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Abstract: In the modern electromagnetic environment, the intra-pulse modulations of radar emitter
signals have become more complex. Except for the single-component radar signals, dual-component
radar signals have been widely used in the current radar systems. In order to make the radar system
have the ability to classify single-component and dual-component intra-pulse modulation at the
same period of time accurately, in this paper, we propose a multi-label learning method based on a
convolutional neural network and transformer. Firstly, the original single channel sampled sequences
are padded with zeros to the same length. Then the padded sequences are converted to frequency-
domain sequences that only contain the amplitude information. After that, data normalization is
employed to decrease the influence of amplitude. After radar signals preprocessing, a designed
model which combines a convolutional neural network and transformer is used to accomplish multi-
label classification. The extensive experiments indicate that the proposed method consumes lower
computation resources and has higher accuracy than other baseline methods in classifying eight
types of single and thirty-six types of dual-component intra-pulse modulation, where the overall
accuracy and weighted accuracy are beyond 90%.

Keywords: intra-pulse modulation classification; single-component intra-pulse modulation; dual-
component intra-pulse modulation; multi-label learning; convolutional neural network; transformer

1. Introduction

With the incensement in the number of radar systems, the modern electromagnetic
environment has become more complex [1]. The intra-pulse modulation of radar emitter
signals is an important part of electronic support measure systems, electronic intelligence
systems and radar warning receivers [2–4]. Accurately classifying the intra-pulse modu-
lation of radar emitter signals is beneficial for judging the threat level and analyzing the
radar function [5]. As the radar systems become complicated, multi-component intra-pulse
modulations have been employed for the radar signals, which increases the difficulty of
classification.

The intra-pulse modulation classification methods based on deep learning [6] have
been proposed in recent years. In [7], Kong et al. used Choi–William Distribution (CWD)
images of low probability of intercept (LPI) radar signals and recognized the intra-pulse
modulations. Similarly, Yu et al. [8] obtained the time-frequency images (TFIs) of the radar
signal using CWD and extracted the contour of the signal in TFIs. After that, a convolutional
neural network (CNN) model was trained with the contour images. In [9], Zhang et al.
used Wigner–Ville Distribution (WVD) images of radar signals, which contain five types
of intra-pulse modulations, to train the CNN model. In [10], Yu et al. firstly preprocessed
the radar signal by Short-Time Fourier Transformation (STFT), and then, a CNN model
was trained to classify intra-pulse modulation of radar signals. Wu et al. [11] designed a
1-D CNN with an attention mechanism to recognize seven types of radar emitter signals in
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the time domain, where the intra-pulse modulation of the signal is different. In [12], a 1-D
Selective Kernel Convolutional Neural Network (SKCNN) was proposed to classify eleven
types of intra-pulse modulations of radar emitter signals.

However, it could be seen from the above that the limitation is that the intra-pulse
modulation classification mainly focuses on single-component intra-pulse modulation.
As the intra-pulse modulation grows more complex than ever, multi-component intra-
pulse modulation of radar emitter signals has been used in radar systems. Therefore, it is
essential to take the cases in which multi-component intra-pulse modulation emerges
in electromagnetic space into consideration. Some researchers have proposed methods,
including blind source separation [13] and time-frequency analysis [14], but these methods
require prior knowledge. With the development of deep learning, some methods based on
convolutional neural networks have been proposed for classifying the multi-component
intra-pulse modulations. Representative research is that Si et al. [15] used the smooth
Pseudo-Wigner–Ville distribution (SPWVD) transformation to covert the dual-component
radar signals into time-frequency images (TFIs), and then they used EfficientNet [16] to
accomplish the multi-label classification tasks. The limitations of this method are that this
method only focuses on the dual-component intra-pulse modulation, where the received
signals may include single-component and dual-component intra-pulse modulation at the
same time.

As the receivers of radar are passive, which means that both single-component and
dual-component intra-pulse radar signals may be collected at the same period of time,
it is not adequate for the classification system to only focus on single-component or
dual-component intra-pulse modulation. Therefore, in order to reduce the mentioned
limitation and make the radar system have the ability to classify single-component and
dual-component intra-pulse modulation of radar emitter signals at the same period of
time accurately, we proposed a multi-label learning method for accurately classifying single
intra-pulse modulation and dual-component intra-pulse modulation of radar emitter signals.

In the experiments, the number of single-component intra-pulse modulations is set
to be eight, including single-carrier frequency (SCF) signals, linear frequency modulation
(LFM) signals, sinusoidal frequency modulation (SFM) signals, even quadratic frequency
modulation (EQFM) signals, binary frequency shift keying (BFSK) signals, quadrature
frequency shift keying (QFSK) signals, binary phase shift keying (BPSK) signals and Frank
phase-coded (FRANK) signals. The dual-component intra-pulse modulations are generated
by a random combination of each two single-component intra-pulse modulations, and the
number of dual-component intra-pulse modulations is thirty-six, accordingly.

The framework of our method is shown as follows. Firstly, the original single channel
sampled sequences are padded with zeros to the same length. Then, the padded sequences
are converted to frequency-domain sequences that only contain the amplitude information.
After that, data normalization is employed to decrease the influence of amplitude. After
radar signals preprocessing, a designed model which combines a convolutional neural
network and transformer is used to accomplish multi-label classification. The experiments
show that in the situation of single-component and dual-component intra-pulse modulation
existing at the same period of time, the proposed method consumes lower computation
resources and has higher classification accuracy than other baseline methods.

The main contribution of this paper is that we focus not only on widely used single-
component modulation but also on dual-component modulations, where the power for
two-component modulations varies and the power ratio is not constantly 1:1. This work
provides guidance and an effective approach for multi-label classification task on radar
intra-pulse modulation. Another contribution is that we combined CNN and Transformer
encoders, which makes better classification performance than the CNN-based structure
only. The specific results can be seen in Sections 5 and 6.

This paper is organized as follows: In Section 2, the related works about CNN in intra-
pulse modulation classification and transformer in classification are introduced. Section 3
provides the information on the proposed method. The dataset and parameter settings
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are shown in Section 4. The extensive experiments and the corresponding analysis are
described in Section 5. The ablation study and application scenarios of the proposed model
are given in Section 6. Section 7 gives the conclusion.

2. Related Works
2.1. CNN in Radar Emitter Signal Intra-Pulse Modulation Classification

CNN has been widely used in image classification. The emergence of various CNN
models made a great contribution to the improvement of classification accuracy. Many
researchers have applied some of the CNN models to classify the intra-pulse modulation
of radar emitter signals. Zhang et al. [9] used CNN to classify the intra-pulse modulations
based on the Wigner-Ville Distribution (WVD) images of radar signals. Si et al. [15]. used
a more effective model, EfficientNet, to classify the dual-component modulations based
on the TFIs of SPWVD. Except for these 2-D CNN models, 1-D models were also applied.
Wu et al. [11] proposed a 1-D CNN with an attention mechanism to classify five modulations
of radar signals. Zhang et al. (Recognition of Noisy Radar Emitter Signals Using a One-
Dimensional Deep Residual Shrinkage Network) proposed a 1-D DRSN, which could learn
the features characterizing the signal directly. In our previous work [12], we designed a
1-D CNN model with selective kernel convolution layers and soft-attention parts, which
has superior performance in the single-component modulation classification.

2.2. Transformer in Classification

Transformer [17] was originally proposed for natural language processing (NLP) tasks,
which replaced the Recurrent Neural Network (RNN). In recent years, Transformer has
been used in classification tasks. A guided transformer for classification is the vision
transformer (ViT). ViT [18] divides an image into several patches as the input of the model,
where the size of one patch is 14 × 14 or 16 × 16. The overview of ViT could be found in
Figure 1. Swin Transformer [19] is one of the best transformer models, which uses window
attention to combine both global and local information. The experiment results show that
the transformer model could obtain a good classification accuracy when a huge number
of samples is provided. However, when the number of samples is not so huge, the CNN
models would perform better. In short, the transformer models lack inductive bias and
need a huge number of samples to complete training [20].

Remote Sens. 2022, 14, 3690 3 of 22 
 

 

encoders, which makes better classification performance than the CNN-based structure 
only. The specific results can be seen in Sections 5 and 6. 

This paper is organized as follows: In Section 2, the related works about CNN in in-
tra-pulse modulation classification and transformer in classification are introduced. Sec-
tion 3 provides the information on the proposed method. The dataset and parameter set-
tings are shown in Section 4. The extensive experiments and the corresponding analysis 
are described in Section 5. The ablation study and application scenarios of the proposed 
model are given in Section 6. Section 7 gives the conclusion. 

2. Related Works 
2.1. CNN in Radar Emitter Signal Intra-Pulse Modulation Classification 

CNN has been widely used in image classification. The emergence of various CNN 
models made a great contribution to the improvement of classification accuracy. Many 
researchers have applied some of the CNN models to classify the intra-pulse modulation 
of radar emitter signals. Zhang et al. [9] used CNN to classify the intra-pulse modulations 
based on the Wigner-Ville Distribution (WVD) images of radar signals. Si et al [15]. used 
a more effective model, EfficientNet, to classify the dual-component modulations based 
on the TFIs of SPWVD. Except for these 2-D CNN models, 1-D models were also applied. 
Wu et al. [11] proposed a 1-D CNN with an attention mechanism to classify five modula-
tions of radar signals. Zhang et al. (Recognition of Noisy Radar Emitter Signals Using a 
One-Dimensional Deep Residual Shrinkage Network) proposed a 1-D DRSN, which could 
learn the features characterizing the signal directly. In our previous work [12], we de-
signed a 1-D CNN model with selective kernel convolution layers and soft-attention parts, 
which has superior performance in the single-component modulation classification. 

2.2. Transformer in Classification 
Transformer [17] was originally proposed for natural language processing (NLP) 

tasks, which replaced the Recurrent Neural Network (RNN). In recent years, Transformer 
has been used in classification tasks. A guided transformer for classification is the vision 
transformer (ViT). ViT [18] divides an image into several patches as the input of the model, 
where the size of one patch is 14 × 14 or 16 × 16. The overview of ViT could be found in 
Figure 1. Swin Transformer [19] is one of the best transformer models, which uses window 
attention to combine both global and local information. The experiment results show that 
the transformer model could obtain a good classification accuracy when a huge number 
of samples is provided. However, when the number of samples is not so huge, the CNN 
models would perform better. In short, the transformer models lack inductive bias and 
need a huge number of samples to complete training [20]. 

 
Figure 1. The overview of ViT. Figure 1. The overview of ViT.

3. The Proposed Method

With the development of radar systems, except for single-component intra-pulse
modulations, dual component intra-pulse modulations have been applied to new radar
systems according to different functions. As the receivers of radar are passive, both single-
component and dual-component intra-pulse modulation may be collected at the same
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period of time. In addition, the power ratio for two components of dual-component
modulation varies according to different functions or purposes and is not constantly 1:1.
Based on the above situation, in this paper, we proposed a multi-label learning method
based on a convolutional neural network and transformer named CNN&Transformer to
classify the single-component and dual-component intra-pulse modulation of radar emitter
signals at the same time.

The method consists of the following parts: (1) Preprocess the raw single-channel
sampled sequences. (2) Design the classification model based on a convolutional neural
network and transformer. (3) Train the model with preprocessed samples.

3.1. The Architecture of Proposed CNN&Transformer

CNNs have been the dominant method of image since AlexNet [21] won the ImageNet
competition. For intra-pulse modulation classification of radar emitter signals, there are
two ways to design the CNN model. One is that convert the signals into 2-D TFIs and
use two-dimensional (2-D) CNN models, where the classification task could be thought of
as an image classification task. The second way is based on the feature of sampled radar
signals, where the sequences are one-dimensional (1-D) and designed 1-D CNN-based
model. To save the resource of computation and meet the real-time requirements to some
degree, in this paper, we choose 1-D CNN as the backbones of the model.

Meanwhile, in recent years, Transformer [17] has been used in natural language
processing tasks. Recently, researchers have employed the transformer in classification
tasks. In [18], the author proposed a vision transformer (ViT) to classify the images. On the
basis of ViT, some transformer models have been proposed for image classification tasks.
Although these transformer models have been proved to have higher accuracy than CNN
models, the limitations are that they are hard to train for computational cost and require
much more data.

As the convolutional layer and pooling layer could extract features and reduce the
size of the feature maps, and the transformer has been proved its effectiveness in classi-
fication tasks, inspired by [22], we combine the 1-D CNN with the transformer, which is
hoped to combine the advantages of these two structures where CNN is faster, and trans-
former could bring better classification results, to classify both single-component and
dual-component intra-pulse modulations. The overall architecture of the proposed model
named CNN&Transformer is shown in Figure 2.

The proposed model mainly contains two parts. The first part includes cascaded
convolutional blocks, which extract feature from the input and provide the output feature
maps in small size. The input feature maps in small size could reduce the computational cost
of transformer. The second part is the cascaded transformer encoders, which are inspired
by the original ViT that has a higher accuracy in image classification than traditional CNN.

Unlike the architecture of the original vision transformer shown in Figure 1, where the
inputs are divided directly into several patches and the linear projection is on those patches,
in our proposed CNN&Transformer, the CNN part extracts the features and outputs the
input of the first transformer encoder. Compared with the operation of patch division,
the CNN part, which is thought to have strong inductive bias [23], could make the input of
the first transformer encoder more information. The classification results of the original
transformer model could be found in Appendix A.3.
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3.1.1. Convolutional Block

In this paper, there are four convolutional blocks in our proposed model, and the
structure of the convolutional block is shown in Figure 3.
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Each convolutional block includes a 1-D convolutional layer with stride and a batch-
normalization layer [24]. Given an input sequence Fin ∈ RW ′×C′ where W ′ refers to the
length of sequence and C′ refers to the channel number of sequence (For the first convolu-
tional block, the value of C′ is 1), the 1-D convolutional layer with a stride in the convolu-
tional block will extract features and output the feature maps with less length. The output
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feature maps of the convolutional block could be obtained after batch-normalization layer.
This process could be written as:

fconv : Fin ∈ RW ′×C → Fconv ∈ RW×C (1)

fbatch−normalization : Fconv ∈ RW×C → Fmid ∈ RW×C (2)

where fconv and fbatch−normalization refer to the operation of 1-D convolution with stride
and batch normalization, respectively. Fconv and Fmid are the corresponding result of these
operations. Typically, the value of W is smaller than that of W ′, and the value of C is larger
than that of C′.

3.1.2. Transformer Encoder

There are four cascaded transformer encoders in the transformer part. Before feed-
ing Fmid into the transformer part, a learnable classification token [25] vcls ∈ R1×C is
concatenated together with Fmid. This process could be written as:

Z0 = [vcls; x1; x2; . . . ; xW ] (3)

where Z0 ∈ R(W+1)×C, x1 to xW are the patches of Fmid with length W and the length of
each patch is C.

In [18], position information was added by 1-D or 2-D positional encodings. As the
front of the model is convolution, which contains the positional information [26], in this
paper, there is no extra positional encodings.

The result Z0 is passed to the transformer encoders. The structure of transformer
encoder is shown in Figure 4.

Each transformer encoder includes a layer-normalization layer [27], a multi-head
self-attention block, a layer-normalization layer and a feed forward network. Firstly, layer-
normalization is employed to normalize Z0, and the result could be written as:

Ẑ0 = LN(Z0) (4)

where LN(·) refers to the operation of layer normalization.
The multi-head self-attention block could be thought of as the concatenation of several

single-head self-attention module. In the single-head self-attention module, for the given
input Ẑ0 ∈ R(W+1)×C, there are three trainable matrices named WQ ∈ RC×d, WK ∈ RC×d

and WV ∈ RC×d. The query, key and value for each patch of Z0 could be obtained by:

qi = ai ×WQ (5)

ki = ai ×WK (6)

vi = ai ×WV (7)

where ai ∈ R1×C is the i-th patch of Ẑ0. Then we calculate the inner product to match qi

and ki, and normalize the result with the scale
√

d. The result could be shown as:

αm,n =
< qm, kn >√

d
, m, n ∈ [1, 2, . . . , W + 1] (8)

After that, SoftMax operation is employed to αm,n, and this process could be written as:

α̂m,n =
exp(αm,n)

W+1
∑

i=1
exp(αm,i)

(9)
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The result of α̂m,n could be thought of as the weights for vi, and the output could be
written as:

bi =
W+1

∑
n=1

α̂i,n · vi, i = [1, 2, . . . , W + 1] (10)

Accordingly, in the form of matrix, the query matrix, key matrix and value matrix
could be written as:

Q = Ẑ0 ×WQ (11)

K = Ẑ0 ×WK (12)

V = Ẑ0 ×WV (13)

The output of a single self-attention module could be written as:

SA= softmax(
QKT
√

d
)V (14)
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The multi-head self-attention block computes SA separately for h times, where the
value of h× d is C. Therefore, the output of the transformer encoder consists of h number
of independent SA. This could be written as:

MSA = Concat(SA1; SA2; . . . ; SAh), MSA ∈ R(W+1)×C (15)

Before feeding MSA to the layer-normalization layer, there is a residual part that the
original Z0 and MSA could be fused together. This process could be written as:

Res1 = Z0 + MSA (16)

Then, the result is sent to a two-layer fully connected neural network with “ReLU”
activation function in the feed forward network. The second residual part fuses Res1 and
the output of feed forward network. This process could be written as:

Zencoder1= MLP(LN(Res1)) + Res1 (17)

where Zencoder1 ∈ R(W+1)×C refers to the output of the first transformer encoder, MLP(·)
refers to the two-layer fully connected neural network.

The transformer encoders are cascaded, and we slice the first patch of the output
in the last transformer encoder for the classification, which corresponds to the learnable
classification token vcls. This could be written as:

ycls = Zencoder4(1, 1 : C), ycls ∈ R1×C (18)

where Zencoder4 refers to the output of the last transformer encoder.

3.2. Data Preprocessing

In this paper, we assume that the collected radar emitter signals vary in a certain range.
The sampling way is single channel sampling, which could reduce the requirement and
complexity of the sampling hardware compared with IQ sampling. The signal could be
written as:

y(t) = s(t) + n(t) (19)

where s(t) refers to the pure radar signal and the intra-pulse modulation includes one or two
components. n(t) is the additional white Gaussian noise (AWGN) [28]. Single-component
and dual-component intra-pulse modulation are widespread on the real battlefield, and the
power ratio for two-component of dual-component modulation varies according to different
functions or purposes and is not constantly 1:1, which means that each component of dual-
component modulation is not the same signal-to-noise ratio (SNR) under the same noise
sequence.

Once the sampling frequency is given, the length of sampled signals will be deter-
mined. We firstly pad zero to the end of the original single channel sampled sequences and
ensure that the padded sequences are of the same length. Then the padded sequences are
converted to frequency-domain sequences that only contain the amplitude information.
This process could be written as:

ypad = [ysc, 0, 0, . . .] (20)

y f re_am =
∣∣∣DFT(ypad)

∣∣∣ (21)

where ysc refers to the original single channel sampled sequences, DFT(·) refers to discrete
Fourier transformation and | · | refers to the process of calculating the absolute value.

After that, data normalization is employed to decrease the influence of amplitude.
This could be written as:

ynormal =
y f re_am

max(y f re_am)
(22)
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where ynormal ranges from 0 to 1. max(·) refers to the process of finding the max value of a
given input sequence.

4. Dataset and Experiment Setting

In this section, a simulation dataset is introduced. In addition, the parameters of the
proposed CNN&Transformer are shown in detail. A computer with Intel 10900K, 128GB
RAM, RTX 3070 GPU hardware capabilities, “MATLAB 2021a” software, “Keras” and
“Python” programming language have been used. “MATLAB 2021a” was used to generate
the simulated dataset. “Keras” and “Python” were used for developing the model.

4.1. Dataset

In our experiments, the simulation dataset will be used to train and test the proposed
method and other baseline methods. The sampling way is single channel sampling, and the
sampling frequency is 1 GHz. Although in the real battlefield, the pulse width could range
from several microseconds to hundred microseconds, in this paper, we only focus on a
certain range of pulse width, which ranges from 5 us to 30 us.

Eight single-component intra-pulse modulations are generated, and their parameters
are shown in Table 1.

Table 1. Parameters of eight single-component intra-pulse modulations.

Type Carrier Frequency Parameters Details

SCF 0.05–0.45 None None

LFM 0.05–0.45 Bandwidth: 0.005–0.25

1. Both up LFM and down LFM are included.

2. Both max value and min value of the
instantaneous frequency for LFM range from
0.05 to 0.45.

SFM 0.05–0.45 Bandwidth: 0.005–0.25
Both max value and min value of the
instantaneous frequency for SFM range from
0.05 to 0.45.

EQFM 0.05–0.45 Bandwidth: 0.005–0.25

1. The instantaneous frequency increases first
and then decreases, or decreases first and
then increases.

2. Both max value and min value of the
instantaneous frequency for EQFM range
from 0.05 to 0.45.

BFSK 0.05–0.45, 0.05–0.45 5-, 7-, 11-, 13-bit Barker code

1. The distance between two carrier
frequencies is longer than 0.005.

2. The symbol width depends on the pulse
width.

QFSK 0.05–0.45, 0.05–0.45
0.05–0.45, 0.05–0.45 16-bit Frank code

1. The distance of each two-carrier frequency
is longer than 0.005.

2. The symbol width depends on the pulse
width.

BPSK 0.05–0.45 5-, 7-, 11-, 13-bit Barker code The symbol width depends on the pulse
width.

FRANK 0.05–0.45 Phase number: 6, 7, 8 The symbol width depends on the pulse
width.

The carrier frequency and bandwidth in the table is the normalized frequency based
on the single channel sampling frequency. For instance, if the carrier frequency is 0.2 or the
bandwidth is 0.3, the according to carrier frequency and bandwidth based on the sampling
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frequency will be 200 MHz or 300 MHz, respectively. In addition, the sampled signals are
discrete real signals with a length of 5000–30,000 points.

For the dual-component intra-pulse modulation of radar emitter signals, their modula-
tions are based on the combinations of single-component intra-pulse modulation. Therefore,
the number of single-component intra-pulse modulation is eight, and the number of dual-
component intra-pulse modulation is thirty-six. In addition, the power for two-component
modulations varies, and the power ratio of low-power component modulation and high-
power component modulation ranges from 1:3 to 1:1, which provides better wider coverage
than only a 1:1 power ratio.

To make the analysis of experiments in the next sections easier, we provide the index
information for the modulation in Tables 2 and 3.

Table 2. The index information for the single-component modulation.

Component SCF LFM SFM EQFM BFSK QFSK BPSK FRANK

Index SID1 SID2 SID3 SID4 SID5 SID6 SID7 SID8

Table 3. The index information for the dual-component modulation.

Component SCF LFM SFM EQFM BFSK QFSK BPSK FRANK

SCF ID1 - - - - - - -

LFM ID2 ID3 - - - - - -

SFM ID4 ID5 ID6 - - - - -

EQFM ID7 ID8 ID9 ID10 - - - -

BFSK ID11 ID12 ID13 ID14 ID15 - - -

QFSK ID16 ID17 ID18 ID19 ID20 ID21 - -

BPSK ID22 ID23 ID24 ID25 ID26 ID27 ID28 -

FRANK ID29 ID30 ID31 ID32 ID33 ID34 ID35 ID36

The SNR is defined as SNR = 10 log10(σ
2
s /σ2

n), where σ2
s and σ2

n are the pure signal
power and AWGN power, respectively. The SNR ranges from −14 dB to 0 dB, with 2 dB
increment. Every 2 dB, 400 samples, 100 samples and 200 samples for each type of intra-
pulse modulation are generated for training, validation, and testing, respectively. There-
fore, the training dataset, validation dataset and testing dataset include 140,800 samples,
35,200 samples and 70,400 samples, respectively.

Figure 5 shows the preprocessed results of six modulation samples in SID3, SID4, ID6,
ID12, ID17 and ID19 when SNR is 0 dB. In order to make the samples more visible, the TFIs
of these samples based on SPWVD in [15] are shown in Figure 6.

4.2. Experiment Setting
4.2.1. Multi-Hot Labelling

In this paper, we choose to label the sample in a multi-hot way. As there are single-
component intra-pulse modulations, the labeling way should be adjusted compared with
the way in [15]. Each label contains nine elements, and the first eight elements refer to
the modulation the signals belong to. The last element is the mark whether the signal
is in single-component modulation or dual-component modulation, where “0” refers to
single-component modulation and “1” refers to dual-component modulation. For instance,
a sample with a label vector [1, 0, 0, 0, 0, 0, 0, 0, 1] means this sample is in dual-component
modulation and the two components are all the first single intra-pulse modulation. The sam-
ple with a label vector [0, 1, 0, 0, 0, 0, 0, 0, 0] means this sample is in single-component modu-
lation and the component is the second single intra-pulse modulation.
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4.2.2. Parameters of the Proposed CNN&Transformer

Based on the sampling frequency and pulse width, the length of sample sequences
ranges from 5000 to 30,000 points. We set the length for padded sequences as 32,768, which
could accelerate the processing of DFT [29]. Therefore, the input shape of the proposed
model is 32,768.

The kernel size in each convolutional layer is 16. The number of filters in four con-
volutional blocks is 16, 32, 64 and 128. The convolutional stride in all the convolutional
layers is set to be 4. Activation function is “ReLU” [30]. The number of heads in multi-head
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self-attention module is set to be 8. The first layer in the feed forward neural network con-
tains 384 nodes, and the second layer contains 128 nodes, with “ReLU” activation function.
The sliced patches of the output in the last transformer encoder will be fully connected
with the output layer with nine nodes, where the activation function is “Sigmoid”.

4.2.3. Baseline Methods

The method used in [15], named CNN-SPWVD, is based on SPWVD of time-frequency
analysis and will be selected and carried out as a baseline method using the simulated
dataset. As other deep learning-based methods mainly focus on single-component intra-
pulse modulation classification, we adjust some of these methods to make the model
suitable for the multi-label learning classification task, specifically, 1-D SKCNN in [12],
where the size of selective kernels are 16 and 9, respectively, the pooling size and pooling
stride are adjusted as 7 and 7. The nodes of the first hidden layer of MLP in each selective
convolutional block in 1-D SKCNN are 8, 16, 32, and 64, respectively. Moreover, the nodes
of the full connection unit are 256.

In addition, although the method in [10], which used the TFIs of STFT based on
time-frequency analysis, only aims to classify single-component intra-pulse modulations,
this method is still applied as a baseline method, where the model is replaced by Efficient-
Net and changing the number of nodes in the output layer, which is named CNN-STFT.
The method in [7] used TFIs of CWD; however, the model is quite simple. Therefore,
EfficientNet is used to replace the original model, and this method is named CNN-CWD.
The above time-frequency analysis tools are widely used in radar signal analysis and have
been proved effective in intra-pulse modulation classification based on the mentioned
literature.

In order to evaluate the effectiveness of the transformer encoder, we replace the trans-
former part with one convolutional block with 256 filters, where the stride in convolutional
layer is 4, and add a full connect layer with 256 nodes, named CNN-Normal. Table 4
summarizes the name of methods with the according used input data and models in the
experiments.

Table 4. The name of the methods in experiments with the according used input data and models.

Name Input Data Model

CNN&Transformer

Sequences based on DFT

CNN&Transformer

1-D SKCNN 1-D SKCNN

CNN-Normal CNN-Normal

CNN-SPWVD TFIs based on SPWVD

EfficientNetCNN-STFT TFIs based on STFT

CNN-CWD TFIs based on CWD

5. Experimental Results
5.1. Training Details

During the training sections, the loss function is binary cross-entropy. The optimization
algorithm is set as adaptive moment estimation (ADAM) [31]. The batch size is set as 32,
epochs as 50 with 0.001 learning rate. After training 50 epochs, another 10 training epochs
with a 0.0001 learning rate are carried out. The influence of batch size on the efficiency of
model training could be found in Appendix A.2. The weights for testing sections are chosen,
which have the highest overall classification accuracy for the intra-pulse modulations on the
validation dataset. As the output layer uses the “Sigmoid” activation function, the threshold
for binarization is set as 0.5, and this process could be written as:

ypred_label(i) =
{

0 if youtput(i) ≤ 0.5
1 if youtput(i) > 0.5

(23)
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where ypred_label is the result after binarization and youtput is the output the model and the
length is 9, which is equal to the length of the multi-hot label.

For traditional multi-label classification tasks, the metrics are insensitive to label
imbalance, where recall, precision, F1-score and other metrics are included. However,
for the radar system, the major demand is the classification accuracy, which means that
both the number of components and the component itself, the classification system provided
should exactly match the actual situation. Less classification and misclassification would
make errors and increase the probability of being threatened by radar systems. Therefore,
accuracy is used as the main metric for saving the best weights. As the numbers of
single-component and dual-component intra-pulse modulation signals are not the same,
where the ratio of the number is 8:36, it is important to balance the weight for evaluating
classification performance. Therefore, in this paper, except for the overall classification
accuracy, the weighted classification accuracy is also included, and the calculation for the
weighted classification accuracy could be written as:

ACCweighted =
ACCsingle + ACCdual

2
(24)

where ACCsingle and ACCdual refers to the classification accuracy for single-component
and dual-component intra-pulse modulations, respectively.

For the testing section, other metrics, including Hamming loss, recall, precision and
F1-score, will be used to evaluate the methods comprehensively.

5.2. Experimental Results of the Proposed Method and Baseline Methods

Our proposed model and the baseline models were trained based on the datasets in
Section 4.1. Firstly, the classification performance of eight single-component and thirty-six
dual-component intra-pulse modulation of radar emitter signals based on the mentioned
methods is shown in Figure 7. In addition, Table 5 gives the statistical results including
average accuracy, Hamming loss, recall, precision and F1-score at macro level and micro
level. Additionally, Figure 8 shows both the overall classification accuracy and weighted
classification accuracy of these methods based on different SNRs.
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Table 5. The statistical results including average accuracy, Hamming loss, recall, precision and F1-score in macro level and micro level of the mentioned methods.

Method Single
Component

Dual
Component

Overall
Accuracy

Weighted
Accuracy

Hamming
Loss

Recall
(micro)

Recall
(macro)

Precision
(micro)

Precision
(macro)

F1-Score
(micro)

F1-Score
(macro)

CNN&Transformer 0.9146 0.9087 0.9098 0.9116 0.0182 0.9633 0.9582 0.9696 0.9653 0.9664 0.9617

CNN-Normal 0.8181 0.8364 0.8330 0.8272 0.0308 0.9361 0.9351 0.9503 0.9450 0.9432 0.9351

1-D SKCNN 0.8984 0.8882 0.8901 0.8933 0.0193 0.9583 0.9519 0.9706 0.9669 0.9644 0.9592

CNN-STFT 0.8806 0.7642 0.7854 0.8224 0.0420 0.9214 0.9001 0.9245 0.9052 0.9229 0.9025

CNN-CWD 0.8366 0.6751 0.7045 0.7559 0.0586 0.8907 0.8600 0.8939 0.8666 0.8923 0.8630

CNN-SPWVD 0.8476 0.6941 0.7220 0.7709 0.0549 0.8930 0.8628 0.9044 0.8772 0.8987 0.8692
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As the results show, the proposed CNN&Transformer performs best among the men-
tioned methods. For the 1-D methods, CNN-Normal performs worst, which shows that
the simple CNN structure could not meet the demand of classification of intra-pulse
modulation.

For these TFI-based CNN methods, CNN-STFT has the highest classification accuracy
on both single-component and dual-component modulations, where both overall classifica-
tion accuracy and weighted classification accuracy are at least 5% higher than the second
best TFI-based CNN method named CNN-SPWVD. In addition, it could be found that all
these three TFI-based methods have better classification accuracy on single-component
modulations than that on dual-component modulations. However, the performance of 1-D
SKCNN and CNN&Transformer is superior to these three TFI-based methods.

Generally, the classification accuracy increases when SNR improves. Compared with
other methods, it could be found that the TFI-based methods are more vulnerable when
the noise is strong. Additionally, even in the extreme situation where the SNR is −14 dB,
the accuracy of the proposed CNN&Transformer is about 5% higher than the second best
model 1-D SKCNN, which shows the superiority of our proposed method.

Although TFI-based methods have better classification performance on some types
of intra-pulse modulation than CNN&Transformer, for instance, SID2, ID5 and ID15.
However, their average classification accuracy for other modulations is much lower, where
the biggest classification accuracy gap could be up to 60%. We also evaluate the accuracy
stabilization of the methods with a series of accuracy thresholds. The average classification
accuracy for 44 types of modulation that is less than 80%, 82.5% and 85% based on the
mentioned models is calculated, and the results are shown in Table 6.
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Table 6. The average classification accuracy for 44 types of modulation that is less than 80%, 82.5%
and 85%, based on the mentioned models.

Accuracy Threshold 80% 82.5% 85%

CNN&Transformer 2 4 6

1-D SKCNN 15 22 24

CNN-Normal 3 4 11

CNN-STFT 21 24 27

CNN-CWD 23 26 30

CNN-SPWVD 24 25 29

According to Table 6, we could find that even for the higher accuracy threshold,
our proposed CNN&Transformer is still more robust and more stable, with minimum
number of times where the average classification accuracy is below the threshold.

Therefore, in terms of classification accuracy, our proposed CNN&Transformer is more
competitive and superior to the mentioned methods.

5.3. Time Usage and Storage Space

In this section, we will evaluate the time usage and storage space of our proposed
method and the baseline methods. For time usage, there are two main parts: the time of
data preprocessing and the train time. For the storage space usage, the parameters (Params)
of the model are focused on.

Specifically, the time usage at the data preprocessing stage is shown in Table 7. In ad-
dition, Table 8 gives the Params, floating point operations (FLOPs) and the training time
per epoch of the mentioned methods.

Table 7. The data preprocessing time between TFI-based methods and 1-D-model-based method.

Method Preprocessing Time/10,000 Samples

CNN&Transformer
1-D SKCNN

CNN-Normal
117 s

CNN-STFT 356 s

CNN-CWD 6351 s

CNN-SPWVD 6692 s

Table 8. The parameters, floating point operations and the training time per epoch of the mentioned
models.

Model Params FLOPs Training Time/Epoch

CNN&Transformer 1.53 M 0.77 M 129 s

1-D SKCNN 1.41 M 0.71 M 169 s

CNN-Normal 5.60 M 2.80 M 75 s

CNN-STFT

779.50 M 22.35 M 883 sCNN-CWD

CNN-SPWVD

Table 7 shows that the data preprocessing time of CNN-STFT, CNN-CWD and CNN-
SPWVD is around 3 times, 54 times and 57 times, respectively, than that of 1-D model-based
methods. In addition, the length of the original sampled sequence ranges from 5000 to
30,000 points. The input shape of 1-D based model is a 32,768-length vector. However,
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the input shape of the TFI-based model is a matrix with 224 × 224 dimension that requires
1.5 times more space to save TFIs data compared with 1-D-based methods. Based on the
mentioned analysis, it could be found that the 1-D model-based method has advantage of
higher speed and low storage usage in data preprocessing stage.

According to Table 8, it is shown that compared with the baseline methods, our pro-
posed CNN&Transformer is faster in training sessions. Additionally, when making a com-
parison among the CNN-Normal and our proposed CNN&Transformer model, we could
easily find that the combination of CNN and transformer structure has the advantage of
higher classification accuracy and limited computation resource.

6. Discussion

We further analyzed the influence of the number of transformer encoders and the
number of heads in the multi-head self-attention module on the classification accuracy.
The ablation experiments are based on the same dataset in Section 4.1, where the training
setting is the same as in Section 5.1. In addition, we provide some scenarios of how
our method could be applied. The effectiveness and rationality analysis of proposed
CNN&Transformer could be found in Appendix A.1.

6.1. Ablation Study on the Number of Transformer Encoder and Head in Multi-Head
Self-Attention Module

We change the number of transformer encoders. The encoder number is 1, 2, 4, 8 and
12. The head number for these five models is 1, 2, 4, 8 and 16, respectively. The classification
accuracy, the Params, FLOPs and training time are shown in Table 9.

The experimental result shows that more transformer encoders will bring better classi-
fication accuracy. It could be found that with an increment of the number of transformer
encoders, the classification accuracy of intra-pulse modulation improves, especially when
the number of encoders changes from 1 to 2. The accuracy improvement grows slowly
when the number of encoders is already large. Additionally, the training time increases
around 16 s when an extra transformer encoder is added.

Moreover, it could be found that when the encoder number is small, more heads in the
multi-head self-attention module could increase the classification accuracy. For instance,
the accuracy increases by nearly 3% when the head number increases from 1 to 16 in the
one-encoder CNN&Transformer model. However, when the encoder number is large,
the influence of head number on accuracy is little, and more heads may lead to a slight
fallback in classification accuracy

In terms of the training time and classification accuracy, the structure with four
transformer encoders and eight heads in the multi-head self-attention module, which
does not bring too much extra time, is more suitable for this paper.

6.2. Application Scenarios

CNN and transformer have been widely used in image classification and other down-
stream tasks. CNN is thought to be good at extracting local information while the trans-
former is thought to be good at extracting global information. The existed literature has
proved that it is much harder to train a whole transformer compared with CNN but the
performance of a well-trained transformer is better than CNN. We combine both CNN and
transformer to classify both single-component and dual-component intra-pulse modulation
of radar emitter signals at the same time. Through the results of Tables 5–9, we could get
a conclusion, the combination of CNN and transformer could increase the classification
performance on single-component and dual-component intra-pulse modulation of radar
emitter signals. Additionally, in real applications, radar systems have higher real-time
requirements. Therefore, there is no need to make the model larger to improve its perfor-
mance. A better solution to increase the classification performance is using the limited
parameters and computation resources, and our proposed method has better performance
in this regard.
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At the same time, our method could be applied to other modulation classification
tasks in semi-supervised situations. Currently, there are few pieces of literature focusing on
semi-supervised classification of intra-pulse modulations of radar signals. We could use
our proposed model to complete these kinds of tasks.

Table 9. The classification accuracy, parameters, floating point operations and training time for the
CNN-Transformer with different numbers of encoders and different numbers of heads.

Encoder
Number

Head
Number

Single
Component

Dual Com-
ponent

Overall
Accuracy

Weighted
Accuracy Params FLOPs Training

Time

1

1 0.8420 0.8626 0.8589 0.8523

0.32 M 0.65 M 80 s

2 0.8387 0.8661 0.8612 0.8524

4 0.8580 0.8772 0.8737 0.8676

8 0.8645 0.8835 0.8800 0.8740

16 0.8824 0.8806 0.8809 0.8815

2

1 0.8931 0.9002 0.8989 0.8966

0.47 M 0.94 M 96 s

2 0.8973 0.9012 0.9005 0.8992

4 0.8994 0.9018 0.9014 0.9006

8 0.9023 0.9023 0.9023 0.9023

16 0.9082 0.9037 0.9045 0.9059

4

1 0.9063 0.9066 0.9066 0.9064

0.77 M 1.53 M 129 s

2 0.9060 0.9072 0.9070 0.9066

4 0.9018 0.9070 0.9060 0.9044

8 0.9146 0.9087 0.9098 0.9116

16 0.9123 0.9089 0.9095 0.9106

8

1 0.9131 0.9093 0.9100 0.9112

1.36 M 2.71 M 192 s

2 0.9137 0.9086 0.9095 0.9112

4 0.9186 0.9095 0.9112 0.9141

8 0.9162 0.9109 0.9118 0.9135

16 0.9148 0.9099 0.9108 0.9123

12

1 0.9055 0.9102 0.9093 0.9078

1.96 M 3.89 M 257 s

2 0.9067 0.9125 0.9115 0.9096

4 0.9120 0.9130 0.9128 0.9125

8 0.9188 0.9127 0.9138 0.9157

16 0.9101 0.9137 0.9130 0.9119

7. Conclusions

In this paper, we proposed a multi-label learning method based on the combination of
CNN and Transformer for classifying both eights single-component and thirty-six dual-
component intra-pulse modulations of radar emitter signals at the same time. The compar-
isons with other baseline methods in classification performance with accuracy, Hamming
loss, recall, precision and F1-score in macro level and micro level, storage usage and com-
putation resource show that our proposed method is superior and the combination of
CNN and transformer is more effective than the CNN-based structure only. Additionally,
according to the ablation study on the number of transformer encoders and the number
of heads in multi-head self-attention module, we could conclude that when time permits,
more encoders and more heads in a certain range could increase the classification perfor-
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mance. Our method provides guidance for multi-label classification tasks on intra-pulse
modulation in radar systems.

In further work, we will attempt to optimize the structure of the proposed model
and apply it to classify more complex multi-component intra-pulse modulations of radar
emitter signals. Moreover, applying this framework to real radar systems and increasing
the classification accuracy further is another problem in the future.
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Appendix A

In Appendix A section, in order to show the stabilization of the proposed model,
we train the proposed model nine more times to capture the mean accuracy with uncertainty,
and the results can be seen in Appendix A.1. Appendix A.2 provides the analysis of the
influence of batch size on the efficiency of model training.

Appendix A.1. Effectiveness and Rationality Analysis of Proposed CNN&Transformer

In this section, we train the proposed CNN&Transformer model (four encoders with
eight heads) nine more times to capture the mean accuracy with uncertainty. The dataset
and training details are the same as in Section 5.1. Table A1 shows the accuracy of the
original experiment and five additional experiments.

Table A1. The classification accuracy of the original experiment and five additional experiments.

Experiment Single Component Dual Component Overall Accuracy Weighted Accuracy

Original 0.9146 0.9087 0.9098 0.9116

1st Time 0.9016 0.9104 0.9088 0.9060

2nd Time 0.9120 0.9091 0.9096 0.9105

3rd Time 0.9099 0.9091 0.9093 0.9095

4th Time 0.9066 0.9093 0.9088 0.9080

5th Time 0.9188 0.9072 0.9093 0.9130

6th Time 0.9055 0.9094 0.9087 0.9074

7th Time 0.9078 0.9080 0.9080 0.9079

8th Time 0.9070 0.9098 0.9093 0.9084

9th Time 0.9062 0.9091 0.9086 0.9076

Average 0.9090 0.9090 0.9090 0.9090

Standard Deviation 0.0045 0.0008 0.0005 0.0019

According to Table A1, it could be found that the mean average accuracy from a
different view is beyond 90%, and the value of standard deviation is low. The additional
experimental results show that the proposed CNN&Transformer model could converge
on average to a corresponding result, which provides evidence of the effectiveness and
rationality of our proposed model.
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Appendix A.2. The Influence of Batch Size on the Efficiency of Model Training

In this section, we train the proposed CNN&Transformer model (four encoders with
eight heads) with different batch sizes. The training details are the same as in Section 5.1
except for batch size.

The training epoch is set to be 50, where the learning rate is 0.001 with the ADAM
optimizer. Unlike Section 5.1, in these experiments, the addition 10 epochs are not added.
Table A2 shows the training time per epoch. The accuracy of the validation dataset at the
end of each training epoch according to different batch sizes is shown in Figure A1.

Table A2. The training time per epoch based on different batch sizes.

Batch Size 16 32 64 128 256

Time per epoch 238 s 129 s 94 s 81 s 77 s
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According to Table A2, it could be found that a large number of batch size, which
leads to fewer training iterations per epoch, could reduce the time usage per training epoch.
However, due to the GPU hardware limitation, the trend of training acceleration is not
linear with batch size. Additionally, Figure A1 indicates that small or large value of batch
size in some cases is not stable, where the validation accuracy based on these values of
batch size may fall several times. However, if the hardware is permitted, it is recommended
to increase the value of batch size, which could make the most of computation resources,
and set a large value of training epoch to enlarge the training iterations.

Appendix A.3. The Classification Results Based on The Original Transformer Model

In this section, we conduct the experiment based on the original transformer model.
Like the patch division in Figure 1, we design three models, where the number of the
transformer encoder is set to be 4 with 8 heads, 8 with 8 heads and 12 with 8 heads,
respectively. The number of patches is set to 128, where the length of each patch is 256.
After the linear projection, each patch will be converted to a vector with a length of 128,
which is the same to the length of input before the first transformer encoder in our proposed
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CNN&Transformer model. The training details are the same as in Section 5.1. Table A3
gives the classification accuracy of testing dataset, including single-component accuracy,
dual-component accuracy, overall accuracy and weighted accuracy.

Table A3. The classification accuracy of testing dataset.

Encoder
Number

Single
Component

Dual
Component

Overall
Accuracy

Weighted
Accuracy

4 0.8268 0.8356 0.8340 0.8312

8 0.8263 0.8344 0.8329 0.8303

12 0.8321 0.8423 0.8405 0.8372

Table A3 indicates that the original architecture of transformer model could not
perform well in classifying the intra-pulse modulations, where its accuracy is quite close to
that of the CNN-Normal in Section 5.2. Compared with our proposed CNN&Transformer
model, we could conclude that the combination of CNN and transformer could improve
the performance of model in classifying intra-pulse modulations of radar emitter signals.
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