisition
from remote sensing satellites. A shorter delay or instant response is required in many
high-timeliness applications, such as disaster prevention and mitigation, earthquake early

Remote Sens. 2022, 14, 3596. https://doi.org/10.3390/rs14153596 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14153596
https://doi.org/10.3390/rs14153596
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-1914-9430
https://orcid.org/0000-0003-2266-5620
https://doi.org/10.3390/rs14153596
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14153596?type=check_update&version=2

Remote Sens. 2022, 14, 3596 2 of 20

warning, and rescue guidance. Thus, task-driven on-board processing is provided to solve
this contradiction.

To relieve the stress of data downloading and processing systems, it is important
to deploy on-board edge computing on satellites. Ideally, with on-board data picking,
processing, and downloading, a massive amount of raw data has been concentrated into
little useful information that can be downloaded and delivered immediately [1,2]. Sev-
eral achievements have been made in this area; for example, the Coastal Ocean Imaging
Spectrometer (COIS) in the Naval Earth Map Observer (NEMO) satellite is used to charac-
terize the littoral region environment. COIS uses the Optical Real-time Adaptive Spectral
Identification System (ORASIS) to accomplish spectral filtering and spatial filtering, before
finally generating battlefield environmental information and a direct downlink [3]. The
Australian satellite, FedSat, carried a demonstration device for the feasibility of reconfig-
urable computing technology in space called High Performance Computing (HPC-I). Using
this device in conjunction with an optical sensor, the system could detect and monitor
natural disasters and would be capable of producing useful information that could be
broadcast directly within rapid timeframes [4]. The Yet Another Mission (YAM-3) satellite
launched by the US Space Development Agency carried an edge computing system called
Prototype on-Orbit Experimental Testbed (POET) based on SpaceCube v3.0 [5] technology,
which can perform autonomous data fusion and processing on board and is used by the US
military to detect and track a target on the ground or in the sea or air. Furthermore, several
Field Programmable Gate Array (FPGA)-based methods have been presented for on-board
processing, such as image ortho-rectification [6], feature point detection and matching [7],
object detection [8,9], and image classification [10,11].

In fact, in the harsh space environment, the design of the on-board processing system
will always be limited. The natural radiation from stable low-flux Galactic Cosmic Rays
(GCR) and infrequent high-flux Solar Particle Events (SPE) can have an impact on on-board
devices [12]. Depending on the radiation environment in which the on-board device is
located, ionizing radiation can produce radiation effects including Single Event Effect
(SEE) [13], Displacement Damage (DD), and Total Ionizing Dose (TID) [14]. The general
approach to mitigating SEE is redundancy techniques which are based on hardware, soft-
ware, and information redundancy [15], but this will cause a lot of resource consumption.
To solve this problem, Jacobs proposed a Reconfigurable Fault Tolerance (RFT) framework
to dynamically adjust a system’s level of redundancy and fault mitigation [16]. Glein
proposed an Adaptive Single Event Effect Mitigation (ASEEM) method for FPGA-based
processing systems, which dynamically adjusts the state of the processing system according
to different space radiation conditions to save system resources [17]. Sabogal proposed
Hybrid, Adaptive Reconfigurable Fault Tolerance (HARFT), a reconfigurable framework
for environmentally adaptive resilience in hybrid space systems [18]. As hybrid processors
become a trend and high-performance commercial devices are used for on-board com-
puting [19], the related research is also underway. The Science Data Processing Branch
at National Aeronautics and Space Administration (NASA) Goddard Space Flight Center
(GSFC) has pioneered a hybrid-processing approach that combines radiation-hardened
and commercial components while emphasizing a novel architecture harmonizing the
best capabilities of Central Processing Units (CPUs), Digital Signal Processing (DSPs), and
FPGAs [20]. Müller refined the methodology for assessing the Fault Detection, Isolation,
and Recovery (FDIR) design of on-board computers in space systems by introducing a
library of FDIR routines [21].

Although DSPs and FPGAs are used in most on-board embedded systems, Graphics
Processing Units (GPUs) are another feasible option. GPUs have already been implemented
on board for anomaly detection of hyperspectral images [22] and spaceborne Synthetic
Aperture Radar (SAR) processing [23]. Considering that GPUs are implemented in many
remote sensing fields, such as hyperspectral image compression, classification, unmixing,
and detection, they have already substantially enhanced the efficiency of the algorithms.
Additionally, GPUs are also widely used in intelligent remote sensing applications, such as

Remote Sens. 2022, 14, 3596 3 of 20

object detection, semantic segmentation, and change detection. It is predictable that using
GPU and CPU on board will make the processing system more efficient and expandable.

In previous work, embedded GPUs have been used to implement on-board stream
computing for sensor correction processing [24]. Through the strategy of multimodule
cooperation, scene-by-scene standard image product processing for flow-in data is real-
ized. To achieve this goal, the data generation rate, processing time consumption, and
computability need to be strictly matched. Predictably, once a different time-consuming
application is deployed, it is nearly impossible to maintain a strict balance in such a strategy.

The basic truth is that in the harsh space environment, limited by the volume, weight,
and power consumption, it is impossible to deploy as many computing devices on board
as every application needs. Moreover, another truth is that only a small part of the data
contains useful and important information on most occasions; other unimportant data
are disposable. Therefore, to build an expandable on-board processing system for the
deployment of various intelligent applications, first, the accurate geographic position of
the data must be calculated in time to locate the ROI. Second, a multi-buffer strategy must
be introduced to balance the difference between data generation and data processing for
applications, such as fusion, georectification, ROI extraction, cloud-cover detection, target
recognition, and change detection.

This manuscript proposes an expandable on-board edge computing architecture that
can not only provide autonomy for the computing performance of heterogeneous hardware
but also meet the needs of different intelligent applications as much as possible while
balancing the difference in data generation and data processing speed. In Section 2, an
instant geographic locating algorithm is proposed as the key base function of the archi-
tecture to assist on-board applications to quickly obtain the geographic position of the
current imaging data and extract ROI data while the data continuously flow-in, to ensure
that precious computability is used for important data. In Section 3, based on the SoC
hardware of Luojia3, an on-board edge computing architecture is proposed, which provides
a standard application template, base functions, and optimization strategies for developers
in realizing on-board stream computing for various applications.

2. Instant Geographic Locating

As a key step in on-board processing, instant geographic locating is extremely impor-
tant for quickly locating the ROI area data and filtering irrelevant data. It is the premise of
realizing multiple on-board applications under limited on-board computability and is the
underlying core function of the architecture of this manuscript.

2.1. Satellite Position and Attitude Interpolation

To obtain the geographic location of the pixels on the remote sensing satellite image
and to calculate the current imaging position in real-time, it is necessary to obtain the
exterior orientation elements, including the satellite position and the attitude information
at the imaging instant. Mainstream high-resolution satellites have independent position
and attitude measurement devices and independently obtain information periodically.
Therefore, when calculating the geographic location, it is necessary to obtain the value at
the imaging instant by interpolating the discrete data.

The original satellite position data of the satellite is a position and velocity vector
from Global Positioning System (GPS) or Beidou-2 (BD2) with a certain frequency. The
coordinates (Xs, Ys, Zs) of the projection center of each image at time t are interpolated from
the GPS or BD2 data by a cubic polynomial model.

Xs
(
t
)
= k0 + k1t + k2t2

+ k3t3

Ys
(
t
)
= m0 + m1t + m2t2

+ m3t3

Zs
(
t
)
= n0 + n1t + n2t2

+ n3t3
(1)

Remote Sens. 2022, 14, 3596 4 of 20

where k0, k1, k2, k3, m0, m1, m2, m3 n0, n1, n2, and n3 are the coefficients of the cubic
polynomial models, which are fit by the observed data; t is the normalized imaging time,
which is calculated as follows:

t =
t− tstart

tend − tstart
(2)

where tstart and tend are the start and end times of the satellite position data, respectively.
The original attitude data are the attitude quaternion of the satellite from the star

sensor or gyro with a sub-second frequency (4–8 Hz). Due to satellite jitter, the actual
attitude is not smooth, and the jitter affects the original image. Therefore, to ensure that
the fitting curve can pass through each observation point, the Lagrange polynomial model
shown in Equation (3) is used. However, to filter the oscillation and obtain a smooth
attitude, a cubic polynomial model whose detail is similar to position interpolation could
be used.

ϕ(t) =
n
∑

i=1
ϕ(ti)Wi

ω(t) =
n
∑

i=1
ω(ti)Wi

κ(t) =
n
∑

i=1
κ(ti)Wi

(3)

where Wi = ∏n
k=1
k 6=i

t−tk
ti−tk

, n is the total quaternion number for attitude interpolation, i is the index

number of the attitude quaternion, and ti is the observation time of the attitude quaternion.

2.2. Strict Geometric Modeling

In addition to the exterior orientation elements of every image, the interior orientation
elements are described by the look angle of the camera coordinates; they are determined by
laboratory calibration before launching and updated by inflight calibration during a certain
period after launching [25,26]. The strict geometric model can be established as follows:tanψx

tanψy
1

 = λ·Rsensor
body ·R

body
ECI (ϕ(t), ω(t), κ(t))·RECI

ECF(t)

X− Xs(t)
Y−Ys(t)
Z− Zs(t)

 (4)

where t is the imaging time of the scan line recorded by the camera; λ is a scale fac-
tor; ψx and ψy are the look angles; Rsensor

body is the camera install matrix calculated by in-
flight calibration, which can be treated as a fixed value over a long period of time;
Rbody

ECI (ϕ(t), ω(t), κ(t)) is the rotation matrix from the Earth-Centered Inertial (ECI) co-
ordinate system to the satellite body coordinate system converted by rotation angles ϕ(t),
ω(t), and κ(t), which are the pitch, roll, and yaw angles, respectively, and interpolated
from the attitude observation under the ECI coordinate system by time; RECI

ECF(t) is the
transformation matrix from the Earth-Centered Fixed (ECF) coordinate system to the ECI co-
ordinate system; and

[
Xs(t) Ys(t) Zs(t)

]T is the position vector of the projection center
in the ECF coordinate system, interpolated from the position observation by time.

2.3. ROI Location Algorithm

Based on the above satellite position and attitude interpolation method and strict
geometric modeling method, the geographic coordinates corresponding to each pixel can
be calculated. In order to quickly complete the calculation of the geometric position of
the flow-in data and the locating of the ROI with limited on-board computability, it is
necessary to reduce calculations as much as possible. This section proposes quick ROI
location algorithms for both linear array sensor data and frame array sensor data separately.

Remote Sens. 2022, 14, 3596 5 of 20

2.3.1. Linear Array Sensor Data

For linear array sensor data, each line of a raw image can be considered an independent
central projection imaging with independent external orientation elements. Thus, the strict
geometric models corresponding to various image lines are different. In addition, the
imaging line frequency of linear array sensor data is as high as 16 kHz. In the process of
satellite imaging, it is impossible to complete the calculation of the positions of all image
pixels and compare them with the position of the ROI because of the limitation of the
computing resources on board. Therefore, for the linear array data, this manuscript adopts
the locating method described below to complete the real-time computing of ROI location:

• We establish a strict geometric model of the current imaging line;
• We calculate the geographic position of the first and last pixels of the current line at T0,

and obtain the points (p0, q0);
• When T1 = T0 + ∆t, steps 1 and 2 are repeated to obtain the points (p1, q1);
• We determine whether the ROI center is located in the rectangle (p0, q0, p1, q1); if not,

we continue to repeat the above calculation steps after ∆t time;
• If the center of the ROI is located in the rectangle (pi, qi, pi+1, qi+1), we calculate the

exact image coordinates of the range of the ROI area.

Since only two points need to be calculated in a ∆t timespan, the above steps can be
completed in several milliseconds. The flowchart of this algorithm is shown in Figure 1.

Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 21

2.3. ROI Location Algorithm

Based on the above satellite position and attitude interpolation method and strict ge-

ometric modeling method, the geographic coordinates corresponding to each pixel can be

calculated. In order to quickly complete the calculation of the geometric position of the

flow-in data and the locating of the ROI with limited on-board computability, it is neces-

sary to reduce calculations as much as possible. This section proposes quick ROI location

algorithms for both linear array sensor data and frame array sensor data separately.

2.3.1. Linear Array Sensor Data

For linear array sensor data, each line of a raw image can be considered an independ-

ent central projection imaging with independent external orientation elements. Thus, the

strict geometric models corresponding to various image lines are different. In addition,

the imaging line frequency of linear array sensor data is as high as 16 kHz. In the process

of satellite imaging, it is impossible to complete the calculation of the positions of all image

pixels and compare them with the position of the ROI because of the limitation of the

computing resources on board. Therefore, for the linear array data, this manuscript adopts

the locating method described below to complete the real-time computing of ROI location:

• We establish a strict geometric model of the current imaging line;

• We calculate the geographic position of the first and last pixels of the current line at

𝑇0, and obtain the points (𝑝0, 𝑞0);

• When 𝑇1 = 𝑇0 + ∆𝑡, steps 1 and 2 are repeated to obtain the points (𝑝1, 𝑞1);

• We determine whether the ROI center is located in the rectangle (𝑝0, 𝑞0, 𝑝1, 𝑞1); if not,

we continue to repeat the above calculation steps after ∆𝑡 time;

• If the center of the ROI is located in the rectangle (𝑝𝑖 , 𝑞𝑖 , 𝑝𝑖+1, 𝑞𝑖+1), we calculate the

exact image coordinates of the range of the ROI area.

Since only two points need to be calculated in a ∆𝑡 timespan, the above steps can be

completed in several milliseconds. The flowchart of this algorithm is shown in Figure 1.

T

ROI

T0

T1

T2

T3

Not located

Located

Δt

Δt

Δt

Establish strict

imaging model

Calculate the

geographic position

of the endpoints

Whether the ROI

is located ?

Y

N Wait Δt

Next pair

Establish geometric

mapping model

based on endpoints

Calculate the exact

image coordinates of

ROI

Figure 1. Flowchart of ROI location for linear array sensor data. Figure 1. Flowchart of ROI location for linear array sensor data.

2.3.2. Frame Array Sensor Data

For the frame array sensor data, each image is a two-dimensional plane, the geographic
location of each pixel can be obtained only by establishing a strict model once, and the
computation amount of a single frame is as small as a single line in linear data. In this
manuscript, the method described below is used to complete the real-time computing of
ROI location:

• We establish a strict geometric model of the current imaging frame;

Remote Sens. 2022, 14, 3596 6 of 20

• We calculate the geographic position of the corner pixel of the current frame and
obtain the points (p0, q0, p1, q1);

• We determine whether the ROI center is located in the rectangle (p0, q0, p1, q1); if not,
we continue to repeat the above calculation step on subsequent frames;

• If the center point of the ROI is located in the rectangle (pi, qi, pi+1, qi+1), we calculate
the exact image coordinates of the range of the ROI area.

In general, the amount of computation for frame data is smaller than linear data, and
the above steps can be completed in several milliseconds. The flowchart of this algorithm
is shown in Figure 2.

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 21

2.3.2. Frame Array Sensor Data

For the frame array sensor data, each image is a two-dimensional plane, the geo-

graphic location of each pixel can be obtained only by establishing a strict model once,

and the computation amount of a single frame is as small as a single line in linear data. In

this manuscript, the method described below is used to complete the real-time computing

of ROI location:

• We establish a strict geometric model of the current imaging frame;

• We calculate the geographic position of the corner pixel of the current frame and

obtain the points (𝑝0, 𝑞0, 𝑝1, 𝑞1);

• We determine whether the ROI center is located in the rectangle (𝑝0, 𝑞0, 𝑝1, 𝑞1); if not,

we continue to repeat the above calculation step on subsequent frames;

• If the center point of the ROI is located in the rectangle (𝑝𝑖 , 𝑞𝑖 , 𝑝𝑖+1, 𝑞𝑖+1), we calculate

the exact image coordinates of the range of the ROI area.

In general, the amount of computation for frame data is smaller than linear data, and

the above steps can be completed in several milliseconds. The flowchart of this algorithm

is shown in Figure 2.

T

ROI

Frame0

Located

Not located

Establish strict

geometric model

Calculate the

geographic position

of the frame

Whether the ROI

is located ?

Y

N
Wait next

frame

Next frame

Establish simplify

geometric mapping

model based on

endpoints

Calculate the exact

image coordinates of

ROI

Frame1

Frame2

Figure 2. Flowchart of ROI location for frame array sensor data.

3. Edge Computing Architecture

The on-board computing device of the Luojia3 satellite is mainly composed of SoC

and FPGA. The SoC includes 8 GB Random Access Memory (RAM) for loading the oper-

ating system and running applications, 32 GB Flash Memory for storing applications,

basic data, and configuration, and 6-core ARM64 CPU and 256-core GPU processing units,

which are responsible for executing different intelligent applications. It uses Peripheral

Component Interconnect Express (PCIE) and Serial Peripheral Interface (SPI) to communi-

cate with FPGA. The FPGA is responsible for assisting the SoC with camera interaction,

external storage devices, system buses, and the application upload channel. The SoC high-

speed channel (PCIE) is connected to the FPGA, receives massive camera data through

the FPGA, and the low-speed channel (SPI) is used to receive the platform auxiliary data

Figure 2. Flowchart of ROI location for frame array sensor data.

3. Edge Computing Architecture

The on-board computing device of the Luojia3 satellite is mainly composed of SoC and
FPGA. The SoC includes 8 GB Random Access Memory (RAM) for loading the operating
system and running applications, 32 GB Flash Memory for storing applications, basic data,
and configuration, and 6-core ARM64 CPU and 256-core GPU processing units, which are
responsible for executing different intelligent applications. It uses Peripheral Component
Interconnect Express (PCIE) and Serial Peripheral Interface (SPI) to communicate with
FPGA. The FPGA is responsible for assisting the SoC with camera interaction, external
storage devices, system buses, and the application upload channel. The SoC high-speed
channel (PCIE) is connected to the FPGA, receives massive camera data through the
FPGA, and the low-speed channel (SPI) is used to receive the platform auxiliary data and
the uploaded data from the ground. The on-board computing device has the ability to
dynamically deploy new applications during the lifecycle. The concept of the hardware
architecture of the on-board computing device can be described in Figure 3.

Remote Sens. 2022, 14, 3596 7 of 20

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 21

and the uploaded data from the ground. The on-board computing device has the ability

to dynamically deploy new applications during the lifecycle. The concept of the hardware

architecture of the on-board computing device can be described in Figure 3.

RAM
Flash

Memory

FPGA

SoC

Camera

link

Internal

bus

Storage

bus

Configuration

flash

Application

upload

channel

High-speed

channel

Low- speed

channel

Computing device

Download

channel

CPU GPU

Figure 3. Concept of on-board hardware architecture.

The on-board processing data sources are mainly high-resolution optical cameras.

On the one hand, to ensure data integrity, the hardware designer confirms that the data

transfer bandwidth between the camera and the SoC meets the requirements; that is, the

data generated by the camera can be in real-time and can be completely sent to the SoC.

On the other hand, different on-board applications have various time consumptions, and

the SoC with a limited processing ability needs to realize stream computing for a contin-

uous influx of large amounts of data under the premise of mainly in-memory computa-

tion. This poses great challenges to the design of the expandable on-board real-time edge

computing architecture. The core issues are as follows:

1. Selecting important data in real-time while the data flow in to ensure that precious

computability is used for important data;

2. Shortening the execution time of a single application as much as possible;

3. When the computing is slower than the data flow-in, we ensure that continuous data

can be processed in time to confirm that the processing results are synchronized with

the flow-in data;

4. In the above situation, making full use of on-board transfer, storage, and computing

resources to maximize the efficiency of streaming computing so that as much im-

portant data as possible can be processed.

Considering the above issues and challenges, this manuscript presents an edge com-

puting architecture with base functions. First, as Section 2 describes, an instant geographic

locating function is provided for applications to select the important data from the enor-

mous raw data in time. Second, using the stream computing balance model, applications

with different time consumptions could balance the difference between data flow-in speed

and processing speed to ensure that as much important data as possible can be processed.

Third, following a heterogeneous parallel processing strategy, applications can adjust

their algorithms as needed to fully use on-board computability, thereby minimizing the

time consumption. The details are discussed in this section.

Figure 3. Concept of on-board hardware architecture.

The on-board processing data sources are mainly high-resolution optical cameras.
On the one hand, to ensure data integrity, the hardware designer confirms that the data
transfer bandwidth between the camera and the SoC meets the requirements; that is, the
data generated by the camera can be in real-time and can be completely sent to the SoC. On
the other hand, different on-board applications have various time consumptions, and the
SoC with a limited processing ability needs to realize stream computing for a continuous
influx of large amounts of data under the premise of mainly in-memory computation. This
poses great challenges to the design of the expandable on-board real-time edge computing
architecture. The core issues are as follows:

1. Selecting important data in real-time while the data flow in to ensure that precious
computability is used for important data;

2. Shortening the execution time of a single application as much as possible;
3. When the computing is slower than the data flow-in, we ensure that continuous data

can be processed in time to confirm that the processing results are synchronized with
the flow-in data;

4. In the above situation, making full use of on-board transfer, storage, and comput-
ing resources to maximize the efficiency of streaming computing so that as much
important data as possible can be processed.

Considering the above issues and challenges, this manuscript presents an edge com-
puting architecture with base functions. First, as Section 2 describes, an instant geographic
locating function is provided for applications to select the important data from the enor-
mous raw data in time. Second, using the stream computing balance model, applications
with different time consumptions could balance the difference between data flow-in speed
and processing speed to ensure that as much important data as possible can be processed.
Third, following a heterogeneous parallel processing strategy, applications can adjust their
algorithms as needed to fully use on-board computability, thereby minimizing the time
consumption. The details are discussed in this section.

3.1. Multilayer Structure

To better organize the base structure of the on-board edge computing architecture
and make it convenient for applications to focus on algorithm logic, execution efficiency,

Remote Sens. 2022, 14, 3596 8 of 20

and stream computing balance, this manuscript proposes a layered platform architecture,
which mainly includes three layers:

1. The bottom layer is responsible for hardware communications and I/O works while
maintaining a buffer to store image data for upper levels temporarily. On the one
hand, by maintaining a small circular memory buffer space shared with the upper
layer where the actual size can be configured as needed, the flow-in data are stored
synchronously with the camera. On the other hand, by ensuring data integrity
and consistency in the process of sending and receiving, a data transfer interface is
provided to the upper layer to ensure that upper-layer applications do not need to
involve hardware and data transfer details.

2. The middle layer obtains data from the circular memory buffer space shared with the
bottom layer, completes the instant geographic locating and ROI locating calculation
for the data, and provides the position information to the application layer. During
this procedure, the data classification, which is by camera type and sensor number, is
processed at the same time. The selected important data are stored in an independent
memory buffer shared with the application layer. In addition, deeply optimized
base functions, such as radiometric correction, geometric resampling, and other base
functions, are also provided for the application layer.

3. The application layer is an expandable layer that supports the deployment of multiple
applications, including radiometric correction, sensor correction, geometric correction,
fusion, target detection, and change detection. A standard template is provided in
this layer for all on-board applications. The template includes the following elements:
program initialization and configuration reading, buffer initialization at all levels,
bottom layer function initialization, middle layer function initialization, application
logic, and processing results feedback. Among them, the application logic part is
implemented by different applications, and the rest is completed by a template or by
calling base functions.

The structure of the edge computing architecture is displayed in Figure 4.

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 21

3.1. Multilayer Structure

To better organize the base structure of the on-board edge computing architecture

and make it convenient for applications to focus on algorithm logic, execution efficiency,

and stream computing balance, this manuscript proposes a layered platform architecture,

which mainly includes three layers:

1. The bottom layer is responsible for hardware communications and I/O works while

maintaining a buffer to store image data for upper levels temporarily. On the one

hand, by maintaining a small circular memory buffer space shared with the upper

layer where the actual size can be configured as needed, the flow-in data are stored

synchronously with the camera. On the other hand, by ensuring data integrity and

consistency in the process of sending and receiving, a data transfer interface is pro-

vided to the upper layer to ensure that upper-layer applications do not need to in-

volve hardware and data transfer details.

2. The middle layer obtains data from the circular memory buffer space shared with the

bottom layer, completes the instant geographic locating and ROI locating calculation

for the data, and provides the position information to the application layer. During

this procedure, the data classification, which is by camera type and sensor number,

is processed at the same time. The selected important data are stored in an independ-

ent memory buffer shared with the application layer. In addition, deeply optimized

base functions, such as radiometric correction, geometric resampling, and other base

functions, are also provided for the application layer.

3. The application layer is an expandable layer that supports the deployment of multi-

ple applications, including radiometric correction, sensor correction, geometric cor-

rection, fusion, target detection, and change detection. A standard template is pro-

vided in this layer for all on-board applications. The template includes the following

elements: program initialization and configuration reading, buffer initialization at all

levels, bottom layer function initialization, middle layer function initialization, ap-

plication logic, and processing results feedback. Among them, the application logic

part is implemented by different applications, and the rest is completed by a template

or by calling base functions.

The structure of the edge computing architecture is displayed in Figure 4.

Bottom

layer

Middle

layer

Application

layer

Memory

Radiometric

correction

Target

detection

Geometric

correction

Sensor

correction

Fusion
Change

detection

MTFC

Instant Geographic Locating

…

Resample

Fusion

Data

Classifier

Data thinning

Sensor

buffer 1

Decoding Unpacking

CameraConfiguration

…

Sensor

buffer 2

Sensor

buffer 3

Sensor

buffer 4

…

I/O buffer

Processing

result

Stream Computing Balance Model

Hardware encapsulation & Transparent communication

Heterogeneous Parallel Processing Strategy

Figure 4. Multilayer structure of the edge computing architecture. Figure 4. Multilayer structure of the edge computing architecture.

Remote Sens. 2022, 14, 3596 9 of 20

The flowchart of a typical application using a standard template is displayed in
Figure 5, in which the “Application logic” should be implemented by different applications.
As Figure 5 shows, after the application is started, the camera data receiver is initialized first,
then the auxiliary data receiver is initialized, and then the camera data classifier is started.
All these three run as independent threads, executing concurrently with the main thread.
Among them, the camera data receiver exclusively occupies the high-speed channel of the
SoC and receives raw camera data into the “Camera data buffer”; the auxiliary data receiver
monitors the low-speed interface of the SoC and receives auxiliary data into the “Auxiliary
data buffer”; the camera data classifier monitors these two buffers while extracting the ROI
data through “Instant geographic locating”, then performs “Data thinning” according to
the configurations, and stores the classified data into the “Sensor buffer” for “Application
logic”. After processing, the “Application logic” uses a base function to pass the processing
result out of the SoC.

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 21

The flowchart of a typical application using a standard template is displayed in Fig-

ure 5, in which the “Application logic” should be implemented by different applications.

As Figure 5 shows, after the application is started, the camera data receiver is initialized

first, then the auxiliary data receiver is initialized, and then the camera data classifier is

started. All these three run as independent threads, executing concurrently with the main

thread. Among them, the camera data receiver exclusively occupies the high-speed chan-

nel of the SoC and receives raw camera data into the “Camera data buffer”; the auxiliary

data receiver monitors the low-speed interface of the SoC and receives auxiliary data into

the “Auxiliary data buffer”; the camera data classifier monitors these two buffers while

extracting the ROI data through “Instant geographic locating”, then performs “Data thin-

ning” according to the configurations, and stores the classified data into the “Sensor

buffer” for “Application logic”. After processing, the “Application logic” uses a base func-

tion to pass the processing result out of the SoC.

Start

Initialize camera

data receiver

Camera data

buffer

Auxiliary data

buffer

Start camera data

receiver

Start auxiliary data

receiver

Receive

camera data Receive

auxiliary data

Start camera data

classifier

Instant geographic

locating

Data thinning

Application logic

Sending processing

result back

End

Result transmission

1/a

Repeat

if necessary

Sensor buffer1

Sensor buffer2

...

1/b

Initialize auxiliary

data receiver

Stream Computing Balance Model

Heterogeneous Parallel Processing Strategy

Figure 5. Flowchart of a typical application using a standard template.

3.2. Stream Computing Balance Model

Due to the contradiction between the limited on-board computability and storability

and the large amounts of flow-in data, it is almost impossible to complete on-board pro-

cessing for all data in real-time. Therefore, selecting important data and ensuring that pre-

cious computability is used for important data is the main duty of the on-board edge com-

puting architecture. Based on the above architecture, after the application is correctly ini-

tialized, it can obtain the geographic location of the current imaging position in real-time

based on the API provided by the middle layer and select important data for processing

to efficiently use the limited on-board computability.

Second, when the computing is still slower than the data flow-in, the balance of

stream computing is broken, and part of the data must be discarded. The traditional strat-

egy is to complete the processing of the flow-in data as much as possible and store the

data that cannot be processed in the buffer if feasible, and once the buffer is full, the new

data is discarded. Another more reasonable strategy is to maintain a buffer with an ap-

propriate size as configured by the architecture and periodically discard part of the flow-

in data to balance the flow-in and computing. The traditional strategy leads to the situa-

tion where only the beginning part of the data is processed, and the later data is discarded.

Figure 5. Flowchart of a typical application using a standard template.

3.2. Stream Computing Balance Model

Due to the contradiction between the limited on-board computability and storability
and the large amounts of flow-in data, it is almost impossible to complete on-board process-
ing for all data in real-time. Therefore, selecting important data and ensuring that precious
computability is used for important data is the main duty of the on-board edge computing
architecture. Based on the above architecture, after the application is correctly initialized, it
can obtain the geographic location of the current imaging position in real-time based on
the API provided by the middle layer and select important data for processing to efficiently
use the limited on-board computability.

Second, when the computing is still slower than the data flow-in, the balance of stream
computing is broken, and part of the data must be discarded. The traditional strategy is
to complete the processing of the flow-in data as much as possible and store the data that
cannot be processed in the buffer if feasible, and once the buffer is full, the new data is
discarded. Another more reasonable strategy is to maintain a buffer with an appropriate
size as configured by the architecture and periodically discard part of the flow-in data to
balance the flow-in and computing. The traditional strategy leads to the situation where

Remote Sens. 2022, 14, 3596 10 of 20

only the beginning part of the data is processed, and the later data is discarded. In contrast,
the second strategy can periodically process the data according to the configured frequency,
and all the processing results are distributed evenly in the time dimension. In addition,
considering the relative position between the satellite and Earth, to ensure that the ground
station can obtain the on-board processing results in time, the time window for on-board
processing is usually not very long. When the camera starts imaging, the application on the
SoC starts running synchronously. Usually, the result must be given within tens of seconds
after the camera imaging is completed. Therefore, the second strategy is more adaptable
and suitable than the traditional one. The processing timeline of this strategy is shown
in Figure 6.

Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 21

In contrast, the second strategy can periodically process the data according to the config-

ured frequency, and all the processing results are distributed evenly in the time dimen-

sion. In addition, considering the relative position between the satellite and Earth, to en-

sure that the ground station can obtain the on-board processing results in time, the time

window for on-board processing is usually not very long. When the camera starts imag-

ing, the application on the SoC starts running synchronously. Usually, the result must be

given within tens of seconds after the camera imaging is completed. Therefore, the second

strategy is more adaptable and suitable than the traditional one. The processing timeline

of this strategy is shown in Figure 6.

T

Flow-in

raw data

Data

picking

Data

thinning

Memory

buffer

Data

processing

Sending

Results

F0 F1 F2 Fi Fi+1

F0 F1 F2 Fi Fi+1

F0 F2

... Fn

... Fn

Fn

Fn-1...

... Fn-1

Fi

F0 F2 Fi ...

Sensor buffers

t1 t2

Picking 1/a data

by instant geographic locating

1/b

Vin

Vp

Thinning 1/b data

to balance stream computing

 Intact raw data

from camera

...

Fn

F0 F2 Fi ... Fn

1/a

Figure 6. Processing timeline of the application.

To quantitatively describe the above process, a stream computing balance model is

built. Let 𝑉𝑖𝑛 represent the data flow-in speed, 𝑉𝑝 represent the computing speed, 𝑆 rep-

resent the maximum size of memory occupation during processing, including the occu-

pation of the operating system, 𝐵𝑢𝑓 represent the memory buffer size, 𝑀𝑒𝑚𝑜𝑟𝑦 repre-

sent the total memory size, 𝑡1 represent the imaging time, 𝑡2 represent the processing

time after imaging, 𝑎 represent the data picking coefficient, which is numerically equal

to the raw data size divided by the picked data size by instant geographic locating theo-

retically, and 𝑏 represent the data thinning coefficient when computing is slower than

the flow-in.

Ideally, when the memory buffer is sufficient and the computing speed meets the

following conditions, the stream computing state is steady.

{

 𝑉𝑝 ≥ 𝑉𝑖𝑛 ∙
𝑡1

𝑡1 + 𝑡2
𝐵𝑢𝑓 + 𝑆 ≤ 𝑀𝑒𝑚𝑜𝑟𝑦

𝐵𝑢𝑓 = 𝑉𝑝 ∙ 𝑡2

(5a)

(5b)

(5c)

For most intelligent applications, 𝑉𝑝 does not satisfy Equation (5a), which means that

stream computing cannot be naturally realized. In this case, after applying instant geo-

graphic locating, the equivalent data flow-in speed is reduced to
1

𝑎
∙ 𝑉𝑖𝑛 ; furthermore,

when the data thinning coefficient 𝑏 is greater than 1, the equivalent data flow-in speed

is reduced to
1

𝑎𝑏
∙ 𝑉𝑖𝑛. Then, the stream computing conditions can be described as follows:

Figure 6. Processing timeline of the application.

To quantitatively describe the above process, a stream computing balance model is
built. Let Vin represent the data flow-in speed, Vp represent the computing speed, S repre-
sent the maximum size of memory occupation during processing, including the occupation
of the operating system, Bu f represent the memory buffer size, Memory represent the total
memory size, t1 represent the imaging time, t2 represent the processing time after imaging,
a represent the data picking coefficient, which is numerically equal to the raw data size
divided by the picked data size by instant geographic locating theoretically, and b represent
the data thinning coefficient when computing is slower than the flow-in.

Ideally, when the memory buffer is sufficient and the computing speed meets the
following conditions, the stream computing state is steady.

Vp ≥ Vin·
t1

t1 + t2
(5a)

Bu f + S ≤ Memory (5b)

Bu f = Vp·t2 (5c)

For most intelligent applications, Vp does not satisfy Equation (5a), which means
that stream computing cannot be naturally realized. In this case, after applying instant
geographic locating, the equivalent data flow-in speed is reduced to 1

a ·Vin; furthermore,

Remote Sens. 2022, 14, 3596 11 of 20

when the data thinning coefficient b is greater than 1, the equivalent data flow-in speed is
reduced to 1

ab ·Vin. Then, the stream computing conditions can be described as follows:

Vp =
1
ab
·Vin·

t1

t1 + t2
(6)

b can be calculated as follows:

b =

⌈
1
a
·Vin

Vp
· t1

t1 + t2

⌉
(7)

It is important to note that the memory buffer size Bu f also needs to meet Equation (5b).
The data flow-in speed Vin depends on the camera, which can be considered a fixed

value for a certain satellite. When introducing a new application, the computing speed Vp
and the memory occupation size S of this application should be determined first. Then, the
imaging time t1 and the processing time after imaging t2 are determined according to the
task requirements.

Substituting the above values into Equation (5c) can determine whether the memory
buffer size Bu f meets the requirements. If the memory is sufficient, we determine the a
and b values that make the minimum a·b value according to the specific requirements.
Then, we set the Bu f , a and b values to the application configuration to leverage the
architectural foundational capabilities to realize stream computing of new applications.
When the memory is insufficient, which means that Bu f < Vpt2, then the stream computing
conditions can be described as follows:

Vpt1 + Bu f =
1
ab
·Vin·t1 (8)

b can be calculated as follows:

b =

⌈
1
a
· Vint1

Vpt1 + Bu f

⌉
(9)

Clearly, the data thinning coefficient b needs to be further increased.
When an application starts, the platform reads the configurations and then sets pa-

rameters through the API to ensure that the stream computing of this specific application
can work optimally per on-board hardware ability limitations.

3.3. Heterogeneous Parallel Processing Strategy

Any algorithm that can be implemented by a computer system can be divided into
serial component Ws and parallel component Wp. The well-known Amdahl′s Law [27] is
given as follows:

S =
Ws + Wp

Ws +
Wp
p

(10)

where p is the number of parallel cores and S is the speedup ratio of parallel computing.
Theoretically, when p→ ∞ , the upper limit of the speedup ratio is 1 + Wp

Ws
. This means that

the theoretical maximum speedup ratio of the algorithm depends on the ratio of the parallel
component to the serial component of the algorithm itself. In an actual parallel system,
the number of parallel cores p is limited. Due to the limitations of the chip architecture
and memory access performance, it is almost impossible to achieve the upper limit of the
theoretical speedup ratio. However, the analysis of the algorithm’s characteristics itself can
always help developers achieve efficient optimization of the algorithm.

The classical Flynn taxonomy [28] divides computing platforms into four categories
according to the instruction flow and the data flow of the computing platform, namely,
Single Instruction Single Data (SISD), Single Instruction Multiple Data (SIMD), Multiple
Instruction Single Data (MISD), and Multiple Instruction Multiple Data (MIMD). Presently,

Remote Sens. 2022, 14, 3596 12 of 20

the majority of mainstream hardware adopts the hardware architecture combining SISD
and SIMD. The serial component of the algorithm is often executed on an SISD processor
such as a CPU, and the parallel component is often executed on an SIMD processor such
as a GPU to realize efficient processing. Ideally, when the performance of the GPU is
sufficient to meet the needs, the algorithm can be fully parallelized. However, under the
limitation of on-board computing, the performance of the GPU is usually insufficient on
most occasions. Fortunately, most of the current mainstream CPUs have multiple cores,
which can take part in the parallel component computing work under the premise of
meeting the requirements of serial component computing, thereby shortening the overall
computing time. The optimal heterogeneous parallel processing strategy can be described
as follows.

Let ρ represent the proportion of the parallel component allocated to the CPU, M
represent the total computing amount, lcpu represent the total CPU load for computing the
serial component, Vcpu represent the processing performance when the algorithm occupies
multiple CPU cores for execution, and Vgpu represent the processing performance when the
algorithm uses a GPU to execute. The relationship between these variables can be described
by Equation (11).

Vcpu = M
tcpu

Vgpu = M
tgpu

(1−lcpu)Vcpu
Vgpu

= ρM
(1−ρ)M

(11)

ρ can be calculated as follows:

ρ =
tgpu

(
1− lcpu

)
tcpu + tgpu

(
1− lcpu

) (12)

The time consumption of heterogeneous parallel processing t can be calculated as follows:

t =
ρ

1− lcpu
tcpu = (1− ρ)tgpu (13)

The flowchart of the heterogeneous parallel processing strategy is shown in Figure 7.

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 21

SISD and SIMD. The serial component of the algorithm is often executed on an SISD pro-

cessor such as a CPU, and the parallel component is often executed on an SIMD processor

such as a GPU to realize efficient processing. Ideally, when the performance of the GPU

is sufficient to meet the needs, the algorithm can be fully parallelized. However, under

the limitation of on-board computing, the performance of the GPU is usually insufficient

on most occasions. Fortunately, most of the current mainstream CPUs have multiple

cores, which can take part in the parallel component computing work under the premise

of meeting the requirements of serial component computing, thereby shortening the over-

all computing time. The optimal heterogeneous parallel processing strategy can be de-

scribed as follows.

Let 𝜌 represent the proportion of the parallel component allocated to the CPU, 𝑀

represent the total computing amount, 𝑙𝑐𝑝𝑢 represent the total CPU load for computing

the serial component, 𝑉𝑐𝑝𝑢 represent the processing performance when the algorithm oc-

cupies multiple CPU cores for execution, and 𝑉𝑔𝑝𝑢 represent the processing performance

when the algorithm uses a GPU to execute. The relationship between these variables can

be described by Equation (11).

{

 𝑉𝑐𝑝𝑢 =

𝑀

𝑡𝑐𝑝𝑢

𝑉𝑔𝑝𝑢 =
𝑀

𝑡𝑔𝑝𝑢
(1 − 𝑙𝑐𝑝𝑢)𝑉𝑐𝑝𝑢

𝑉𝑔𝑝𝑢
=

𝜌𝑀

(1 − 𝜌)𝑀

 (11)

𝜌 can be calculated as follows:

𝜌 =
𝑡𝑔𝑝𝑢(1 − 𝑙𝑐𝑝𝑢)

𝑡𝑐𝑝𝑢 + 𝑡𝑔𝑝𝑢(1 − 𝑙𝑐𝑝𝑢)
 (12)

The time consumption of heterogeneous parallel processing t can be calculated as

follows:

𝑡 =
𝜌

1 − 𝑙𝑐𝑝𝑢
𝑡𝑐𝑝𝑢 = (1 − 𝜌)𝑡𝑔𝑝𝑢 (13)

The flowchart of the heterogeneous parallel processing strategy is shown in Figure 7.

...

T

ρM

Flow-in data

(1-ρ)M
CPU GPU

Figure 7. Heterogeneous parallel processing strategy. Figure 7. Heterogeneous parallel processing strategy.

Remote Sens. 2022, 14, 3596 13 of 20

According to Equations (11) and (12), the values of tgpu and tcpu can be determined
through experiments. The specific value of lcpu is more difficult to determine because too
many factors affect its value, in actual use, one or two CPU cores can be reserved for lcpu.
Therefore, usually, a region of value could be estimated for ρ. It is worth noting that when
tgpu � tcpu, the CPU multicore parallelism does not work well for this algorithm. At this
time, the value of ρ is very small, which means that the CPU multicore parallelism does
not suit this algorithm, and the heterogeneous parallelism is unworthy.

When applying heterogeneous parallel optimization to an algorithm, we first measure
tcpu and tgpu and estimate the lcpu value; then, we substitute them with Equation (12) to
obtain the optimal division of parallel components. During image processing, the data to
be processed are divided into blocks and sent to the CPU and GPU according to the above
division to realize the performance optimization of the algorithm. It can be seen that the
optimization scheme of the specific algorithm is highly related to the specific hardware
composition, ability, algorithm characteristics, etc., and the optimization cost is high. The
developers of different applications can determine whether to apply this strategy according
to specific situations.

4. Experiment

Considering the contradiction between the limited on-board computing and storability
and the large amounts of flow-in data, this manuscript focuses on realizing an expandable
on-board real-time edge computing architecture for future intelligent remote sensing satel-
lites. In addition to being applied to the Luojia3 satellite, the architecture also aims to serve
other future satellites. Therefore, to validate the effectiveness and the expansibility of this
architecture, the experiments are designed as follows:

1. Performance improvement: To validate the effect of comprehensively using instant
geographic locating and a heterogeneous parallel computing strategy to improve
application performance, an application of the ROI fusion product production is
applied and compared to the traditional method using linear array sensor data from
an actual satellite.

2. Stream computing balance: To validate the ability to help time-consuming applications
realize stream computing based on the stream computing balance model of this
manuscript, an application of ROI stabilization production from sequence images is
applied using frame array sensor data from an actual satellite.

4.1. Performance Improvement
4.1.1. Data and Experimental Design

This section uses a short strip of linear array sensor data from an optical remote
sensing satellite in China that has a submeter resolution panchromatic and multispectral
camera with four sensors. Each sensor has five bands, and each pixel size is 10 bits. The
spatial resolution of panchromatic data is four times that of multispectral data.

A certain area in the strip is selected as an ROI with a size of 2000 × 2000 pixels;
for comparison, the standard scene size is 26,000 × 29,000 pixels. The panchromatic,
multispectral, and fusion image products of the ROI processed by the algorithm in this
manuscript are shown in Figure 8a–c, and the zoom-in details are shown in Figure 8d–f.

To objectively measure the performance improvement effect of different algorithms,
as shown in Equation (14), this manuscript uses the speedup ratio S to measure the perfor-
mance improvement as follows:

S =
M
T2

/ M
T1

=
T1

T2
(14)

where M represents the calculation amount, T1 is the time consumption of the unoptimized
algorithm and T2 is the time consumption of the optimized algorithm.

According to Figure 8, the fusion product has both high spatial resolution and multi-
spectral information, which is more useful than other products, but the fusion processing

Remote Sens. 2022, 14, 3596 14 of 20

is always accompanied by a considerable amount of computation and time consump-
tion, making it difficult to apply on board. Under the constraints of on-board stream
computing, the instant geographic locating and ROI locating algorithm provided by the
architecture in this manuscript can realize the real-time selection of key data and avoid
wasting computability on a large amount of irrelevant data.

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 21

(a) (b) (c)

(d) (e) (f)

Figure 8. Panchromatic product of ROI in (a) and detail in (d), Multispectral product of ROI in (b)

and detail in (e), Fusion product of ROI in (c) and detail in (f).

To objectively measure the performance improvement effect of different algorithms,

as shown in Equation (14), this manuscript uses the speedup ratio 𝑆 to measure the per-

formance improvement as follows:

𝑆 =
𝑀

𝑇2

𝑀

𝑇1
⁄ =

𝑇1
𝑇2

 (14)

where 𝑀 represents the calculation amount, 𝑇1 is the time consumption of the unopti-

mized algorithm and 𝑇2 is the time consumption of the optimized algorithm.

According to Figure 8, the fusion product has both high spatial resolution and mul-

tispectral information, which is more useful than other products, but the fusion processing

is always accompanied by a considerable amount of computation and time consumption,

making it difficult to apply on board. Under the constraints of on-board stream compu-

ting, the instant geographic locating and ROI locating algorithm provided by the architec-

ture in this manuscript can realize the real-time selection of key data and avoid wasting

computability on a large amount of irrelevant data.

4.1.2. Experiment Results

To obtain the system geometric correction fusion product of the ROI area, the algo-

rithm can be divided into four major steps: data analysis and radiometric correction, sen-

sor correction, fusion processing, and system geometric correction. Among them, the data

analysis and radiometric correction are processed synchronously with data flow-in, while

the other three steps need to wait until the data containing the ROI are ready. The last

Figure 8. Panchromatic product of ROI in (a) and detail in (d), Multispectral product of ROI in
(b) and detail in (e), Fusion product of ROI in (c) and detail in (f).

4.1.2. Experiment Results

To obtain the system geometric correction fusion product of the ROI area, the algorithm
can be divided into four major steps: data analysis and radiometric correction, sensor
correction, fusion processing, and system geometric correction. Among them, the data
analysis and radiometric correction are processed synchronously with data flow-in, while
the other three steps need to wait until the data containing the ROI are ready. The last three
steps have a large amount of computation but a high degree of parallelism, and thus, they
can be regarded as the parallel components of the algorithm.

In the traditional method, the panchromatic data and multispectral data are divided
into standard scenes with basically the same width and height, and then the geographic
range of each standard scene is calculated and compared with the target ROI to process
further steps. The traditional method processes panchromatic and multispectral scene data
production, fuses the panchromatic and multispectral products, and finally corrects the
fusion product. In contrast, this manuscript adopts a task-driven processing method; based
on the functions provided by the on-board architecture, during the imaging process, the

Remote Sens. 2022, 14, 3596 15 of 20

imaging position is calculated in real-time, and the ROI is positioned. Then, the small part
of panchromatic and multispectral data is directly processed by sensor correction, fusion,
and system geometric correction; thus, the calculation amount is substantially reduced.

The time consumption and speed-up ratio between the traditional method and the
task-driven method in this manuscript are shown in Table 1.

Table 1. Comparison of timeliness between the traditional method and the task-driven method.

Time-Consuming Data
Generation 1 Step1 Step2 Step3 Step4 Total Speedup

Ratio
Peak Memory

Usage 2

1 Traditional method 2.7 s 6.627 s 100.102 s 340.014 s 227.993 s 674.736 s 1.0 5.04 GB
2 Task-driven method 2.7 s 2.034 s 1.052 s 1.803 s 1.204 s 6.093 s 110.7 3.16 GB

3 Task-driven GPU
parallelism 2.7 s 2.046 s 0.591 s 0.048 s 0.078 s 2.763 s 244.2 3.17 GB

4 Task-driven heterogeneous
parallelism 2.7 s 2.012 s 0.503 s 0.039 s 0.065 s 2.619 s 257.6 3.17 GB

1: Data generation is calculated by the integral time of the data. This 2.7 s is only used for comparison and
is not included in the total. 2: Peak memory usage includes the memory occupation of operating system and
application.

As shown in the table above, taking the on-board implementation version of the
traditional method as the baseline, using an on-board SoC device, multicore parallel
processing of the entire scene data takes a total of 674.736 s. Clearly, this method cannot
meet on-board needs. In comparison, case 2 uses the basic functions provided by the
on-board architecture to perform instant geographic locating during the data analysis and
radiometric correction step to select ROI data in time, thereby greatly reducing the amount
of data and computation. It takes 6.093 s to complete the multicore parallel processing of
the ROI data, which is 110.7 times faster than the traditional method. In case 3, the main
time-consuming steps in the algorithm, sensor correction, fusion, and system geometric
correction, are parallelized on the GPU, and the overall processing time is further reduced
to 2.763 s, which is 244.2 times faster than the baseline.

To make full use of the hardware computability, according to the results of cases 2
and 3, take tcpu = 4.059 and tgpu = 0.717 as total time consumption of parallel components
of the algorithm and substitute them into Equation (12) to obtain the value range of ρ
as follows:

0 < ρ < 0.15

If ρ = 0.15 is used to implement heterogeneous parallel processing, as shown in case 4,
the overall processing time is 2.619 s, which is 257.6 times faster than the baseline, and
it is not much different from case 3. It can be seen that for this algorithm, the execution
performance of the CPU core and the GPU core is quite different, and the improvement
achieved by implementing heterogeneous parallel processing is not obvious.

However, if an algorithm has a similar processing time on both the CPU and GPU, it
is foreseeable that using the base functions to implement heterogeneous parallel processing
will achieve considerable performance improvement.

Overall, based on the test data and on-board edge computing architecture, it is feasible
to produce a 2000 × 2000 ROI system geometric correction fusion product every 2.7 s
of data.

4.2. Stream Computing Balance
4.2.1. Data and Experimental Design

As shown in Figure 9, this section uses a series of frame array sensor data from an
optical remote sensing satellite in China. To be consistent with the design specifications of
Luojia3, the data were resampled frame-by-frame into 7872 × 5984 size, the frequency was
15 Hz, 825 frames in 55 s, 8-bit Bayer format. Using the above simulation data, this section
focuses on the image stabilization algorithm using frame-by-frame registration and dis-
cusses the general process of achieving on-board stream computing through experimental

Remote Sens. 2022, 14, 3596 16 of 20

results and configuration parameter adjustment based on the stream computing balance
model.

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 21

However, if an algorithm has a similar processing time on both the CPU and GPU, it

is foreseeable that using the base functions to implement heterogeneous parallel pro-

cessing will achieve considerable performance improvement.

Overall, based on the test data and on-board edge computing architecture, it is feasi-

ble to produce a 2000 × 2000 ROI system geometric correction fusion product every 2.7 s

of data.

4.2. Stream Computing Balance

4.2.1. Data and Experimental Design

As shown in Figure 9, this section uses a series of frame array sensor data from an

optical remote sensing satellite in China. To be consistent with the design specifications

of Luojia3, the data were resampled frame-by-frame into 7872 × 5984 size, the frequency

was 15 Hz, 825 frames in 55 s, 8-bit Bayer format. Using the above simulation data, this

section focuses on the image stabilization algorithm using frame-by-frame registration

and discusses the general process of achieving on-board stream computing through ex-

perimental results and configuration parameter adjustment based on the stream compu-

ting balance model.

Figure 9. Simulation images.

In the process of the gazing task of low-orbit satellites, affected by the imaging angle,

satellite attitude and position measurement accuracy, satellite moving, jitter, etc., the po-

sition, size, and shape of the same object in different frames could be noticeably different.

There are two kinds of methods that can be used in frame-by-frame registration tasks:

image-based methods and position-based methods. Generally, image-based methods re-

quire a large amount of computation and can obtain relatively stable results, but the re-

sults are not geographically projected, which is inconvenient for users. In contrast, alt-

hough the position-based method has slightly fewer stable results, it requires less compu-

tation, and the results are geographically projected, which is more suitable for on-board

deployment. This section uses the position-based method to validate the on-board edge

computing architecture.

Figure 9. Simulation images.

In the process of the gazing task of low-orbit satellites, affected by the imaging angle,
satellite attitude and position measurement accuracy, satellite moving, jitter, etc., the
position, size, and shape of the same object in different frames could be noticeably different.

There are two kinds of methods that can be used in frame-by-frame registration
tasks: image-based methods and position-based methods. Generally, image-based meth-
ods require a large amount of computation and can obtain relatively stable results, but
the results are not geographically projected, which is inconvenient for users. In contrast,
although the position-based method has slightly fewer stable results, it requires less com-
putation, and the results are geographically projected, which is more suitable for on-board
deployment. This section uses the position-based method to validate the on-board edge
computing architecture.

4.2.2. Experiment Results

To obtain stable products through the position-based method, it is necessary to perform
system geometric correction on the input image frame-by-frame during the imaging process.
The algorithm can be divided into four major steps: data analysis, Bayer to Red-Green-Blue
(RGB), Rational Function Model (RFM) modeling, and system geometric correction. First,
the time consumption of the on-board version to complete the whole scene needs to be
measured as a baseline. When the processing is slower than the data flow-in, it is necessary
to set the appropriate parameters of Equation (6) to adjust the stream computing balance
according to the performance, task schedule, and specific requirements. The data picking
coefficient a and the data thinning coefficient b need to be adjusted carefully to balance
the speed difference between data flow-in and processing to achieve optimized stream
computing for specific applications.

Considering that the original size of 7872 × 5984 is not suitable for daily use, by using
the instant geographic locating function provided by the architecture in the data analysis
step, a 1920 × 1080 region could be picked out in every frame, thereby considerably
reducing the amount of data and calculation. After optimizing the algorithm with a

Remote Sens. 2022, 14, 3596 17 of 20

heterogeneous parallel processing strategy such as Experiment 1, the measured application
time consumption is shown in Table 2:

Table 2. Comparison of timeliness between the whole scene and the 1080p size.

Type Data Generation * Step1 Step2 Step3 Step4 Total

1 Whole scene 0.067 s 0.014 s 0.385 s 0.044 s 1.564 s 2.007 s
2 1080P size 0.067 s 0.015 s 0.014 s 0.043 s 0.061 s 0.133 s

*: The generation time of a single frame equals the inverse of the frequency, which is only used for comparison
and is not included in the total.

The results in the table above show that neither the processing of the whole scene nor
the 1080P size can meet the need for stream computing. Vin and Vp can be calculated as
follows:

Vin =
7872 ∗ 5984 ∗ 15

1
= 706, 590, 720 Bytes/s (15)

Vp =
7872 ∗ 5984

2.007
= 23, 470, 876 Bytes/s (16)

Vin
Vp

= 30.104 (17)

It is worth noting that the exact meaning of Vp is the amount of input data processed
per second, so it cannot be calculated by the amount of RGB data. In addition, the theoretical
value of the data picking coefficient a in the 1080P situation should be the following:

a =
7872 ∗ 5984
1920 ∗ 1080

= 22.717 (18)

According to the measured results in the above table, the actual value of the data
picking coefficient a should be corrected as a = 2.007

0.133 = 15.090.
In addition, to meet the realization conditions of stream computing, it is necessary to

set an appropriate memory buffer size Bu f and data thinning coefficient b according to the
imaging time t1 and the processing time after imaging t2 by Equation (7). When t2 = 0, it
means that there is no extra time for postprocessing after the camera imaging is completed.
When t2 > 0, it means that according to the task schedule, there is time for postprocessing
after the camera imaging is completed. When the buffer is insufficient, the data thinning
coefficient b can be calculated again using Equation (9).

From the first line of the analysis results in Table 3, it can be seen that when t1 = 55 s,
t2 = 0 s, and a = 1, the algorithm processes the entire scene (case 1). To ensure the balance
of stream computing, the data thinning coefficient b needs to be set to 31, as one frame is
processed every 31 frames. If there is another 55 s for processing after imaging and the
buffer is larger than 1.21 GB (case 2), the data thinning coefficient b is set to 16 to meet the
requirements. If the maximum buffer does not exceed 0.50 GB (case 3), it is necessary to
raise the data thinning coefficient b to 22 to meet the requirement.

Table 3. Analysis of the stream computing balance model.

Type Vin/Vp t1 t2 a b Buf

1 Whole scene baseline 30.104 55 s 0 s 1 31 0.00 GB
2 Whole scene with delay 1 30.104 55 s 55 s 1 16 1.21 GB
3 Whole scene with delay 2 30.104 55 s 55 s 1 22 0.50 GB
4 1080P size without delay 30.104 55 s 0 s 15.090 2 0.00 GB
5 1080P size with delay 1 30.104 55 s 55 s 15.090 1 0.86 GB
6 1080P size with delay 2 30.104 55 s 55 s 15.090 2 0.50 GB

When using the base functions provided by the architecture to perform 1080P process-
ing, the data picking coefficient a is 15.090. At this time, if t2 = 0 (case 4), the data thinning

Remote Sens. 2022, 14, 3596 18 of 20

coefficient b is set to 2. If t2 = 55 s and the buffer is larger than 0.86 GB (case 5), the data
thinning coefficient b is set to 1. If the maximum buffer does not exceed 0.50 GB (Case 6), it
is necessary to raise the data thinning coefficient b to 2 to meet the requirement.

It can be seen from the above analysis that when applications with different consump-
tion of computing and storage resources are deployed on the satellite, the algorithm needs
to be measured first to set the baseline. Then, according to the base functions provided
by the architecture, the key parameters of the stream computing balance model can be
analyzed, calculated, and set. Under the objective conditions of limited computing and
storage, the stream computing balance can be maintained for various applications while
allowing as much input data to be processed as possible.

Furthermore, a regression experiment was performed using the case 6 parameters, and
the ROI area of 1080P size was cut from the original image frame using instant geographic
locating, and one frame was extracted every two frames. It took 57.937 s to complete all
data processing, and a total of 413 frames of 1080P products were obtained, which could
be easily converted into video by the post-processing or user. The experimental result is
basically consistent with the predicted analysis results.

The generated 1080P ROI products are shown in the figure below. It was found that
when frame stabilization is not performed, the image shakes violently in Figure 10a, which
is not conducive to use. In contrast, when frame stabilization is performed, the products
become stable, as shown in Figure 10b. It can realize a stable observation of the ROI, and it
is also easier to observe moving objects so that the use value is greatly improved.

Remote Sens. 2022, 14, x FOR PEER REVIEW 19 of 21

(a) (b)

Figure 10. 1080P unstable ROI products in (a) and stable ROI products in (b).

5. Discussion

Most of the previous on-board processing research was guided by specific applica-

tions. In the satellite design stage, the on-board applications to be implemented were first

determined, and then a large amount of testing and optimization work was done for these

applications. For applications with a large amount of computation and high timeliness

requirements, to ensure the balance of stream processing, it is necessary to provide

enough on-board computing resources. What follows is a substantial increase in the vol-

ume, power consumption, heat dissipation, weight, manufacturing costs, and launch

costs. Although this method can ensure that the specific application functions work well,

its cost is high, and the openness and expandability are poor. This method does not con-

form to the development trend of agility, intelligence, miniaturization, low cost, and ex-

pandable functions of the next generation of remote sensing satellites.

Combined with the development procedure of the Luojia3 satellite, aiming at the core

issue that the low computability and storability of on-board devices cannot meet the real-

time computing needs of different applications, this manuscript discusses building an ex-

pandable on-board real-time edge computing architecture based on limited on-board

hardware. Through a layered architecture, the applications from the hardware and the

communication details are isolated so that the applications can focus on the logic and per-

formance of the algorithm. Through instant geographic locating calculations, applications

are provided with the base function of data picking, which helps applications concentrate

precious computability to process key data. Establishing a stream computing balance

model helps application developers analyze and set key parameters according to baseline

performance test results, and they realize stream computing of various applications. Es-

tablishing a heterogeneous parallel processing strategy helps application developers op-

timize the performance of algorithms based on on-board hardware.

During the joint testing and commissioning of the Luojia3 satellite, application de-

velopers carried out various extended applications, including high-precision cloud detec-

tion, target detection, change detection, and high magnification compression, based on

the architecture of this manuscript, which validates the adaptability and expandability of

this architecture.

6. Conclusions

This manuscript proposes a three-level edge computing architecture based on an SoC

for low power consumption and expandable on-board processing. Using simulation data,

including linear array sensor data and frame array sensor data, to perform experiments

on the simulation hardware of the Luojia3 satellite, the results show that the architecture

of this manuscript can meet the on-board real-time processing requirements of typical

applications. In terms of the support of the base functions provided by the architecture,

Figure 10. 1080P unstable ROI products in (a) and stable ROI products in (b).

5. Discussion

Most of the previous on-board processing research was guided by specific applica-
tions. In the satellite design stage, the on-board applications to be implemented were first
determined, and then a large amount of testing and optimization work was done for these
applications. For applications with a large amount of computation and high timeliness
requirements, to ensure the balance of stream processing, it is necessary to provide enough
on-board computing resources. What follows is a substantial increase in the volume, power
consumption, heat dissipation, weight, manufacturing costs, and launch costs. Although
this method can ensure that the specific application functions work well, its cost is high,
and the openness and expandability are poor. This method does not conform to the devel-
opment trend of agility, intelligence, miniaturization, low cost, and expandable functions
of the next generation of remote sensing satellites.

Combined with the development procedure of the Luojia3 satellite, aiming at the
core issue that the low computability and storability of on-board devices cannot meet the
real-time computing needs of different applications, this manuscript discusses building
an expandable on-board real-time edge computing architecture based on limited on-board
hardware. Through a layered architecture, the applications from the hardware and the

Remote Sens. 2022, 14, 3596 19 of 20

communication details are isolated so that the applications can focus on the logic and per-
formance of the algorithm. Through instant geographic locating calculations, applications
are provided with the base function of data picking, which helps applications concentrate
precious computability to process key data. Establishing a stream computing balance
model helps application developers analyze and set key parameters according to baseline
performance test results, and they realize stream computing of various applications. Estab-
lishing a heterogeneous parallel processing strategy helps application developers optimize
the performance of algorithms based on on-board hardware.

During the joint testing and commissioning of the Luojia3 satellite, application devel-
opers carried out various extended applications, including high-precision cloud detection,
target detection, change detection, and high magnification compression, based on the
architecture of this manuscript, which validates the adaptability and expandability of
this architecture.

6. Conclusions

This manuscript proposes a three-level edge computing architecture based on an SoC
for low power consumption and expandable on-board processing. Using simulation data,
including linear array sensor data and frame array sensor data, to perform experiments on
the simulation hardware of the Luojia3 satellite, the results show that the architecture of this
manuscript can meet the on-board real-time processing requirements of typical applications.
In terms of the support of the base functions provided by the architecture, application
developers can make accurate adaptations to their own algorithms to balance requirements
and actual conditions and make trade-offs to realize real-time stream computing for various
on-board applications. In the future, after the Luojia3 satellite is launched and served, by
using the real data obtained from the satellites, more on-board experimental applications
based on the architecture of this manuscript will be deployed for further studies through the
satellite′s application upload channel. Limited by the capabilities of the Luojia3 satellite, this
manuscript mainly focuses on typical optical satellite applications and lacks the exploration
of complex application scenarios such as multiple imaging stitching, stereo imaging, and
multi-modal data collaborative applications. Further research is worthy of follow-up.

Author Contributions: Conceptualization, Z.Z., S.L. and D.L.; methodology, Z.Z., J.C. and G.X.;
software, Z.Z., Z.Q. and J.C.; validation, Z.Z., S.L. and D.L.; writing—original draft preparation,
Z.Z. and Z.Q.; writing—review and editing, Z.Z. and Z.Q. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No.
61901307), Open Research Fund of State Key Laboratory of Information Engineering in Surveying,
Mapping and Remote Sensing, Wuhan University (No. 20E01), Scientific Research Foundation for
Doctoral Program of Hubei University of Technology (No. BSQD2020054, No. BSQD2020055).

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the anonymous reviewers and members of the
editorial team for their comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Li, D.; Shen, X.; Gong, J.; Zhang, J.; Lu, J. On construction of China’s space information network. Geomat. Inf. Sci. Wuhan Univ.

2015, 40, 711–715.
2. Li, D.R. Towards geo-spatial information science in big data era. Acta Geod. Et. Cartogr. Sin. 2016, 45, 379–384.
3. Davis, C.O.; Horan, D.M.; Corson, M.R. On-orbit calibration of the Naval EarthMap Observer (NEMO) coastal ocean imaging

spectrometer (COIS). Imaging Spectrom. VI 2000, 4132, 250–259.
4. Visser, S.J.; Dawood, A.S. Real-time natural disasters detection and monitoring from smart earth observation satellite. J. Aerosp.

Eng. 2004, 17, 10–19. [CrossRef]

http://doi.org/10.1061/(ASCE)0893-1321(2004)17:1(10)

Remote Sens. 2022, 14, 3596 20 of 20

5. Andrew, G.S.; Gabriel, W.; French, M.; Flatley, T.; Villalpando, C.Y. SpaceCubeX: A Framework for Evaluating Hybrid Multi-core
CPU/FPGA/DSP Architectures. In Proceedings of the 2017 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2017;
Volume 1–10.

6. Zhou, G.; Zhang, R.; Liu, N.; Huang, J.; Zhou, X. On-Board Ortho-Rectification for Images Based on an FPGA. Remote Sens. 2017,
9, 874. [CrossRef]

7. Huang, J.; Zhou, G. On-Board Detection and Matching of Feature Points. Remote Sens. 2017, 9, 601. [CrossRef]
8. Zhang, N.; Wei, X.; Chen, H.; Liu, W. FPGA Implementation for CNN-Based Optical Remote Sensing Object Detection. Electronics

2021, 10, 282. [CrossRef]
9. Li, L.; Zhang, S.; Wu, J. Efficient Object Detection Framework and Hardware Architecture for Remote Sensing Images. Remote

Sens. 2019, 11, 2376. [CrossRef]
10. Zhang, X.; Wei, X.; Sang, Q.; Chen, H.; Xie, Y. An Efficient FPGA-Based Implementation for Quantized Remote Sensing Image

Scene Classification Network. Electronics 2020, 9, 1344. [CrossRef]
11. Zhang, N.; Shi, H.; Chen, L.; Lin, T.; Shao, X. A Novel CNN Architecture on FPGA-based SoC for Remote Sensing Image

Classification. In Proceedings of the 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP),
Chongqing, China, 11–13 December 2019.

12. Turner, R. Solar particle events from a risk management perspective. IEEE Trans. Plasma Sci. 2000, 28, 2103–2113. [CrossRef]
13. Petersen, E. Single Event Effects in Aerospace; John and Wiley and Sons: Hoboken, NJ, USA, 2011.
14. Brosser, F.; Milh, E. SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space. Master’s Thesis, Chalmers

University of Technology, Goteborg, Sweden, 2014.
15. Chorasia, J.; Jasani, K.; Shah, A. Realization of various error mitigation techniques for SRAM based FPGA. In Proceedings of the

2017 2nd International Conference for Convergence in Technology (I2CT), Mumbai, India, 7–9 April 2017.
16. Jacobs, A.; Cieslewski, G.; George, A.D.; Gordon-Ross, A.; Lam, H. Reconfigurable Fault Tolerance: A Comprehensive Framework

for Reliable and Adaptive FPGA-Based Space Computing. ACM Trans. Reconfigurable Technol. Syst. (TRETS) 2012, 5, 1–30.
[CrossRef]

17. Glein, R.; Rittner, F.; Heuberger, A. Adaptive single-event effect mitigation for dependable processing systems based on FPGAs.
Microprocess. Microsyst. 2018, 59, 46–56. [CrossRef]

18. Sabogal, S.; George, A.; Wilson, C. Reconfigurable Framework for Environmentally Adaptive Resilience in Hybrid Space Systems.
ACM Trans. Reconfigurable Technol. Syst. (TRETS) 2020, 13, 1–32. [CrossRef]

19. George, A.D.; Wilson, C.M. Onboard Processing with Hybrid and Reconfigurable Computing on Small Satellites. Proc. IEEE 2018,
106, 458–470. [CrossRef]

20. Geist, A.; Brewer, C.; Davis, M.; Franconi, N.; Heyward, S.; Wise, T.; Crum, G.; Petrick, D.; Ripley, R.; Wilsonet, C.; et al. SpaceCube
v3. 0 NASA next-generation high-performance processor for science applications. In Proceedings of the 33rd Annual AIAA/USU
Conference on Small Satellites, Logan, UT, USA, 3–8 August 2019.

21. Müller, S.; Höflinger, K.; Smisek, M.; Gerndt, A. Towards an FDIR Software Fault Tree Library for Onboard Computers. In
Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020.

22. Wu, Y.; Gao, L.; Zhang, B.; Yang, B.; Chen, Z. Embedded GPU implementation of anomaly detection for hyperspectral images.
High-Perform. Comput. Remote Sens. V 2015, 9646, 66–71.

23. Tang, H.; Li, G.; Zhang, F.; Hu, W.; Li, W. A spaceborne SAR on-board processing simulator using mobile GPU. In Proceedings of
the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016.

24. Mi, W.; Zhiqi, Z.; Ying, Z.; Zhipeng, D.; Yingying, L. Embedded GPU implementation of sensor correction for on-board real-time
stream computing of high-resolution optical satellite imagery. J. Real-Time Image Process. 2018, 13, 565–581.

25. Wang, M.; Zhu, Y.; Jin, S.; Pan, J.; Zhu, Q. Correction of ZY-3 image distortion caused by satellite jitter via virtual steady reimaging
using attitude data. ISPRS J. Photogramm. Remote Sens. 2016, 119, 108–123. [CrossRef]

26. Wang, M.; Yang, B.; Hu, F.; Zang, X. On-orbit geometric calibration model and its applications for high-resolution optical satellite
imagery. Remote Sens. 2014, 6, 4391–4408. [CrossRef]

27. Wikipedia. Amdahl’s Law. Available online: http://en.wikipedia.org/wiki/Amdahl%27s_law (accessed on 28 March 2016).
28. Flynn, M.J. Some computer organizations and their effectiveness. IEEE Trans. Comput. 1972, 100, 948–960. [CrossRef]

http://doi.org/10.3390/rs9090874
http://doi.org/10.3390/rs9060601
http://doi.org/10.3390/electronics10030282
http://doi.org/10.3390/rs11202376
http://doi.org/10.3390/electronics9091344
http://doi.org/10.1109/27.902237
http://doi.org/10.1145/2392616.2392619
http://doi.org/10.1016/j.micpro.2018.03.004
http://doi.org/10.1145/3398380
http://doi.org/10.1109/JPROC.2018.2802438
http://doi.org/10.1016/j.isprsjprs.2016.05.012
http://doi.org/10.3390/rs6054391
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://doi.org/10.1109/TC.1972.5009071

	Introduction
	Instant Geographic Locating
	Satellite Position and Attitude Interpolation
	Strict Geometric Modeling
	ROI Location Algorithm
	Linear Array Sensor Data
	Frame Array Sensor Data

	Edge Computing Architecture
	Multilayer Structure
	Stream Computing Balance Model
	Heterogeneous Parallel Processing Strategy

	Experiment
	Performance Improvement
	Data and Experimental Design
	Experiment Results

	Stream Computing Balance
	Data and Experimental Design
	Experiment Results

	Discussion
	Conclusions
	References

