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Abstract: Pre-impact fall detection can detect a fall before a body segment hits the ground. When it
is integrated with a protective system, it can directly prevent an injury due to hitting the ground.
An impact acceleration peak magnitude is one of key measurement factors that can affect the severity
of an injury. It can be used as a design parameter for wearable protective devices to prevent injuries.
In our study, a novel method is proposed to predict an impact acceleration magnitude after loss
of balance using a single inertial measurement unit (IMU) sensor and a sequential-based deep
learning model. Twenty-four healthy participants participated in this study for fall experiments.
Each participant worn a single IMU sensor on the waist to collect tri-axial accelerometer and angular
velocity data. A deep learning method, bi-directional long short-term memory (LSTM) regression,
is applied to predict a fall’s impact acceleration magnitude prior to fall impact (a fall in five directions).
To improve prediction performance, a data augmentation technique with increment of dataset is
applied. Our proposed model showed a mean absolute percentage error (MAPE) of 6.69 ± 0.33%
with r value of 0.93 when all three different types of data augmentation techniques are applied.
Additionally, there was a significant reduction of MAPE by 45.2% when the number of training
datasets was increased by 4-fold. These results show that impact acceleration magnitude can be used
as an activation parameter for fall prevention such as in a wearable airbag system by optimizing
deployment process to minimize fall injury in real time.

Keywords: falling; pre-impact fall detection; peak impact acceleration magnitude; deep learning;
data augmentation; wearable fall protective device

1. Introduction

Balance posture controls the center of mass within the base of body support for equilibrium state
by maintaining interactions among visual, vestibular, and somatosensory systems [1–3]. When such
interactions are broken, the center of mass will rapidly go toward the ground, causing a fall during
which human body segments can hit the floor [4]. According to the World Health Organization, 32% of
elders aged over 70 years will experience falls each year [5]. It has been reported that 30% of elders
aged over 65 years in the United States have at least one fall per year [6]. Falls are generally caused
by decreased physical strength, posture control, and balance-keeping ability, leading to injuries such
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as hip joint injuries with serious pain and sequelae of long-term hospitalization [7]. Aging causes
deterioration of lower extremity’s muscle strength, limited range of motion, and cognitive impairment
in the case of elders [8]. Decreased balance ability may lead to falls [9]. Therefore, detecting falls with
appropriate response has become an important social issue in an aging society [10].

To minimize injuries caused by falls, many studies on fall detection are being actively conducted.
In general, fall detection is divided into pre-impact detection and post-fall mobility detection in
previous studies [11]. Post-fall detection has the advantage of minimizing “long-lie”, which refers to
staying on the floor for a long time. It can secure a rapid medical support after a fall. However, it is
fundamentally impossible to prevent injuries caused by a fall with post-fall detection [12]. On the
contrary, pre-impact fall detection can detect a fall in advance before a body segment hits the ground.
It not only has the advantage of post-fall detection, but also can interlock the protective system to
directly prevent injuries due to falls [13]. Although research on protective systems such as wearable
airbag devices is at its early stage without any commercialized systems, it is very clear that injury
prevention is possible by integrating pre-sensing devices [14]. Pre-impact fall detection is a more
challenging research than post-fall mobility detection. Thus, interest in pre-impact fall detection
research is increasing [15].

Fall can be divided into four phases: pre-fall, critical, post-fall, and recovery. The critical phase
is a short process from the point when the center of gravity of the human body goes toward the
ground to the point when it gets vertical impact due to hitting the floor [16]. At the last moment of
the critical phase, the peak of upper body acceleration due to impact appears. It is regarded as a fall
impact. Various fall experiments have suggested that the acceleration value at impact is approximately
4–11 m/s2 with different ranges depending on the type or direction of the fall [17]. It has been reported
that impact acceleration of a backward fall is approximately 25% greater than that of a forward fall
through kinematic analysis of human body segments [18]. Such impact acceleration peak value is one
key measurement factor that can affect the risk of injury [19]. It can be used as a design parameter
of wearable protective devices for injury prevention [20]. When operating an airbag system in a fall
situation, the relative lower air pressure compared to impact magnitude causes a large deformation
of foam and contact area with the floor, thereby allowing the body segment to directly contact the
floor [21]. In contrast, there is a risk of injury when a relatively high pressure causes a secondary impact
due to recoil between the foam and body segment [22]. To prevent possible injuries, it is necessary
to optimally control the airbag expansion rate according to the impact magnitude for pre-impact fall
detection. A study that estimates the peak impact acceleration is needed.

To predict falls, cameras and sensor technologies have been applied in previous studies [23].
A dedicated wearable inertial measurement unit (IMU) is generally used for active response to fall
situations [24,25]. An IMU has a small size with fast data processing capability. It is a low-cost sensor
module that uses low power with the advantage of interworking with other systems [26]. It has
been reported that acceleration or angular velocity signals are suitable for distinguishing human
body movements, making them very suitable hardware for pre-impact fall detection devices [11].
When using an IMU module, determining the number of sensors and attachment location is one
important issue. Increasing the number of IMU modules attached to the body can be helpful for
detecting various motions by acquiring signals of multiple body segments. However, there might
be a problem of convenience. Most of previous studies have used very few IMU modules due to
the problem of technical complexity when collecting data and time-series synchronization between
modules [27]. In addition, it has been suggested that attaching an IMU sensor to the waist can gather
the most consistent signals in terms of accuracy for detecting a fall among sensor signals from various
locations [28]. Therefore, various attempts have been made to predict a fall in advance using one IMU
signal attached to the waist.

Algorithms for predicting falls prior to impact using a single IMU signal are largely divided into
methods using thresholds or artificial intelligence (AI) to detect them [27]. One study has reported that
the system can detect the signal as a fall when the acceleration of IMU worn on waist is less than 3 m/s2
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and the angular velocity is greater than 0.52 rad/s, with an accuracy of fall-detection of approximately
93% [29]. However, the method of predicting falls using a threshold is inconsistent depending on types
of fall situations, age, and so on. Thus, improving the accuracy of fall detection has a limitation [30].
To overcome such limitation, using machine learning models to increase the accuracy of pre-impact
fall detection has been proposed based on various experimental data for training. Several studies
have been carried out to detect falls before impact using various machine learning techniques such
as support vector machine (SVM), hidden Markov model (HMM), and discriminant model (DM).
Highly correlated parameters among raw signals of acceleration and angular velocity as input are
selected. They show accuracies of approximately 93 to 97% [31,32]. In addition, several studies have
applied deep learning technology to reduce the dependence of feature extraction from input signals,
further improving the accuracy for fall detection. A multi-class fall classification model architecture
that includes falls in various directions utilizing three kinds of deep learning algorithms has been
developed, showing a pre-impact fall detection accuracy of 99% [33]. convolutional neural network
(CNN) and long short-term memory (LSTM) deep learning techniques have also been utilized to
develop a pre-impact fall estimation model with accuracy up to 98.7% [13].

To the best of our knowledge, most studies using an IMU device to estimate falls prior to impact
have focused on accuracy improvement. No attempt has been made to predict impact acceleration peak
magnitude due to body impact. As mentioned above, an impact peak magnitude is used as a wearable
fall protective device design parameter that is essential for preventing an injury. Therefore, the purpose
of this study was to propose a deep learning architecture that could predict an impact acceleration
magnitude in the event of a fall using one IMU sensor signal worn on the waist. Another objective of
this study was to verify the performance of the proposed learning model using experimental data of
falls in various directions.

2. Materials and Methods

2.1. Application to Multi-Class Pre-Impact Fall Impact Accelerometer Magnitude Prediction Model

As described above, there are four distinct phases of falls (Figure 1). The pre-fall phase is when
normal activities occur. The critical phase is when fall event happens. From acceleration and angular
velocity data collected from experiments, the start of activity is referred to as S within the critical
phase, the impact of fall is called I, and the end of fall is referred to as E. The post-fall phase is when
a subject has no movement, lying down on a floor. Lastly, the recovery phase is when a subject
stands up and shows movement [34,35]. A fall monitoring system can be divided into two main
systems depending on the detecting point during critical phase of fall. In this research, we focus on
the detection of a fall impact acceleration magnitude prior to impact point within the critical phase.
For a fall prevention system such as a wearable airbag system to be optimally activated, pre-impact fall
impact peak acceleration magnitude should to be accurately predicted using different types of fall [33].

2.2. Data Collection

2.2.1. Apparatus

An IMU containing a data collecting device was developed to collect tri-axial accelerometer
and angular velocity signals for pre-impact fall impact acceleration magnitude prediction. The size
of the device was 37 mm (width) × 60 mm (length) × 17.5 mm (height) (Figure 2a). An mpu6050
(InvenSense Inc., San Jose, CA, USA) that could collect tri-axial accelerometer and angular velocity data
was used. It contained a 16-bit analog-to-digital converter for digitizing accelerometer and gyroscope
outputs. The range of data output was ±16 g for the accelerometer and ±2000 deg/s for the gyroscope.
The number of sample rates for data collection was chosen at 40 Hz. Wireless connection between
the data collecting device and the workstation was done using a Bluetooth V4.0 BLE module (HM-11,
JN Huamao Technology Co., Jinan, China). The model of microcontroller (MCU) was an STM32F103CB
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(STMicroelectronics, Geneva, Switzerland). The power supply source was a lithium polymer battery
(3.7 V, 720 mAh) as shown in Figure 2b [36]. The circuit diagram of the developed IMU device for
collecting raw signals is shown in Figure 2c. The device is connected to the workstation through the
Bluetooth module. A data collecting software, C# based windform, was utilized to collect data from
the workstation.
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Figure 1. Description of four phases of falls. A subject loses balance during the critical phase of fall
and the body heads down to ground which shows a direct impact during a fall. The peak of sum vector
magnitude at the impact during critical phase of fall is indicated by a star.

2.2.2. Subjects

Twenty-four healthy participants (14 males and 10 females, age: 22 to 34 years; height 1.57 to
1.83 m; weight: 46 to 81 kg) without any musculoskeletal disorders volunteered to participate in
this study. All volunteers were students at Sungkyunkwan University. They were recruited through
advertisements. All participants provided informed written consent. All experiments were performed
in accordance with relevant guidelines of Sungkyunkwan University.

2.2.3. Experimental Protocols

All fall experiments were performed under the direct supervision of support staff. The experimental
protocol was prepared to mimic realistic falls often occurring among elders based on previous
studies [16,23,33]. In this study, ten different fall types (forward fall, backward fall, leftward fall,
rightward fall, fall on ground, fall on ground while rising, forward fall while walking, backward
fall while walking, tripping, and slipping) were collected. A total of 1278 datasets (number of trials:
113–140) for each experiment x number of activities (n = 10) were collected. Fall data were sorted for
five different directions of falls depending on the direction of waist. For instance, a tripping fall type
meant that when the device’s direction of z axis of accelerometer signal was facing toward on the
ground. This type of fall was grouped into front direction falls.

2.2.4. Data Collections and Processing

Pre-impact fall impact accelerometer magnitude prediction at five directions was started by
collecting data from wearable IMU sensors. Recruited subjects were asked to wear the developed IMU
sensor on the left side of the pelvis. Time-series tri-axial accelerometer and gyroscope data (a total of
six channels) were collected for each experimental dataset. One of the most important processes for a
classification or a prediction model is to label data collection. In this research, we manually labeled the
frame for the impact of fall depending on the direction of fall and the impact acceleration magnitude of
the accelerometer.
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2.3. Feature Extraion from Raw Inertial Measurement Unit Signal

In the flow of human activity recognition, feature extraction is the most important phase.
It improves the performance of a system by extracting feature vector that can discriminate activities.
For continuous data such as sensor data, feature extraction or selection is a very challenging task [37].
In this research, we calculated four additional features from raw tri-axial accelerometer and angular
velocity data related to translational or vertical magnitude value based on previous studies as shown
in Table 1 below. Input data matrices size was the window size by ten features. One of these features,
sum of vector magnitude, was the square root of sum of tri-axial accelerometer which was the impact
accelerometer magnitude value to be predicted using our proposed model.
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Table 1. Types of features were extracted from inertial measurement unit sensor signals.

Number Feature Types

1. x-axis of raw accelerometer signal
2. y-axis of raw accelerometer signal
3. z-axis of raw accelerometer signal
4. Sum vector magnitude of accelerometer
5. Sum vector on horizontal plane of accelerometer
6. Root mean square of sum vector magnitude
7. x-axis of raw angular velocity signal
8. y-axis of raw angular velocity signal
9. z-axis of raw angular velocity signal
10. Resultant angular velocity

2.4. Data Augmentation

Data augmentation techniques are widely utilized in computer vision to introduce new data
samples between pairs of training datasets. Classification with time-series data with a small number
of samples may lead to an overfitting problem [38]. To overcome this limitation, time-series data
augmentation technique is applied in this study. It allows us to generate synthetic training datasets
to train the deep learning network with a large number of training datasets for better performance.
There are several techniques for augmenting data such as stretching, shrinking, and removing some
data points [39]. Selecting which data augmentation technique depends on the application. For instance,
some applications such as vital time-series data of patients can remove important information which
will decrease classification accuracy. In this study, we applied IMU sensor attached to the left iliac
crest by fixing the device on the belt which cannot be rotated. Therefore, the following three data
augmentation techniques were used: (i) jittering by adding mechanical noise to increase the robustness
of training model with white gaussian noise applied to the training dataset; (ii) scaling by changing the
magnitude of data by multiply random scale value; and (iii) time-warping by changing time intervals of
data, thus changing temporal characteristics of sensor data by shortening or stretching with a random
warping ratio [40]. In real-life scenario, a person’s active daily living or falling activity can be performed
with various speeds or raw signals of the sensor are collected with noise. For instance, a person
can walk slower or faster than a normal gait speed. This variability of a subject’s movement needs
to be considered to improve robustness of our trained model. Therefore, one of data augmentation
techniques, time-warping, is considered and additional training dataset is generated by multiplying
pre-determined warping value to lengthen or shorten the original sensor signal. Based on the previous
research, each augmentation technique was applied to generate a 4-fold increase of training data using
four different levels or values of each technique [41].

2.5. Deep Learning Network

2.5.1. A Bi-Directional Long Short-Term Memory

Activity recognition of human movement which is a complex motor movement with a high
variance is done using a classical time series classification method. Previous studies have used deep
learning methods such as CNN and recurrent neural network (RNN). RNN was developed to classify
sequential time series data [42]. Temporal layer of RNN holds sequential information. It learns using
hidden units of recurrent cells. It gets updated and computes current hidden state by estimating the
next hidden state. To overcome the limitation of RNN, a LSTM model is developed to hold and capture
activity sequences from gates and memory cells in this study. A LSTM cell is composed of an input
gate it, a forget gate ft, a cell ct, and an output gate ht as defined in the formula below.

it = σ (Wxi
xt + Whi

ct-1 + bi) (1)
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ft = σ(Wxf
xt + Whf

ht-1 + Wcf
ct-1 + bf) (2)

ft = ft⊗ct-1 + it ⊗ tanh(Wxc
xt + Whc

ht-1 + bc) (3)

ot = σ(Wxo
xt + Who

h
t-1 + Wco

ct + bo) (4)

ht = ot ⊗ tanh(ct) (5)

where ⊗, σ(x), Wαβ, and bβ were product, sigmoid function, weight matrix between α and β, and bias
of β with β ∈ {i,f,c,o}, respectively [43]. A deep learning LSTM model allows different sizes of input
vector for training and testing processes, unlike other classification algorithms such as a neural network.

2.5.2. The Flow of the Impact Fall Prediction Model Using Deep Learning

After the feature augmentation process to increase training datasets, newly generated datasets
were separated by a window size of 20 frames equivalent to 0.5 s using a moving window technique.
Ten features (i.e., sum vector magnitude of tri-axial accelerometer) were calculated as mentioned above
in each window. Therefore, the dimension of each dataset was set as 10 ∗ length of each window
(i.e., 10 features × 20 frames for no-augmentation technique applied dataset). These datasets and
corresponding labeled data were used as inputs and outputs for training and testing LSTM networks.
To train a deep bidirectional LSTM model, collected datasets were divided into training and testing
datasets at a ratio of 1:1. For example, there were a total of 1278 raw datasets. These datasets were
randomly divided so that 639 datasets were used for augmentation and training while the remaining
639 datasets were used for testing our proposed model.

The overall architecture of our proposed model for predicting impact acceleration magnitude
during a fall is shown in Figure 3a. The main architecture is composed of a sequence input layer,
two bi-directional LSTM layers, a dropout layer, a fully connected layer, a softmax layer, and a
regression layer. Two bi-directional LSTM layers were added between the sequence input layer and
the fully connected layer. The one dropout layer was added between two bi-directional LSTM layers.
It was added to decrease overfitting of the bi-directional LSTM layer. Predicting fall impact acceleration
magnitude is performed for the regression layer. Detailed architecture of the bi-LSTM network is
shown in Figure 3b.

Previous studies have reported that optimal hyper-parameters of a deep learning network need
to be determined. This will increase the performance of training model while reducing the overfitting
problem [44]. In this study, ten different types of hyper-parameters and their values were chosen.
For nstance, when the initial learning rate is too low, then the training time is too high. If the learning
rate is too high, then training might reach a suboptimal result. Additionally, we added a drop out layer
to the fall impact acceleration magnitude prediction model. The dropout layer randomly sets input
elements to zero and then scales remaining elements. This operation effectively changes the network
architecture between training iteration and helps prevent the network from overfitting. If the dropout
rate is high, then more elements are dropped during training [45,46]. Specific hyperparameters for the
bi-directional LSTM network are shown in Table 2 below.

In this study, we utilized MATLAB program (R2019B, Mathworks, Natick, MA, USA). Its deep
learning toolbox is utilized for developing and training the deep-learning network to predict impact
acceleration magnitude during a fall.
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Table 2. Bi-directional long short-term memory (LSTM) network model parameters.

Bi-Directional Long Short-Term Memory Network Architecture Training Option

Number Type of Parameters Range of Parameters

1. Number of hidden units [100, 50]
2. Maximum epochs 125
3. Mini-batch size 64
4. Weight initializer function Glorot
5. Solver Adam
6. Dropout rate 0.2
7. Initial learning rate 0.01
8. Gradient threshold 2
9. Gradient threshold method Global-l2norm

10. L2Regularization 1 × 10−5

2.6. Performance Measures

In this research, the mean absolute percentage error (MAPE) was adopted to determine the
performance of the multi-direction pre-impact fall impact peak of the acceleration magnitude prediction
model. MAPE was used to measure the relative error between the observed value and the predicted
value to reflect the specificity of an average predicted value [45,47]. It was calculated as follows:

Mean absolute percentage error =
1
n

∑n

j=1

∣∣∣Y j − Ŷ j
∣∣∣× 100% (6)

where Yj denoted the observed impact accelerometer magnitude and Ŷ j denoted the predicted impact
accelerometer magnitude. Results were analyzed using regression analysis to estimate relationships
between observed and predicted values. The slope was compared against a 1:1 line. R was calculated
from the linear model. Additionally, obtained results were compared and analyzed through ANOVA
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with Turkey’s post-hoc test to determine differences between groups. The significant level was
set at p-value < 0.05. All statistical analyses were conducted using PASW Statistics 18 (SPPS Inc.,
Chicago, IL, USA). Results were analyzed using MATLAB program (R2019b, MathWorks, USA).

3. Results

The developed IMU and data collection firmware allows a sensor attached to the waist to send
tri-axial accelerometer and angular velocity signals to the workstation. The direction of the axis of
acceleration was different for each fall type. For instance, the z-axis of a front fall showed a positive
value whereas a back fall with z-axis magnitude had a negative value. Received raw sensor signals
were used to calculate features such as resultant impact acceleration magnitude which was calculated
by square root of three axes of accelerometer signals as shown in Figure 4.Sensors 2020, 20, x FOR PEER REVIEW 9 of 17 
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Figure 4. Tri-axial accelerometer collected from an inertial measurement unit (IMU) for five types of
falls. (a) the IMU signal for forward fall; (b) the IMU signal for backward fall; (c) the IMU signal for
leftward fall; (d) the IMU signal for rightward fall; (e) the IMU signal for straight fall.

Generation of new training datasets based on raw signals with application of each augmentation
approach is shown in Figure 5. Three data augmentation techniques ((i): jittering; (ii): scaling; and (iii):
warping) were applied to raw data at four different levels. Increasing the jittering value will create
a new signal to become noisier than the raw signal as shown in Figure 5b. Additionally, as the
scaling value increases, the magnitude of IMU signal gets bigger, meaning that the impact acceleration
magnitude value is increased as shown in Figure 5c.

Figure 6 presents results of a fall impact acceleration magnitude prediction model proposed in
this study. A bi-directional LSTM algorithm for deep learning was applied to predict the magnitude
of acceleration at impact point since collected accelerometer and angular velocity signals were of
time-series type. Time-series data near a point when a subject lost balance shown in red were
used as input data for the LSTM model to predict the observed value shown in green dot which
was the actual impact acceleration magnitude value. In this study, five different directions of fall
(front, back, left, right, and straight) experimental data were collected. Additionally, we generated
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new dataset using data augmentation technique at four different values to increase datasets by 4-fold.
As shown in Figure 6, the impact acceleration magnitude value varied throughout datasets since
characteristics of person falling, direction of falling, and anthropometric measurements were different.
For instance, heights and weights of participants of this study were different. The activity prior
to falling such as standing or walking showed different acceleration values which could affect the
falling speed. The time between the start of the critical phase to impact was also different. Predicted
results without augmentation approaches from our proposed model for different levels of acceleration
magnitude were determined. MAPE values for all augmentation approach datasets with a 4-fold data
size increment in trials 1, 2, and 3 were 6.9%, 7.5%, and 7.8%, respectively; lower than those without an
augmentation approach (27.8%, 29.1%, and 30.5%, respectively).
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result for high level of impact.

Additionally, we analyzed how well our proposed model could predict the impact acceleration
magnitude using a linear regression model for five fall directions. Results are shown in Figure 7.
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Our proposed model results showed r values of 0.7, 0.76, 0.75, 0.75, and 0.814 for front,
back, left, right, and straight falls, respectively, when all-data augmentation approach was applied
with onefold increment dataset. Compared to onefold dataset results, the fourfold dataset increment
model was able to predict impact acceleration magnitude significantly better, with r values of 0.94,
0.95, 0.92, 0.92, and 0.95 for front fall, back fall, left fall, right fall, and straight fall, respectively.Sensors 2020, 20, x FOR PEER REVIEW 11 of 17 
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Figure 7. Regression analysis of pre-impact fall impact acceleration magnitude prediction at different
directions. (a) the regression analysis of impact acceleration prediction for forward fall; (b) the regression
analysis of impact acceleration prediction for backward fall; (c) the regression analysis of impact
acceleration prediction for leftward fall; (d) the regression analysis of impact acceleration prediction for
rightward fall; (e) the regression analysis of impact acceleration prediction for straight fall.

As shown in Figure 8, the all-data augmentation technique dataset achieved a significant (p = 0.01)
decrease of average MAPE by 55.8% compared to the no-data augmentation dataset. Similarly, there was
a significant (p = 0.01) difference in average MAPE value by 32.4% between results of single augmentation
approach-applied dataset (jittering, scaling, and warping) and all-data augmentation technique-applied
datasets. However, there was no significant difference in the performance between each single-data
augmentation group and the all-data augmentation group. In summary, data augmentation technique
seems to be effective for predicting impact acceleration magnitude prior to a subject’s impact on
the ground.

Figure 9 presents average MAPE values of fall impact acceleration magnitude predicted by our
proposed model with increasing number of training datasets. In this study, we collected 1275 fall
datasets for five different types of falls and increased the number of datasets up to 4-fold by applying
different feature augmentation techniques. From post hoc analysis, the group with fourfold and all-data
augmentation technique applied dataset showed the lowest average MAPE value of 7.4% which was
45.2% lower than the no-fold dataset group with a p value of 0.001. There was no significant difference
in MAPE value between the no-fold group and the onefold or the twofold group. The average MAPE
and standard deviation of MAPE when all data augmentation technique is applied also decreased
significantly, meaning that the prediction model could predict impact acceleration magnitude with less
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variance for a more stabilized system. The overall performance of our proposed model is shown in
Table 3 below.

Sensors 2020, 20, x FOR PEER REVIEW 11 of 17 

 

 
Figure 7. Regression analysis of pre-impact fall impact acceleration magnitude prediction at different 
directions. (a) the regression analysis of impact acceleration prediction for forward fall; (b) the regression 
analysis of impact acceleration prediction for backward fall; (c) the regression analysis of impact 
acceleration prediction for leftward fall; (d) the regression analysis of impact acceleration prediction for 
rightward fall; (e) the regression analysis of impact acceleration prediction for straight fall. 

 
Figure 8. Average mean absolute percent error of fall impact acceleration magnitude prediction for 
three different data-augmentation techniques. 

Figure 9 presents average MAPE values of fall impact acceleration magnitude predicted by our 
proposed model with increasing number of training datasets. In this study, we collected 1275 fall 

Figure 8. Average mean absolute percent error of fall impact acceleration magnitude prediction for
three different data-augmentation techniques.Sensors 2020, 20, x FOR PEER REVIEW 13 of 17 

 

 
Figure 9. Average mean absolute percent error of fall impact acceleration magnitude prediction 
depending on the number of datasets with increasing fold of datasets. 

4. Discussion 

Fall peak impact acceleration magnitude is an important factor for determining the risk of 
fractures such as head injury criterion (HIC) value and a parameter for designing and developing fall 
prevention devices such as a wearable inflate airbag system [48]. Previous studies have reported that 
an impact magnitude is affected by many uncertainties such as fall direction, impact site, and pre-
impact movement prior to fall, leading to a wide range of impact acceleration values [49]. These 
uncertainties require us to create biomechanical models or optimization processes when designing 
an airbag system. They might decrease the performance of predicting an impact magnitude. 
However, our model allows the prediction of impact acceleration magnitude by using a deep learning 
model with a single IMU raw sensor data, showing a high performance. Additionally, when our 
proposed model was implemented to fall prevention devices such as a wearable inflation airbag 
system along with a classification model, it could classify human activity by normal vs. fall with 
different directions. This will lead to the development of a full intelligent fall protective system by 
detecting fall itself and fall severity to reduce fall injuries. 

Recently, intelligent airbag systems are developed and applied in the field of automobile. An 
airbag sensing system can adjust the pressure of an airbag called a low-risk deployment to protect 
passengers from pressure dispersion of an airbag [48]. The airbag system composed of mechanical 
release system allows compressed CO2 release by lock release signal from an MCU. The CO2 gas is 
then transmitted to inflate the airbag. Based on compressible-fluid mass flow rate equations, mass 
flow rate, area of airbag, pressure of airbag, and inflation time need to be accurately calculated when 
designing a wearable airbag system [49]. For instance, an expandable airbag helmet shows a high risk 
of bottom-out as the impact acceleration increases if the pressure of airbag is low inside. This will 
ultimately increase HIC values. Therefore, material, thickness, size, and pressure of airbag should be 
optimized and controlled accurately in real time depending on the impact magnitude to reduce the 
risk of injury for a wearable airbag [21]. 

Fall impact acceleration showed that the magnitude prediction model prior to the actual impact 
of the subject had an average MAPE of 6.69 ± 0.33% with an average r value of 0.93 when all-data 
augmentation technique was applied with a 4-fold data size increment (Table 3). The meaning of our 
results cannot be fully evaluated since it is the first study to develop a model that can predict impact 
acceleration magnitude using deep learning and wearable sensor signals to the best of our 
knowledge. For instance, an actual impact acceleration magnitude of 5.0 m/s2 with an average MAPE 
of approximately 6.7% will give a predicted acceleration magnitude ranging from 4.7 to 5.3 m/s2. In 

Figure 9. Average mean absolute percent error of fall impact acceleration magnitude prediction
depending on the number of datasets with increasing fold of datasets.



Sensors 2020, 20, 6126 13 of 17

Table 3. Overall performance of our proposed fall impact acceleration prediction model
(MAPE: mean absolute percent error).

Front Fall Back Fall Left Fall Right Fall Straight Fall

MAPE r MAPE r MAPE r MAPE r MAPE r

Raw

No-fold 27.6 0.2 34.5 0.12 33.5 0.22 30.1 0.28 17.3 0.32

1-fold 33.6 0.25 22.5 0.29 20.8 0.46 23.3 0.14 15.3 0.52

2-fold 29.6 0.28 18.2 0.33 16.6 0.33 17.3 0.21 14.7 0.51

3-fold 25.5 0.30 14.5 0.25 19.1 0.1 13.7 0.1 10.7 0.5

4-fold 22.8 0.35 12.5 0.55 12.4 0.32 10.7 0.24 6.9 0.60

Jittering

No-fold 36.9 0.16 32.1 0.18 39.1 0.16 33.1 0.18 16.9 0.32

1-fold 30.2 0.40 19.2 0.50 21.6 0.38 21.6 0.57 15.3 0.59

2-fold 30.3 0.50 16 0.65 19.9 0.57 16.9 0.44 13.1 0.62

3-fold 29.1 0.70 13.8 0.76 17.1 0.78 16.2 0.67 9.99 0.83

4-fold 26.1 0.84 12.2 0.81 11.1 0.88 11.3 0.85 7.56 0.92

Scaling

No-fold 34.9 0.11 31.8 0.17 23.9 0.20 19 0.18 15.6 0.37

1-fold 34.9 0.53 20.1 0.69 15.7 0.55 15.3 0.64 12.8 0.79

2-fold 25 0.57 13.4 0.65 16.2 0.69 15.6 0.64 12.4 0.58

3-fold 25.5 0.67 10.9 0.71 13.6 0.75 8.9 0.67 7.9 0.76

4-fold 25.3 0.87 7.2 0.87 9.7 0.81 8.3 0.69 7.1 0.89

Warping

No-fold 24.1 0.38 22.8 0.18 23.9 0.34 27.5 0.22 11.9 0.34

1-fold 22.6 0.53 14.6 0.64 20.5 0.59 12.7 0.60 13.9 0.58

2-fold 25.3 0.52 13.1 0.60 13.8 0.55 11.9 0.71 11.7 0.71

3-fold 22.4 0.56 9.7 0.66 13.1 0.78 9.4 0.71 8.6 0.79

4-fold 17.2 0.85 8 0.88 9.1 0.84 8.6 0.90 7.9 0.93

All

No-fold 17.4 0.29 16.9 0.33 15.6 0.37 13.1 0.19 25.53 0.26

1-fold 14.4 0.70 15.8 0.76 11.2 0.75 12.1 0.75 13.6 0.81

2-fold 12.0 0.78 12.8 0.80 9.1 0.78 11.8 0.72 12.5 0.86

3-fold 11.2 0.82 10.3 0.86 8.6 0.81 8.3 0.86 10.9 0.89

4-fold 6.9 0.94 7.5 0.95 7.2 0.92 7.9 0.92 7.3 0.95

4. Discussion

Fall peak impact acceleration magnitude is an important factor for determining the risk of
fractures such as head injury criterion (HIC) value and a parameter for designing and developing fall
prevention devices such as a wearable inflate airbag system [48]. Previous studies have reported that an
impact magnitude is affected by many uncertainties such as fall direction, impact site, and pre-impact
movement prior to fall, leading to a wide range of impact acceleration values [49]. These uncertainties
require us to create biomechanical models or optimization processes when designing an airbag system.
They might decrease the performance of predicting an impact magnitude. However, our model allows
the prediction of impact acceleration magnitude by using a deep learning model with a single IMU raw
sensor data, showing a high performance. Additionally, when our proposed model was implemented
to fall prevention devices such as a wearable inflation airbag system along with a classification model,
it could classify human activity by normal vs. fall with different directions. This will lead to the
development of a full intelligent fall protective system by detecting fall itself and fall severity to reduce
fall injuries.
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Recently, intelligent airbag systems are developed and applied in the field of automobile. An airbag
sensing system can adjust the pressure of an airbag called a low-risk deployment to protect passengers
from pressure dispersion of an airbag [48]. The airbag system composed of mechanical release system
allows compressed CO2 release by lock release signal from an MCU. The CO2 gas is then transmitted to
inflate the airbag. Based on compressible-fluid mass flow rate equations, mass flow rate, area of airbag,
pressure of airbag, and inflation time need to be accurately calculated when designing a wearable
airbag system [49]. For instance, an expandable airbag helmet shows a high risk of bottom-out as the
impact acceleration increases if the pressure of airbag is low inside. This will ultimately increase HIC
values. Therefore, material, thickness, size, and pressure of airbag should be optimized and controlled
accurately in real time depending on the impact magnitude to reduce the risk of injury for a wearable
airbag [21].

Fall impact acceleration showed that the magnitude prediction model prior to the actual impact
of the subject had an average MAPE of 6.69 ± 0.33% with an average r value of 0.93 when all-data
augmentation technique was applied with a 4-fold data size increment (Table 3). The meaning of
our results cannot be fully evaluated since it is the first study to develop a model that can predict
impact acceleration magnitude using deep learning and wearable sensor signals to the best of our
knowledge. For instance, an actual impact acceleration magnitude of 5.0 m/s2 with an average MAPE
of approximately 6.7% will give a predicted acceleration magnitude ranging from 4.7 to 5.3 m/s2. In a
real-life situation where impact acceleration magnitude ranges from 3 to 10 m/s2, the severity of a fall
impact can be divided into approximately ten classes considering the predicted error from our results.
This grading value can be meaningful for applying designed control parameters for fall protective
devices in the future based on our study.

Previous research has reported that the number of training datasets needs to be large with
heterogeneity characteristics. To do so, time-series data augmentation is a new emerging research
area to increase high quality training dataset. The data augmentation technique has an advantage
of simulating a real-world training dataset by transforming raw data. It can reduce labor-work for
gathering a large number of datasets of falls [38]. Additionally, the synthetic training data by applying
data augmentation technique can minimize over-fitting effects, increase generality of unseen data
and remove bias from the trained model due to imbalance volume of training data. There are several
other techniques such as rotation for data augmentation. In this research, we applied three data
augmentation techniques (scaling, time-warping, and jittering). However, our research used an IMU
sensor fixed on the waist with the switch heading forward. We did not apply the rotation data
augmentation technique. Previous research has mentioned that increasing the number of datasets
using data augmentation technique can boost performance, increase generalization to unseen data,
and reduce the chance of overfitting [50]. Our results showed that data augmentation technique could
improve the performance of fall impact acceleration magnitude prediction than no data augmentation.
There was no significant difference in MAPE value between single data augmentation groups. However,
the pattern of our results showing MAPE decreased with increasing number of datasets and application
of data augmentation technique was similar to previous studies [51]. When the number of datasets
was significantly increased, the average MAPE for all five directions of falls decreased significantly.
The standard deviation of MAPE also decreased, meaning that the prediction model could predict
impact acceleration magnitude with less variance for a more stabilized system [52]. This can be
interpreted that using deep learning with wearable IMU signal and data augmentation technique can
increase the performance of a prediction model.

Most of lab-based research have several limitations for practical application of their results.
First, collected data used for training datasets were gathered from young healthy subjects. Fall activity
was simulated on a soft pad surface. Thus, there are differences between laboratory situations and
real-life situations. However, falling experiments with elders or real-life fall experiments could
harm a subject, making them unsuitable [53]. Nonetheless, a real-life fall is more extreme than that
in a laboratory simulated situation, although the developed model can perform well in a real-life
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situation [54]. Second, our study used time-series (sequential) signal data with a deep bi-directional
LSTM network model to predict the impact acceleration magnitude. There are various deep learning
methods such as autoencoder and CNN [37]. However, our study proposed a novel architecture
that could predict an impact acceleration magnitude prior to fall. Within our proposed architecture,
other deep learning algorithms could process sequential data. They can be applied in the future.
A different deep learning algorithm or a combination of several deep learning architectures with
optimization should be performed to compare the performance and find optimal parameters to
minimize training errors.

5. Conclusions

In conclusion, an impact acceleration magnitude prediction model prior to impact on the ground
using a single IMU sensor-based deep learning is proposed in this study. A bi-directional LSTM
algorithm allows impact magnitude prediction for five different types of fall with application of
data augmentation techniques along with increasing number of datasets. We found that applying
augmentation techniques with increased number of training datasets for a deep bi-directional LSTM
network showed an average MAPE of 6.69 ± 0.35%. These results can be used to develop a fall
prevention intervention such as a wearable hip airbag system by optimizing the pressure or air flow
rate for deploying an airbag to minimize injury caused by a fall in real time and contribute to the
design of rehabilitation programs.
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