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Abstract: Correntropy has been proved to be effective in eliminating the adverse effects of impulsive
noises in adaptive filtering. However, correntropy is not desirable when the error between the two
random variables is asymmetrically distributed around zero. To address this problem, asymmetric
correntropy using an asymmetric Gaussian function as the kernel function was proposed. However,
an asymmetric Gaussian function is not always the best choice and can be further expanded. In
this paper, we propose a robust adaptive filtering based on a more flexible definition of asymmetric
correntropy, which is called generalized asymmetric correntropy that adopts a generalized asymmet-
ric Gaussian density (GAGD) function as the kernel. With the shape parameter properly selected,
the generalized asymmetric correntropy may get better performance than the original asymmetric
correntropy. The steady-state performance of the adaptive filter based on the generalized maximum
asymmetric correntropy criterion (GMACC) is theoretically studied and verified by simulation experi-
ments. The asymmetric characteristics of queue delay in satellite networks is analyzed and described,
and the proposed algorithm is used to predict network delay, which is essential in space telemetry.
Simulation results demonstrate the desirable performance of the new algorithm.

Keywords: generalized maximum asymmetric correntropy criterion; robust adaptive filtering;
steady-state performance analysis; network delay prediction

1. Introduction

Traditional adaptive filtering builds cost functions based on the minimum mean
square error (MMSE) criterion, which is desirable under the assumption that the system
noise follows a Gaussian distribution [1,2]. However, when the system noise contains
impulsive components, the performance of the MMSE criterion is severely degraded [3].
To solve the problem and reduce the impact of impulsive noise, robust adaptive filtering
has been studied, adopting criteria beyond MMSE to construct robust cost functions, such
as M-estimation statistics [4,5], least mean p-power [6,7], etc. In recent years, inspired
by information learning theory [8], the maximum correntropy criterion (MCC) and its
extensions have been studied extensively and considered to be effective when dealing with
non-Gaussian system noise [9–13].

Correntropy in the MCC is a measure of the distance between two random variables
based on a Gaussian kernel function. The distance can be also called correntropy induced
metric (CIM) in the input space and CIM behaves like different norms from L2-norm to L1-
norm depending on the distance between the two inputs [14,15]. With the above property,
correntropy can stay insensitive to data outliers when set with a small kernel bandwidth,
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which diminishes the influence of impulsive noise in adaptive filtering and ensures robust-
ness. One classic extension of the MCC is the generalized maximum correntropy criterion
(GMCC) based on a generalized Gaussian kernel, which adds a shape parameter to the
Gaussian kernel and improves the adaptability faced with different kinds of non-Gaussian
system noises [11–13]. The MCC and GMCC have been extensively studied and applied
to many applications in system parameter identification and state estimation, such as
channel estimation [16–18], blind multiuser detection [19], SINS/GPS-integrated system
estimation [20], spacecraft relative state estimation [21], acoustic echo cancellation [22], etc.

The above criteria are based on a symmetric Gaussian kernel and are desirable when
dealing with symmetric distributed system noises. However, an asymmetric signal or
noise exists in many areas of data analysis and signal processing, such as in insurance
analysis [23], finance analysis [24,25], image processing [26], etc. Under an asymmetric noise
environment, the estimation error follows a skewed distribution, thus the MCC and GMCC
based on a symmetric Gaussian kernel are no longer suitable. In [27], a very enlightening
idea was proposed where a maximum asymmetric correntropy criterion (MACC) was
obtained by replacing the Gaussian kernel in the MCC with an asymmetric Gaussian kernel.
An asymmetric Gaussian kernel can process positive and negative estimation errors with
different kernel widths, respectively, so that it can better adapt to asymmetric noise. Similar
to the expansion from the MCC to the GMCC [11], this paper adds a shape parameter to
MACC leading to a generalized maximum asymmetric correntropy criterion (GMACC),
which is based on a generalized asymmetric Gaussian (GAG) kernel [28–31] and is more
flexible than MACC. Ref. [28] used finite asymmetric generalized Gaussian mixture model
learning to improve the effect of infrared object detection. Ref. [29] presented an image
segmentation method based on a parametric and unsupervised histogram, which was
assumed to be a mixture of asymmetric generalized Gaussian distributions. In [31], an
asymmetric generalized Gaussian density was used to deal with the asymmetric shape
property of certain texture classes. Ref. [30] expanded the concept of a generalized Gaussian
distribution to include asymmetry so as to model distributions of different tail lengths
as well as different degrees of asymmetry. The above research works on the GAG kernel
mostly used the kernel function to build data models, while this paper is inspired by the
GMACC to construct the cost function of robust adaptive filtering, so as to improve the
research framework as an extension of MACC-based adaptive filtering. More specifically,
this paper improves the adaptability of MACC-based adaptive filtering by working out a
generalized form of the algorithm. The adjustment of the shape parameter can balance the
steady-state performance and convergence rate of the GMACC algorithm.

In practical data of regression analysis or adaptive filtering, there are noises distributed
with asymmetric heavy tails extending out towards positive or negative values. For
example, Ref. [23] applied a robust regression in automobile insurance premium estimation
that figured out the risk of a driver given a profile (age, type of car, etc.), and revealed the
asymmetric heavy-tail noise problem that the premium had to take into account the tiny
fraction of well-behaved drivers who cause serious accidents and large claim amounts.
Moreover, the asymmetric heavy-tail noise problem could not be neglected in time series
analysis such as oil-price-related stock analysis [24]. This paper studies robust adaptive
filtering based on GMACC and applies it to network delay prediction. As far as the authors
know, although the network delay prediction is very important in remote tasks such as
space telemetry [32] and satellite link handover management [33], the asymmetric property
of the network delay, especially of the queue delay, has not been discovered and described
so far.

The main contributions of this paper are as follows: (1) The GMACC is obtained by the
expansion of MACC, and the relationship of different robust criteria is discussed. GMACC-
based robust adaptive filtering is proposed and its properties are analyzed. (2) The steady-
state performance of GMACC-based robust adaptive filtering is analyzed theoretically
and verified by simulation experiments. (3) The asymmetric property of the satellite
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network delay is discovered and described. (4) Simulations verify the effectiveness of the
GMACC-based adaptive filter in satellite network delay prediction.

2. Methodology
2.1. Generalized Asymmetric Correntropy

First, a brief review of the correntropy and the asymmetric correntropy is given.
Correntropy in information-theoretic learning (ITL) [8] is used to measure the similar-

ity of two random variables, and is defined as:

V(D, Y) = E[κ(D, Y)] =
∫

κ(d, y)dFDY(d, y), (1)

where D, Y denote two random variables; E[·] is the expectation operator; FDY(d, y) repre-
sents the joint distribution function of (D, Y); and κ(·) stands for a Mercer kernel which is
in general the Gaussian kernel defined as:

κσ(d, y) = Gσ(ε) =
1√
2πσ

exp
(
− |ε|

2

2σ2

)
, (2)

where σ is the Gaussian kernel width, ε = d− y, and 1/
√

2πσ is the normalization parameter.
In practical adaptive filtering, the available data {dk, yk}N

k=1 of D, Y are discrete and
the joint distribution FDY(d, y) is unknown. So the cost function based on correntropy can
be presented as the sample mean estimator:

V̂σ
N(D, Y) =

1
N

N

∑
k=1

κσ(dk − yk). (3)

For some asymmetric noise, the maximum correlation entropy criterion based on a
Gaussian kernel is no longer applicable. MACC replaces the Gaussian kernel in the maxi-
mum correntropy criterion with the asymmetric Gaussian kernel, in which different kernel
widths are used to deal with the different distributions on both sides of the asymmetric
noise peak.

The expression of an asymmetric Gaussian kernel is

κ(d, y) = AGσ+σ−(εk) =


exp

(
− ε2

k
2σ2

+

)
, εk ≥ 0

exp
(
− ε2

k
2σ2
−

)
, εk < 0

, (4)

where k of εk stands for the time subscript.
To enhance the adaptability of the asymmetric correntropy-based robust adaptive filter-

ing, this paper builds the cost function based on a new generalized maximum asymmetric
correntropy criterion by adding a shape parameter to the asymmetric Gaussian kernel
and extending the asymmetric Gaussian kernel to the generalized asymmetric Gaussian
(GAG) kernel.

By combining the definitions of the Gaussian kernel, generalized Gaussian kernel, and
asymmetric Gaussian kernel, the generalized asymmetric Gaussian kernel is obtained as

κ(d, y) = GAGα,σ+ ,σ−(εk) =

 exp
(
−
∣∣∣ εk

σ+

∣∣∣α) , εk ≥ 0

exp
(
−
∣∣∣ εk

σ−

∣∣∣α) , εk < 0
, (5)

where α is the shape parameter of the kernel function.
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2.2. Robust Adaptive Filtering Based on GMACC

Robust adaptive filters build cost functions using statistics that can reduce the impact
of impulsive noise, such as Huber statistics, fractional lower-order statistics, correntropy-
induced metric statistics, etc. In the discussed situation of this paper, the system noise is
not only impulsive but also asymmetric. In order to deal with this kind of system noise,
this paper uses a generalized asymmetric correntropy as the cost function to build a robust
linear adaptive filter.

Based on the proposed generalized asymmetric Gaussian kernel, the cost function of
the adaptive filter can be presented as:

E[GAGα,σ+ ,σ−(εk)], (6)

where the estimation error can be expressed as

εk = dk − yk = dk −ΦTΓk, (7)

with dk ∈ R being the desired output at time k, yk = ΦTΓk being the output of the linear
adaptive filter, Φ = [φ1, φ2, . . . , φn]

T ∈ Rn being the system parameter vector, and Γk ∈ Rn

being the input vector, which is composed by the sample value of the input x of the previous
n times:

Γk = [γk, γk−1, . . . , γk−n+1]
T . (8)

The solution of the adaptive filter is the system parameter vector that maximizes the
cost function:

Φ = arg max
Φ∈Rp

{
E[GAGα,σ+ ,σ−(εk)] =

1
N

N

∑
i=1

GAGα,σ+ ,σ−(εk)

}
, (9)

where the cost function is the expectation of the generalized asymmetric Gaussian kernel
function, E[GAGα,σ+ ,σ−(εk)], which is equal to the average value of the kernel function at
each time in the case of a discrete sample input, 1

N ∑N
i=1 GAGα,σ+ ,σ−(εk).

We use the gradient ascent method to solve the problem (9), which is similar to the
gradient descent method. To simplify computation, the gradient of the kernel function cor-
responding to the instantaneous estimation error at each time is used as the instantaneous
gradient. Then, the instantaneous-gradient-based adaptive algorithm, called in this work
the GMACC algorithm, can be derived as

Φk+1 = Φk − µ∇(k) = Φk + µφGMACC(εk)εkΓk, (10)

where the weighting function corresponding to the generalized maximum asymmetric
correntropy criterion can be presented as

φGMACC(εk) =

 exp
(
−
∣∣∣ εk

σ+

∣∣∣α)|εk|α−2, if εk ≥ 0

exp
(
−
∣∣∣ εk

σ−

∣∣∣α)|εk|α−2, if εk < 0
. (11)

One can observe that:
(1) When α = 2, the GMACC algorithm becomes the MACC algorithm, which can be

presented as:
Φk+1 = Φk − µ∇(k) = Φk + µφMACC(εk)εkΓk, (12)
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where the weighting function corresponding to the generalized maximum asymmetric
correntropy criterion is

φMACC(εk) =


exp

(
−
∣∣∣ εk

σ+

∣∣∣2), if εk ≥ 0

exp
(
−
∣∣∣ εk

σ−

∣∣∣2), if εk < 0
. (13)

(2) When σ+ = σ−, the GMACC algorithm becomes the GMCC algorithm [11]. When
the two conditions α = 2 and σ+ = σ− are both satisfied, the GMACC algorithm be-
comes the MCC algorithm. Furthermore, according to the properties of the GMCC, when
σ+ = σ− → ∞, the GMACC algorithm becomes the least mean p-norm algorithm (LMP),
while when α = 2 and σ+ = σ− → ∞, the GMACC algorithm becomes the LMS algorithm.
It can be found that GMACC is a broad concept, which includes many algorithms as its
special cases. The relationship between the GMACC and other algorithms as its special
cases are presented in Figure 1.

GMACC

MACC

GMCC

MCC

LMP

LMS

Figure 1. Relationship between the GMACC and other algorithms.

(3) The kernel width controls the balance between convergence rate and robustness.
When the kernel size is small, the estimation error can affect the value of the weighting
function significantly, thus reducing the effect of the input data that cause larger estimation
error. In contrast, when the kernel size is large, the weighting function stays close to |εk|α−2,
and the convergence occurs at a high rate.

Moreover, the kernel widths corresponding to the positive and negative parts of the
error variable, σ+ and σ−, determine the robustness and convergence rate of the algorithm
faced with a positive and negative error, respectively. Compared with the symmetric
Gaussian kernel, the asymmetric Gaussian kernel can flexibly choose the widths of the
kernel, σ+ and σ−, so as to deal with asymmetric noise better. For example, the system
noise in a network delay prediction follows a right-skewed distribution due to the sharp
increase of queuing delay caused by a user’s burst request, in which case a small σ+
is needed because data that bring about large positive errors are usually corrupted by
impulsive noise.

(4) The GMACC algorithm can be considered as one kind of least mean square algo-
rithm with variable step size, µGMACC,k, which can be presented as

µGMACC,k =

 µ exp
(
−
∣∣∣ εk

σ+

∣∣∣α)|εk|α−2, if εk ≥ 0

µ exp
(
−
∣∣∣ εk

σ−

∣∣∣α)|εk|α−2, if εk < 0
. (14)

(5) The difference between the GMACC and other algorithms can be also attributed
to the difference of the weighting functions of the algorithms. The weighting functions
of robust adaptive filters usually assign less weight to data outliers or large estimation
error caused by impulsive noise, which keeps the algorithm robust in a non-Gaussian noise
environment. The weighting functions of different algorithms are presented in Figure 2,
which shows that ITL-inspired criteria assign very little weight on sample data that cause a
large estimation error compared with the MMSE criterion and least p-norm criterion, and
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the asymmetric criteria assign different weights on the positive and negative estimation
errors even though they have the same absolute value.

(6) The computational complexity of the proposed GMACC algorithm is almost the
same as that of the LMS algorithm, and the only extra computational effort needed is to
calculate the weighting function (11), which is obviously not expensive. For a detailed
description of the computational complexity of the algorithm, we analyzed the number
of operations per iteration, which is presented in Table 1. One can conclude that the
computational complexity of the GMACC is O(n).

Table 1. Computational complexity (per iteration) of LMS and GMACC algorithms.

Algorithm Number of Additions and Subtractions Number of Multiplications and Divisions Number of Exponentiations

LMS n + 1 n + 1 0
GMACC n + 2 n + 5 3

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

(
)

LMS

LMP, p=1.5

MCC, =1.4

GMCC, =1.8, =1

MACC, 
-
=1.5, 

+
=1

GMACC, 
-
=1.5, 

+
=1

Figure 2. The weighting functions of different algorithms.

2.3. Steady-State Performance Analysis
2.3.1. Stability Analysis

The error vector of the filter parameter estimation is the difference between the esti-
mated value and the optimal value of adaptive filter parameters, which can be expressed as

Φ̃k = Φo −Φk. (15)

It is known that
Φk+1 = Φk + µφGMACC(εk)εkΓk. (16)

Combining (15) and (16), we can get

Φ̃k+1 = Φ̃k − µφGMACC(εk)εkΓk. (17)

According to the energy conservation relation (ECR) [34–36], we can get

E
[∥∥Φ̃k+1

∥∥2
]
= E

[∥∥Φ̃k
∥∥2
]

− 2µE
[
Φ̃T

k φGMACC(εk)εkΓk

]
+ µ2E

[
‖φGMACC(εk)εkΓk‖2

]. (18)

In order to ensure the algorithm finally come to the steady state, the error vector norm
must satisfy:

E
[∥∥Φ̃k+1

∥∥2
]
≤ E

[∥∥Φ̃k
∥∥2
]
. (19)
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So, we can derive that

µ2E
[
‖φGMACC(εk)εkΓk‖2

]
≤ 2µE

[
Φ̃T

k φGMACC(εk)εkΓk

]
. (20)

Then, we can deduce that the step size µ should satisfy the following condition

µ ≤
2E
[
Φ̃T

k φGMACC(εk)εkΓk
]

E
[
‖φGMACC(εk)εkΓk‖2

] . (21)

so that the expectation sequence of the power of the estimation error E
[∥∥Φ̃k

∥∥2
]

monotonously
decreases, hence the adaptive filter converges to the steady state after some iterations.

As one can see from (21), the threshold value of the step size depends on many factors
such as the error size, the variance of the system noise, the kernel width, and the shape
parameter. Therefore, the threshold value is hard to tell before the experiment, because the
steady-state error is previously unknown. Usually, a small step size can help the algorithm
to converge to a low steady-state MSD. Thus, one can just set a small step size at the
beginning of the simulation and carefully try a larger step size to get a faster convergence
speed. By running a simulation, we can provide an empirical value of the threshold. For
example, in experiment 1, the empirical value of the step size was less than 2.5.

2.3.2. Steady-State Performance

Before the analysis of the steady-state performance of the algorithm, the following
assumptions are given.

Assumption 1. The additive noise sequence vk with variance σ2
v is independent and identically

distributed (i.i.d) and is independent of the input sequence Γk.

Assumption 2. The order of the adaptive filter is long enough that the prior error ea,k accords with
the Gaussian distribution with a mean value of 0 and is independent of the background noise vk.

We define prior and posterior errors as

εa,k = Φ̃T
k Γk, (22)

and
εp,k = Φ̃T

k+1Γk. (23)

According to the previous definitions, the relationship between the estimation error
and the prior error at the kth moment can be presented as:

εk = εa,k + vk. (24)

We define the steady-state mean square error (MSE) as:

MSE = lim
n→∞

E
[
ε2

k

]
. (25)

Then the excess mean square error (EMSE) can be presented as:

EMSE = lim
n→∞

E
[
ε2

a,k

]
. (26)

Furthermore, the relationship between MSE and EMSE can be presented as:

MSE = EMSE + σ2
v . (27)
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In the steady-state performance analysis of adaptive filtering, EMSE is widely used as
a measure of steady-state performance, because it can filter out the direct influence of noise
on the steady-state performance.

For an adaptive filtering algorithm which can converge to a steady state, when the
number of iterations becomes very large, the estimation error of the filter parameters gets
very close. In other words, when k→ ∞, we can get Φ̃k+1 = Φ̃k. According to (17) and (18),
one can obtain:

µ2E
[
‖φGMACC(εk)εkΓk‖2

]
= 2µE

[
Φ̃T

k φGMACC(εk)εkΓk

]
. (28)

Assume
f (εk) = φGMACC(εk)εk. (29)

Then, the above equation can be written as

µ2E
[
‖ f (εk)Γk‖2

]
= 2µE[εa,k f (εk)]. (30)

In steady state, the distribution of εk and εa,k is independent of time k. In order to
simplify the expression of the derivation process, the time subscript is omitted in the
following derivation.

The Taylor expansion of f (ε) is [22,34]:

f (ε) = f (v + εa) = f (v) + f ′(v)εa +
1
2

f ′′(v)ε2
a + o(εa). (31)

According to the properties of the expected operator, we can further derive that

E[εa f (ε)] = E
[(

εa f (v) + f ′(v)ε2
a + o(εa)

]
≈ E

[
f ′(v)

]
EMSE , (32)

and
E
[

f 2(ε)
]
≈ E

[
f 2(v)

]
+ E

[
f (v) f ′′(v) +

∣∣ f ′(v)∣∣2]EMSE. (33)

Substituting (32) and (33) into (30), we can get

EMSE =
µ Tr(Rγ) · E

(
f 2(v)

)
2E( f ′(v))− µ Tr(Rγ) · E( f (v) f ′′(v) + f 2(v))

, (34)

where Tr(.) represents the trace operator of the matrix, and Rγ = E
(
γkγT

k
)

represents the
autocorrelation matrix of the input signal. The expressions of f (v), f ′(v), and f ′′(v) can be
expressed as:

f (v) =

 exp
(
−
∣∣∣ v

σ+

∣∣∣α)|v|α−1, if v ≥ 0

−exp
(
−
∣∣∣ v

σ−

∣∣∣α)|v|α−1, if v < 0
, (35)

f ′(v) =



(α− 1)exp
(
−
∣∣∣ v

σ+

∣∣∣α)|v|α−2

− α
σα
+

exp
(
−
∣∣∣ v

σ+

∣∣∣α)|v|2α−2, if v ≥ 0

(α− 1)exp
(
−
∣∣∣ v

σ−

∣∣∣α)|v|α−2

− α
σα
−

exp
(
−
∣∣∣ v

σ−

∣∣∣α)|v|2α−2, if v < 0

, (36)
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f ′′(v) =



|v|α−3 exp
(
−
∣∣∣ v

σ+

∣∣∣α)(3α
∣∣∣ v

σ+

∣∣∣α − 3α

−3α2
∣∣∣ v

σ+

∣∣∣α + α2 + α2
∣∣∣ v

σ+

∣∣∣2α
+ 2
)

, if v ≥ 0

|v|α−3 exp
(
−
∣∣∣ v

σ−

∣∣∣α)(3α
∣∣∣ v

σ−

∣∣∣α − 3α

−3α2
∣∣∣ v

σ−

∣∣∣α + α2 + α2
∣∣∣ v

σ−

∣∣∣2α
+ 2
)

, if v < 0

. (37)

According to the above formulas, the closed-form solution of the EMSE can be obtained
given the input sample data. It can be seen that the parameters that affect the steady-
state EMSE are step size, noise variance, width and shape parameters of the generalized
asymmetric Gaussian kernel.

3. Experiments and Results

In this section, we firstly compare the theoretical derived EMSE in Section 2.3 with
the simulated one to confirm the theoretical result. Then, we describe the asymmetry of
queuing delay in a satellite network and verify the robustness and the adaptability of the
GMACC in a satellite network delay prediction. Note that the experiments in this section
are all computer simulations.

3.1. Experimental Verification of Theoretical Analysis of Steady-State Performance

The steady-state performance of the GMACC algorithm under different step sizes
and noise distributions were simulated. The noise in the simulation was a uniform noise
distributed in [−m, m]. When the step size and noise variance were changed, the other
parameters were kept unchanged, that is, the kernel width was set to 0.5, and the shape
parameter was set to 2. For each simulation under a certain parameter setting, 100 Monte
Carlo runs were executed to get the average simulation result of the EMSE. When cal-
culating the steady-state results of the EMSE, the mean value of the EMSE of the last
500 iterations was taken as its steady-state value. In order to ensure that the algorithm
could converge to the steady state in the last few hundred iterations, 5000 iterations were
set in each Monte Carlo simulation. Considering that too small a step size leads to too slow
a convergence of the algorithm, the step size should be adjusted appropriately to avoid too
small a step size. The comparison between theoretical analysis results and experimental
results is shown in Figures 3 and 4.

It can be observed that: (1) when the step size and noise variance increase, the steady-
state EMSE also increases and (2) the theoretical analysis shows the relationship between the
steady-state performance of the algorithm and the step size and noise, and the theoretical
analysis results agree well with the experimental results.

0.15 0.2 0.25 0.3 0.35
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-30
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-26

S
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 E

M
S

E
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Figure 3. Theoretical and simulated steady-state EMSEs with different step sizes.
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Figure 4. Theoretical and simulated steady-state EMSEs with different variances.

3.2. Satellite Network Delay Prediction Based on GMACC

In most ground network research, the network delay is directly measured, but in
the large-scale propagation space of a satellite network, the time difference between the
measured delay and the actual delay cannot be ignored. If the measured delay is used in
a link-switching mechanism, remote control, and other scenarios, the accuracy of these
algorithms is reduced, so it is necessary to predict the delay of the satellite network in
these scenarios. In this paper, the autoregressive (AR) model was used to model the time
series of the satellite network delay, and the adaptive filter was used to estimate the model
parameters, so as to predict the network delay.

Generally speaking, the satellite network delay includes four parts: processing delay,
queuing delay, transmission delay, and propagation delay. Figure 5 shows the components
of the delay in the satellite network. The processing delay includes the time that the node
checks the packet header and determines how to send or process the packet according to
the packet header information, as well as the time to check whether the packet is misplaced,
etc. The processing time is usually negligibly small. The transmission delay refers to
the time required for the router to send packets onto the wire. The time is related to the
length of the packets and the speed of the router to send packets. According to the actual
packet length and network bandwidth parameter level, the transmission delay is small, and
accounts for a low proportion in the overall network delay. The propagation delay refers
to the time spent by an electromagnetic wave carrying data information going through
the propagation channel, which can be calculated by dividing the channel length by the
propagation rate of the electromagnetic wave in the channel. In the long-distance and
dynamic channel of a satellite network, the influence of the propagation delay is obvious,
while in the medium- and short-distance channel of a ground network, the influence of
the propagation delay on the overall delay is limited. In most networks, the queuing delay
accounts for a high proportion of the total network delay and is the decisive factor of the
network delay variation. The queuing delay refers to the time that a packet is waiting to
be sent in the router queue after it arrives at the router. For a specific packet, the queuing
delay depends on the length of the queue in which the packet is located and the speed at
which the router processes and sends the packet. For a specific queue, the queuing delay
depends on the arrival strength and distribution characteristics of packets. Studies have
shown that if there are 10 IP packets queued by 10 routers on average, the queuing delay
on this path can reach hundreds of milliseconds [37,38].



Remote Sens. 2022, 14, 3677 11 of 20

Processing delay
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Transmission delay
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Data packet Satellite network node

Figure 5. All kinds of delay in a satellite network.

In most time series analyses, an AR model or autoregressive moving average (ARMA)
model and autoregressive integrated moving average (ARIMA) are very useful models,
which can well reflect the autocorrelation of time series and is very suitable for modeling
the time series of the network delay or its differential variation [39,40]. In this paper,
considering that the delay time series may not satisfy the stationary condition, we refer to
the idea of ARIMA, and take the first-order difference of the network delay time series to
build the AR model.

The AR model of the satellite network delay can be expressed as

yk = ΦT
k Γk + vk =

i=1

∑
n

akiτk−i + vk, (38)

εk = τk − yk, (39)

where n is the order of the AR model, Φk = [ak1, ak2, · · ·, akn]
T is the weight vector or the

system parameter of the model, and Γk = [τk−1, τk−2, · · ·, τk−n]
T is the measured value of a

continuous p delay before time k. vk is the disturbance term of time k and represents the
unpredictable part of the network delay time series.

In the autoregressive modeling of time series delay, there is a certain error between
the measured delay and the real delay. Moreover, because the queuing delay is closely
related to the unpredictable network traffic, the change of queuing delay also causes noise
in the overall network delay modeling. The above two unpredictable signals are regarded
as the disturbance term in the autoregressive model. In the ordinary autoregressive model,
the disturbance term is assumed to be Gaussian distributed. However, due to the burst
of network traffic and the queue features of network nodes, the network traffic shows
explosive and asymmetric characteristics. When a node suddenly receives a large number
of data packets, the queuing delay rises abruptly in a short time. However, due to the
limited processing capacity of nodes, the speed of the queuing delay reducing is limited.
Thus, the probability distribution of the sudden rise and fall of the queuing delay are quite
different, showing an obvious asymmetry.

To make the discussion more convincing, this paper simulated the queue delay in
MATLAB software (version 9.3) [41] and described its specific asymmetric characteristics
inspired by the idea of queuing theory. According to the previous discussion, the arrival
packet traffic in a network node queue is sudden and unpredictable, and the speed of
packets leaving the node queue is constant. Suppose that there are two kinds of service
packets passing through one certain network node in a period of time. The packet arrival
process of one service is relatively stable, while the arrival process of the other service is
very sudden and explosive. The speed of the network node processing a data packet is
constant. According to the above settings, the number of packets arriving at each time
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and the number of packets processed can be simulated and calculated in MATLAB. Then,
a time series can be generated to represent the change of the number of packets in the
node queue over time. It should be noted that this paper assumed that the upper limit
of the simulated queue length was large enough, so there was no packet loss. In the case
of a constant processing speed, the queue length is proportional to the queue delay, so
the change of the queue length can also represent the change of the queue delay. In this
simulation, the queue length of nodes, the first-order difference of the queue length (i.e.,
the change of queue length), and the statistical distribution of the first-order difference are
shown in Figure 6, Figure 7 and Figure 8, respectively.

It can be observed from Figure 6 that the rising slope of the queue length time series is
usually larger than the falling slope, which indicates that in the packet queuing simulation,
the queue growth rate is faster than the queue reduction rate. From Figure 7, one can
observe that the distribution range of the first-order difference of the node queue length
on the positive axis and the negative axis are quite different. The maximum value on the
positive axis can reach dozens, while the minimum value on the negative axis is not less
than −5. Figure 8 shows that the distribution of the first-order difference of the node queue
length is unimodal, and the mean value is approximately equal to 0. In addition, there are
some outliers in the right tail, which is thicker than the tails of an exponential distribution.
Thus, it is a heavy-tail distribution. Because the right tail is much longer than the left tail,
the distribution can be described as a right-skewed distribution.

Next, we simulated the satellite network delay prediction in MATLAB. In the sim-
ulation, all criteria related to the GMACC were included in the comparison algorithms.
Because the optimization method was a gradient descent method, only the names of the
criteria were used to represent the algorithms in order to simplify the expression. The
algorithms compared in the simulation included the LMS based on the minimum mean
square error criterion, the MCC based on the maximum correntropy criterion, the MACC
based on the maximum asymmetric correntropy criterion, and the GMACC based on the
generalized maximum asymmetric correntropy criterion. The performance was measured
by the mean squared deviation (MSD):

MSD(Φk) = E
{
‖Φo −Φk‖2

}
, (40)

where Φk is the estimated AR weight vector at time k, and Φo is the optimal value of the
parameter vector.
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Figure 6. Queue length at one node.
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Figure 7. The first-order difference of queue length.

Figure 8. Statistical distribution of first-order difference of queue length.

To discuss the performance of the proposed algorithm under a symmetric and asym-
metric noise, we first carried out a simulation under a non-Gaussian noise and asymmetric
Gaussian noise, then conducted a simulation with an asymmetric non-Gaussian noise. The
noise parameters settings of the simulations are shown in Table 2. The parameters selection
of simulation 1 and simulation 2 are the same and are all shown in Table 3.

Table 2. Parameters of alpha stable noise.

Parameters Simulation 1 Simulation 2 Simulation 3, 4, and 5

Variance 1 1 0.25
Shape parameter 1.98 2 1.98

Skewness parameter 0 0.4 0.3
Scale parameter 0.2 0.2 0.2

Location parameter 0 0 0
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Table 3. Parameters and steady-state MSD of the algorithms in simulation 1 and simulation 2.

Algorithms Step Size µ Kernel Width σ σ− σ+ Shape Parameter α MSDexp1 (dB) MSDexp2 (dB)

LMS 0.09 - - - - 30.3309 −24.4518
MCC 0.085 1 - - - −24.6445 −24.7447

MACC 0.1 - 1 1 - −23.9127 −24.4624
GMACC 0.12 - 1 1 1 −22.8181 −24.0996
GMACC 0.11 - 1 1 1.5 −23.5233 −24.2051
GMACC 0.098 - 1 1 2.5 −23.9438 −24.4324
GMACC 0.095 - 1 1 3 −23.9906 −24.4935

Simulation 1: Under the condition that the disturbance term of the network delay
time series was small and close to Gaussian distribution, the MSD performance of the LMS,
MCC, MACC, and GMACC algorithms were simulated and compared. In this simulation,
we first set the disturbance term of the time delay series to obey a symmetric non-Gaussian
distribution with shape parameter 1.98, which is close to a Gaussian distribution but
contains impulsive components. Figure 9 presents the noise time series. The steady-state
performance of the algorithms is shown in Figure 10.

It can be observed from Figure 10 that almost all the listed algorithms converge with
the increase of iterations. However, as long as there is a little impact noise, the convergence
process of the LMS is seriously affected. In contrast, the other algorithms can suppress the
impact of the impulsive noise and show a good robustness.

Simulation 2: Then, we simulated the comparison between different algorithms when
the disturbance term followed asymmetric Gaussian distribution. The skew index of the
asymmetric distribution function was set to 0.4, the shape parameter was set to 2, and the
interference term obeyed the asymmetric Gaussian distribution. The MSD performance of
different algorithms are shown in Figure 11.
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Figure 9. Noise signal in simulation 1.
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Figure 10. Steady-state performance comparison of different algorithms under the perturbation term
of a symmetric non-Gaussian distribution close to a Gaussian distribution.

As can be seen from Figure 11, all algorithms including the LMS show good conver-
gence and steady-state performance when the disturbance term follows an asymmetric
Gaussian distribution.
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Figure 11. Steady-state performance comparison of different algorithms under asymmetric Gaussian
distribution disturbance.

The steady-state MSD in simulation 1 and simulation 2 are presented in Table 3, from
which one can observe that the asymmetric-correntropy-criteria-based algorithms deal with
asymmetric Gaussian noise and non-Gaussian noise well, and the LMS as well as MCC
algorithms also perform well in an asymmetric Gaussian noise.

Simulation 3: Next, we simulated the comparison among the MCC, MACC, and LMS
when the disturbance term followed an asymmetric non-Gaussian distribution. It has
been described that the queue delay is asymmetric due to the sudden increase of user
request and the limited processing speed of the network nodes. According to the above
characteristics of the queue delay, an asymmetric alpha-stable noise [42] with a lower
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bound was generated in this simulation, so as to simulate the disturbance term in the
network delay time series. The noise parameters are shown in Table 2. The performance of
the MACC and MCC with different kernel widths was compared under the condition of
asymmetric noise. For a fair comparison, the initial convergence speed of the algorithms
were set to be the same, which is similar to the simulation in [43]. For one algorithm, the
faster the initial convergence speed was, the less optimal the convergence step was. The
parameters of the algorithms are presented in Table 4. We took the mean MSD of the last
1000 iterations as the steady-state MSD and present the results in Table 4. The convergence
process and the steady-state performance results are shown in Figure 12 .

It can be observed from Figure 12 that the asymmetric Gaussian kernel with properly
selected kernel widths has better steady-state performance than the symmetric Gaussian
kernel when dealing with asymmetric noise, which has a heavy tail component in the
positive range and a lower limit in the negative range. However, the asymmetric Gaussian
kernel with wrong kernel widths has even worse steady-state performance than the sym-
metric Gaussian kernel. The steady-state MSD in Table 4 also clearly shows the difference
of steady-state performance between algorithms.

Table 4. Parameters and steady-state MSD of MCC and MACC in simulation 3.

Algorithms Step Size µ Kernel Width σ σ− σ+ Steady-State MSD (dB)

LMS 0.67 - - - -
MCC 1.39 0.1 - - −27.7406
MCC 0.8 0.2 - - −27.0129

MACC 1.2 - 0.2 0.1 −24.7491
MACC 0.96 - 0.1 0.2 −29.6021

Comparing the two simulation results in simulation 2 and simulation 3, one can
observe that the asymmetric non-Gaussian noise is the real test of the algorithms, while the
asymmetric Gaussian noise is not challenging.
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Figure 12. Steady-state performance comparison of different algorithms under asymmetric and
non-Gaussian distribution disturbance.

Simulation 4: The following simulation compared the MACC and MCC with the
GMACC under different shape parameters. The kernel widths of the GMACC were the
same as those of the MACC. The step sizes were set to unify the convergence rate of the
algorithms. The noise was set to follow an asymmetric and non-Gaussian distribution
of which the parameters were the same as those of simulation 3, and they are shown in
Table 2. The simulation results are shown in Figure 13.

It can be observed from Figure 13 that the GMACC with a proper shape parameter can
outperform the MACC in terms of the steady-state MSD under the same convergence rate.
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Simulation 5: In this simulation, the GMACC was compared with other robust adap-
tive filtering algorithms such as Llncosh [44], least p-norm [7], and Huber algorithm [45].
The system noise was set the same as that of simulation 3 and 4. The parameters setting
and steady-state MSD of the algorithms are shown in Table 5, and the simulation results
are shown in Figure 14.

One can observe that the GMACC algorithm outperforms classic or recently proposed
robust algorithms under an asymmetric non-Gaussian distribution disturbance in terms
of the steady-state MSD. Concretely, the steady-state MSD of the GMACC algorithm
is significantly lower than that of classic or recently proposed robust algorithms in the
presence of asymmetric non-Gaussian noise under the condition that the initial convergence
rate is consistent. Moreover, the robustness of the GMACC is the best among the compared
algorithms since the GMACC is least affected by impact noise.
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Figure 13. Performance comparison of GMACC, MACC and MCC algorithms with different shape
parameters.

Table 5. Parameters and steady-state MSD of the algorithms in simulation 5.

Algorithms Step Size µ Kernel Width σ Shape Parameter α ρ (Huber) p (Lp-Norm) λ (Llncosh) MSD (dB)

LMS 1.2 - - - - - 50.6474
GMACC 1.5 0.1, 0.2 2.25 - - - −26.3724

Huber 1.3 - - 1 - - −21.7201
Lp-norm 0.77 - - - 1.7 - −16.7295
Llncosh 2.5 - - - - 0.5 −17.8793

0 1000 2000 3000 4000 5000

iteration(n)

-30

-25

-20

-15

-10

-5

0

M
S

D
(d

B
)

LMS

GMACC, =0.1,0.2

Huber

Lp-norm,p=1.7

Lncosh, =0.5

Figure 14. Steady-state performance comparison of GMACC and other robust algorithms under
asymmetric and non-Gaussian distribution disturbance.
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4. Discussion

The result of simulation 2 that the LMS and MCC with a symmetric Gaussian kernel
can deal with asymmetric Gaussian noise well is beyond expectation. However, that could
be explained. It is because the criteria selected by the several algorithms in this simulation
can well describe the second-order statistics of the error contained in the asymmetric
Gaussian distribution.

Combining the two simulation results in simulation 2 and simulation 3, one can
observe that the asymmetric non-Gaussian noise is the real test of the algorithms, while the
asymmetric Gaussian noise is not challenging.

The result in simulation 3 shows the desirable performance of the asymmetric Gaussian
kernel, for which the underlying reason is that the asymmetric Gaussian kernel can flexibly
select the kernel widths of positive and negative axes, so it can adapt to the asymmetric
noise. In simulation 3, the noise is in accordance with the right-skewed distribution, and
the distribution in the positive axis has impact characteristics. Therefore, the MACC with a
small positive kernel width performs well and can suppress the impact component of the
noise in the positive axis.

The result in simulation 4 shows that the shape parameter of GMACC can improve the
adaptability and the robustness of the algorithm. The adjustment of the shape parameter
can not only balance the steady-state performance and convergence rate of the GMACC
algorithm, but also help to achieve better performance under an asymmetric and non-
Gaussian noise. Furthermore, that is the advantage of GMACC.

According to the results of simulation 3 and simulation 4, the GMACC has an enhanced
adaptability because of the flexible selection of the shape and kernel width parameters. The
GMACC with a small positive kernel width performs well under a right-skew-distributed
system noise while the GMACC with a small negative kernel width is suitable for dealing
with a left-skew-distributed system noise. This could be considered as a reference for the
selection of the kernel width parameters. According to the stability analysis presented in
Section 2.3.1, the step size should be set smaller than a threshold value, which is uncertain
before an experiment, as the steady-state error is unknown in advance. Therefore, to make
the algorithm converge to the steady state, one can just set a small step size at the beginning
of the simulation, and carefully try larger step sizes to get a faster convergence speed if
necessary. By running the simulations, we can provide the empirical value of the step size
threshold. For example, in simulation 1, the empirical value of step size was less than
2.5. The shape parameter of the GMACC ranged from 1 to 3.5. With the other parameters
unchanged, the larger the shape parameter is, the better the GMACC algorithms perform
in terms of the steady-state MSD. In contract, larger shape parameters lead to a lower
convergence rate. Furthermore, that could be the reference for the selection of the shape
parameter. According to our experimental experience, the GMACC algorithm achieves the
best performance under an asymmetric non-Gaussian noise when the shape parameter is
set to around 2.25.

5. Conclusions

Symmetric Gaussian kernel based criteria such as the MCC and GMCC are not desir-
able when dealing with asymmetric heavy-tailed system noise in adaptive filtering. This
paper proposed the GMACC to build the cost function of robust adaptive filtering, which
was the expansion of traditional ITL-based adaptive filtering and included the original
algorithms as special cases. The flexible values of the parameters brought many benefits.
The different kernel widths in positive and negative axes made the GMACC suitable to deal
with asymmetric noise. The shape parameter of the GMACC could balance the steady-state
performance and convergence rate of the algorithm. The steady-state performance of the
algorithm was analyzed theoretically and verified by experiment. The asymmetric prop-
erty of a satellite network delay was discovered and described. Simulations verified the
effectiveness of the GMACC-based adaptive filter in a satellite network delay prediction.
The proposed GMACC-based adaptive filtering performed well under an asymmetric
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non-Gaussian system noise environment, and improved the research framework of robust
adaptive filtering.

The proposed GMACC algorithm in this paper was tested in simulation environments
only, but it has application prospects in satellite network delay prediction, oil price predic-
tion, etc., where asymmetric non-Gaussian noise exists. Moreover, the adaptability of the
GMACC under different types of noise needs more studying in the future.
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