
sensors

Article

Differential Evolution Based Layer-Wise Weight Pruning for
Compressing Deep Neural Networks

Tao Wu , Xiaoyang Li *, Deyun Zhou, Na Li and Jiao Shi

����������
�������

Citation: Wu, T.; Li, X.; Zhou, D.;

Li, N.; Shi, J. Differential Evolution

Based Layer-Wise Weight Pruning for

Compressing Deep Neural Networks.

Sensors 2021, 21, 880. https://doi.

org/10.3390/s21030880

Received: 24 December 2020

Accepted: 25 January 2021

Published: 28 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Electronics and Information, Northwestern Polytechnical University, 127 West Youyi Road,
Xi’an 710072, China; tao_woe@mail.nwpu.edu.cn (T.W.); dyzhounpu@nwpu.edu.cn (D.Z.);
linaflydream@mail.nwpu.edu.cn (N.L.); jiaoshi@nwpu.edu.cn (J.S.)
* Correspondence: lixiaoyang@nwpu.edu.cn

Abstract: Deep neural networks have evolved significantly in the past decades and are now able to
achieve better progression of sensor data. Nonetheless, most of the deep models verify the ruling
maxim in deep learning—bigger is better—so they have very complex structures. As the models
become more complex, the computational complexity and resource consumption of these deep
models are increasing significantly, making them difficult to perform on resource-limited platforms,
such as sensor platforms. In this paper, we observe that different layers often have different pruning
requirements, and propose a differential evolutionary layer-wise weight pruning method. Firstly, the
pruning sensitivity of each layer is analyzed, and then the network is compressed by iterating the
weight pruning process. Unlike some other methods that deal with pruning ratio by greedy ways
or statistical analysis, we establish an optimization model to find the optimal pruning sensitivity
set for each layer. Differential evolution is an effective method based on population optimization
which can be used to address this task. Furthermore, we adopt a strategy to recovery some of the
removed connections to increase the capacity of the pruned model during the fine-tuning phase. The
effectiveness of our method has been demonstrated in experimental studies. Our method compresses
the number of weight parameters in LeNet-300-100, LeNet-5, AlexNet and VGG16 by 24×, 14×, 29×
and 12×, respectively.

Keywords: neural network compression; weight pruning; differential evolution; sparse network

1. Introduction

Deep neural networks have significant performance in computer vision, speech recog-
nition, natural language processing, etc. For sensor data processing, deep neural networks
can also achieve good results. However, we must face up to some problems. Deep neural
networks often require huge computing storage resources, while the resources of sensor
devices are usually limited. Several investigate researches on deep neural networks, such
as [1], provide a comprehensive analysis of important metrics for practical applications:
accuracy, memory footprint, parameters, operations count, inference time and power
consumption. With the development of deep neural networks, the number of network
parameters increases rapidly. For example, in order to solve the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC), on the ImageNet dataset, AlexNet [2] has about
60 million parameters, while VGG [3] has about 150 million parameters. Even if some more
efficient connections or modules are designed, such as residual network [4] or inception
network [5], the size of parameter is reduced, but it is still huge. Deep neural networks with
superior performance have deeper and wider architectures, which can result in expensive
storage and computing costs. Especially for sensor devices or platforms, these deep neural
networks are difficult to deploy as usual. Therefore, in order to reduce the size of the
model, it is necessary to simplify the neural network architecture. Neural network pruning
is a simple yet efficient method, which aims at removing some unimportant synapses and
neurons to obtain sparse neural networks.

Sensors 2021, 21, 880. https://doi.org/10.3390/s21030880 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6925-109X
https://orcid.org/0000-0003-1124-6738
https://doi.org/10.3390/s21030880
https://doi.org/10.3390/s21030880
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21030880
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/3/880?type=check_update&version=1

Sensors 2021, 21, 880 2 of 20

Neural network pruning is a traditional task that has received increasing interest
with the development of neural networks. Especially, as deep neural network plays an
increasing important role in practical applications, neural network pruning has become a
highlight area of research, as it helps to achieve good working of deep neural networks
on mobile or embedded devices. Moreover, neural network pruning is also a technique
for designing or searching neural network structures. Back in 1990, LeCun et al. proposed
Optimal Brain Damage (OBD) [6], which reduces the number of connections by finding
the minimum active connections. In [7], Hassibi et al. used a method named Optimal
Brain Surgeon (OBS) to remove the unimportant weights determined by the second-order
derivative information. Compared to OBD, OBS has better pruning effectiveness, but the
computational cost is more expensive. From these two methods onwards, many neural
network pruning methods based on neurons or connections importance have been con-
stantly proposed [8–13]. Moreover, some layer-wise methods [13–15] have been proposed
for multilayer feed forward networks. For convolutional neural networks (CNNs), some
structural pruning strategies, such as channel or filter pruning, have been proposed [16,17].
Among these structural pruning methods, they pay more to channel wise, kernel wise and
inter kernel strides sparsity.

In model pruning, we not only want a sufficiently sparse network, but also want
the network to retain as much of its original performance as possible. Most existing
neural network weight pruning methods remove some unimportant weights or neurons
by preset pruning ratio of each layer or global pruning ratio for the whole model. A simple
experiment was conducted to verify the influence of pruning ratio per layer on pruning
performance. In the experiment, we pruned the LeNet-300-100 that is a fully connected
network with three layers, and the total pruning rate in the different pruning schemes is
always 80%, but the pruning rate of each layer was different. The experimental results are
shown in Table 1. The results revealed significant differences in the pruning results obtained
by different pruning schemes. Therefore, We believe that this is not the best solution for
model pruning, because different layers have different sensitivity to pruning, and this
sensitivity is unpredictable. It is possible to promote pruning of the whole network, if each
layer is finely pruned. Therefore, the challenge is to determine the pruning sensitivity
of each layer. In addition, removing too many connections during pruning can cause
accuracy loss, and iterative pruning (cycle pruning and fine-tuning) can be effective in
maintaining the accuracy of the pruned model [12,14,18,19]. However, it is difficult to
obtain high performance network with high sparsity by simple fine-tuning operation. Thus,
we also need to improve the strategy of network fine-tuning after pruning to find a trade-off
solution with better accuracy and sparsity.

Table 1. The simple test results on the sensitivity of the neural network layer to pruning. The test
neural network is LeNet-300-100, and which is a fully connected network. There are different pruning
ratio of each layer which are shown in the first three columns, and the last column is the accuracy of
the pruned networks.

Pruning Ratio of Layer1 Pruning Ratio of Layer2 Pruning Ratio of Layer3 Accuracy

0.8 0.8 0.8 0.6701
0.82 0.68 0.1 0.9386
0.84 0.5 0.4 0.9294
0.86 0.35 0.3 0.9050
0.88 0.2 0.2 0.8764
0.90 0.05 0 0.8399

To address the above problems, we first propose a differential evolutionary neural
network compression framework (DENNC). In DENNC, we use a differential evolutionary
algorithm to solve the problem of layer sensitivity to pruning. The mathematical represen-
tation of model weight pruning is an optimization problem with two terms, two of which
correspond to sparsity and network accuracy. The decision variable for the above problem
is the pruning mask, which can be determined by the sensitivity of each layer to pruning.

Sensors 2021, 21, 880 3 of 20

After pruning the model with differential evolution, we will fine-tune the pruned model.
We also loop the above two steps using an iterative pruning framework to obtain better
solutions. It is worth noting that at the beginning of the model fine-tuning, we randomly
recover a few of the removed connections to maintain the capacity of the model.

The remainder of this paper is organized as follows. In Section 2, we will review
the background of proposed method and some related works. In the third section, the
differential evolution framework for compressing neural network will be introduced
in detail. We will conduct the experimental studies in Section 5. Finally, we will give
concluding remarks of this paper.

2. Background and Related Work
2.1. Differential Evolution

Differential evolution (DE) [20–22] is one of the most well-known optimization algo-
rithms in the field of continuous optimization because of its efficient performance. Compare
to traditional evolutionary algorithms, DE generates new candidates through the weighted
difference of the individuals in current population. More specifically, the weighted differ-
ence of several random individuals is added to current individual to generate new solution
in mutation operation. After mutation, a crossover operation is performed on the original
population and its corresponding mutant individuals. Finally, greedy selection is used to
generate new population.

For mutation operations, there are five popular mutation strategies [22] in DE algo-
rithms as below:

1. DE/rand/1:
vg

i = xg
p1 + F× (xg

p2 − xg
p3) (1)

2. DE/best/1:
vg

i = xg
best + F× (xg

p1 − xg
p2) (2)

3. DE/rand-to-best/1:

vg
i = xg

i + F× (xg
best − xg

i + xg
p1 − xg

p2) (3)

4. DE/best/2:
vg

i = xg
best + F× (xg

p1 − xg
p2 + xg

p3 − xg
p4) (4)

5. DE/rand/2:
vg

i = xg
p1 + F× (xg

p2 − xg
p3 + xg

p4 − xg
p5) (5)

where vg
i is the mutant individual generated from the i-th individual xg

i in current popula-
tion at the g-th generation. p1, p2, p3, p4, p5 are the random and mutually exclusive indices
within the range [1, n], where n is the size of population. And xg

best is the best solution in
the population of generation g. F is a positive scaling factor to scale the difference vector.

Crossover operation is performed on each population individual xg
i and its corre-

sponding mutant individual vg
i to generate a trial individual:

ug
ij =

{
vg

ij i f (rand ≤ CR)
xg

ij otherwise
(6)

where the crossover rate CR controls the probability of coping the gene from correspond-
ing mutant individual. For each gene in a individual, we will perform above crossover
operation to generate new solution.

xg+1
i =

{
ug

i i f f (ug
i) ≤ f (xg

i)

xg
i otherwise

(7)

Sensors 2021, 21, 880 4 of 20

Before selection operations, all of the above generated trial individuals are evaluated
on the fitness function corresponding to optimization problem. Let f (xg

i), f (ug
i) be the

fitness of individual xg
i and its corresponding trial individual ug

i . Subsequently DE selects
the best one between xg

i and ug
i to enter the new formed population, which can be shown

as Equation (7).

2.2. Neural Network Compression

There is significant redundancy in deep neural networks which is mainly caused by
over parameterization [23]. These over parameterized models require significant memory
and computation resources, and are prone to model over-fitting problem. Therefore, it is
necessary to compress the model by removing unimportant parameters to decrease the
memory and computation cost. Generally, with the increasing of network compressing
ratio, model computational cost is decreasing. For fully connected network, the ratio of
computational cost is approximate to weight compression, the computational ratio is about
half of compressing ratio for convolutional network [12]. Next, we will introduce some
different researches about deep models compression method.

2.2.1. Neural Network Pruning

Neural network pruning is a classic technique in the filed of model compression, and it
can be traced back to the 90s in the 20th century [6,7]. In recent years, Han et al. [12,24] have
proposed an iterative pruning method to remove small weights below a threshold. The
method focuses on weight filtering to obtain architecturally sparse model. However, unless
we design special hardware computing units, it is difficult to improve the inference speed
of the compressed model. Therefore, some researchers design pruning against neurons
to achieve the goal of speeding up model inference [16,25,26]. They define a number of
neuron or filter importance metric indices to rank neurons or filters, and achieve model
pruning by eliminating less useful neurons or filters.

2.2.2. Parameter Quantization

Parameter quantization is another efficient method for compressing models. Recently,
parameter quantization has two main research directions, one is weights sharing, the basic
idea of which is that multiple network connections share a weight, and the other is weights
reduction, i.e., weight represent with low bit. Han et al. [24] proposed a weight share
method based on K-means clustering. The paper clusters the weight matrices of each
layer into several clusters by K-means algorithm and represents the weight of the clusters
by the cluster center value of each cluster. Chen et al. have designed a new network
architecture, Hashnet [27]. A hash function is used to randomly group connection weights
into hash buckets, with connections in each bucket sharing the same weight parameters.
Dettmers [28] compressed the 32-bit gradient and activation values of to 8-bit, where 8-bit
are used to represent floating point numbers. He also used a dynamically determination
of the range of exponential and decimal bits to reduce errors. Literature [29] shows that
when using a stochastic rounding, 16-bit fixed-point notation can significantly reduce the
memory and floating point operations.

2.2.3. Knowledge Distillation

Knowledge distillation can be regarded as a transfer learning method where knowl-
edge from a trained large model (teacher model) is extracted and transferred to a tiny
model (student model). Hinton et al. introduced the concept of knowledge in [30] by
learning about soft goals. Moreover, they used a temperature parameter to control the soft
level of the probability distribution. Romero et al. [31] introduce intermediate layer hits to
improve the model. The core idea is to enable the student model to learn the intermediate
representation from the teacher model. In [32], Yim et al. argue that the relationship be-
tween layers is a better representation of the knowledge than the model output. Therefore,

Sensors 2021, 21, 880 5 of 20

they calculate the flow of solution procedure (FSP) matrix to represent the relationship
between layers and transfer the FSP matrix of teacher model to student model.

3. Methodology

In this section, we introduce the proposed differential evolutionary neural network
compression method in detail. The proposed method adopts an iterative pruning and
fine-tuning framework, and the differential evolution is used to achieve neural network
weight pruning. Moreover, we adjust the fine-tuning strategy in order to promote the
model capacity, and a simple computational complexity analysis is given at the end of
this section.

3.1. Preliminaries

We formally introduce the symbols and annotations for neural network weight prun-
ing firstly. The deep neural network can be parameterized by {W(i) ∈ RNi×Ni+1 or W(i) ∈
RK×K×Ni×Ni+1 , 1 ≤ i < L}, W(i) denotes the matrix of connection weights of the i-th layer.
Ni and Ni+1 denote the number of input and output neuron (channel) of i-th layer, re-
spectively. If the dimension of R is 2, it is a fully connection layer, otherwise it belongs to
convolutional layer. K means the kernel size, L denotes the number of layers. We define F
as the mask that can guide the process of pruning, and the detailed pruning operation for
each layer can be written as follows:

Ŵ(i) = F (i) �W(i), (8)

where Ŵ denotes pruned connection weights, � indicates the Hadamard product operator.
The pruning mask F can be constructed according to pruning strategy. For example, when
we use threshold method to prune fully connection layers, the F can be calculated by

Fij =

{
0 if |Wij| < ζ(l)

1 otherwise
(9)

where ζ(l) denotes the pruning threshold of l-th layer.

3.2. Framework of Proposed Method

We follow the iteration pruning framework [12] which divides the neural network
pruning into two phases. In the first phase, the original dense network is pruned to sparse
network. In the second phase, the sparse network from previous phase is fine-tuned to
recovery model performance. It is well known that removing connections affects the model
performance, especially when too many connections are removed, the performance of the
model is bound to degrade. And fine-tuning the pruned model helps to restore the model
performance. Therefore, it is necessary to perform proper fine-tuning operations after
differential evolutionary pruning, which can lead to a better pruned model.

The detailed framework of DENNC is summarized in Figure 1. In general, a dense
neural network is used as input, such as the first network in Figure 1. The iterative
pruning, which implements pruning and fine-tuning alternately, is used to improve final
performance of neural network compression. In each iteration, we adopt a mode of fine-
tuning after pruning. In the first phase, we implement differential evolutionary layer-wise
weight pruning to simplify the dense network to a sparse network (as shown in the
second network Figure 1), in which the best individual in population is selected as layer-
wise pruning solution to obtain the pruned network. In the second phase, we fine-tune
the previous pruned network by updating the reserved weights and reestablishing few
connections in order to promote the model capacity. A illustrated result is shown as the
third network in Figure 1. The differential evolutionary neural network weight pruning
and fine-tuning strategy will be described in detail bellow.

Sensors 2021, 21, 880 6 of 20

Fine-tuning

DE for

pruning

sensitivity

Pruning

DE for

pruning

sensitivity

Pruning

Iteration

Output

Input

Recovering
connections

Phase 1 Phase 2

Figure 1. The iteration pruning and fine-tuning framework of differential evolutionary neural network compression.
For input dense neural network, we analyze the layer’s pruning sensitivity by differential evolutionary and then pruning
this network. Next, we fine-tune the previously pruned networks with the strategy of properly recovering pruned
connections.The recovered connections is shown as red dotted line. Iterating through above operations until the stop criteria
is satisfied.

3.3. Differential Evolutionary Neural Network Weight Pruning

For hierarchical neural networks, different layers can usually extract different features,
and thus the weight distribution of each layer is different. Taking a fully connected
neural network as example, it is impossible for us to remove 90% connections of each
layer without losing accuracy. On the one hand, if we prune too many connections, the
compressed neural network will not perform as well as before. On the other hand, if we
remove too few connections, we will not get a sufficiently streamlined network. Therefore,
it is not reasonable to use a uniform pruning threshold for all layers. To address this
problem, we use a differential evolutionary algorithm to autonomously optimize the
pruning sensitivity of each layer. We design the objective function of differential evolution
to directly respond to the pruning effect, and set the pruning sensitivity of each layer as the
decision variable of the objective function.

Before establishing objective function to optimize pruning sensitivity, we first denote
the error ratio of the neural network E(·) by

E(W) =
FP + FN

TP + FP + TN + FN

∣∣∣∣
W

, (10)

where W denotes the current weight of the model, TP—True Positive—the number of
observations correctly assigned to the positive class; TN—True Negative–the number of
observations correctly assigned to the negative class; FP—False Positive—the number of
observations assigned by the model to the positive class, which in reality belong to the
negative class; FN—False Negative—the number of observations assigned by the model to
the negative class, which actually belongs to the positive class. For neural network weight
pruning, the evaluation of pruning level can be stated as

f = ‖F‖l0

s.t.
∥∥∥E(Ŵ)− E(W)

∥∥∥ < ε,
(11)

where ε is a very small number. We can transfer the constrained optimization problem
(11) to the unconstrained problem with a parameter λ, and the pruning problem can be
rewritten as

min f = λ‖F‖l0 +
∥∥∥E(Ŵ)− E(W)

∥∥∥
= λ‖F‖l0 + ‖E(F �W)− E(W)‖,

(12)

Sensors 2021, 21, 880 7 of 20

where F can be calculated by Equation (9). In order to balance the huge numerical
difference between these two terms, we normalize the ‖F‖l0 as

min f = λ
‖F‖l0
|F | +

∥∥∥E(Ŵ)− E(W)
∥∥∥

= λ
‖F‖l0
|F | + ‖E(F �W)− E(W)‖,

(13)

where |F | denotes the number of elements in F . From Equations (9) and (13), we know that
the parameter ζ affects the result of pruning and is independent for each layer. Therefore,
we can refer to ζ as the pruning sensitivity.

The differential evolutionary algorithms have significant advantages in solving the
NP-hard problem. The problem (13) is clearly an NP-hard problem, which is difficult to be
handled by general optimization methods due to l0-norm. Therefore, we use a differential
evolutionary algorithm to handle the above problem for the purpose of analyzing pruning
sensitivity. In the differential evolutionary pruning sensitivity analysis (DEPS), we let ζ be
the decision variable, Z = (ζ1, ζ2, ..., ζL)

T , which measures the pruning sensitivity of each
layer. According to Equation (13), we simplify it appropriately to create the fitness function
as follow

min f = λ
‖F‖l0
|F | + ‖E(F �W)− E(W)‖

= λ
‖F‖l0
|F | + ‖E(F �W)− C‖

≈ λ
‖F‖l0
|F | + E(F �W)

(14)

where C denotes a constant. In this fitness function, we are interested in the pruning effect
and the accuracy of the model after pruning, rather than the change in accuracy, which
increases the probability of getting a more accurate model. The pseudocode of DEPS is
shown in Algorithm 1. After running DEPS, we can obtain the final pruning sensitivity Z
and the pruning mask F can be calculated by Equation (9). Next, the model will be pruned
with mask F by Equation (8).

3.4. Fine-Tune Pruned Neural Network

Through the above pruning operation, we can obtain a sparse neural network, as shown
in the second network in Figure 1. Generally, the pruned model is sparse but with some
loss of performance. Therefore, it is necessary to compensate for the degradation in model
accuracy caused by the directly removal of connections. Fine-tuning is a common strategy
used in deep neural network training, which improves the performance of the model on
specific problems by adjusting the pre-trained model. In our neural network pruning
framework, we use the fine-tuning strategy to recover the model performance after the
pruning operation.

In the model fine-tuning stage, we not only update the remaining weights, but also
recover a few pruned connections, which is known as the recovery connections fine-tuning
strategy. Updating the remaining weights helps to improve the accuracy of the model,
while restoring pruned connections can promote the capacity og the model. During fine-
tuning, we randomly recover some previously pruned connections and set random weights
to them firstly, and then train the pruned neural network for a few epochs as usual. The
detailed fine-tuning parameters are the same as those of the model training, except that the
epochs are few.

Sensors 2021, 21, 880 8 of 20

Algorithm 1: Pseudocode of DEPS
Input: N: population size; L: individual dimension; F: the positive scaling factor of

mutation; CR: crossover ratio; G: the generation
Output: Z = (ζ1, ζ2, ..., ζL)

T

1 t← 1
2 for i = 1 to N do
3 for j = 1 to L do
4 xt

i,j = xmin + rand(0, 1) · (xmax − xmin)

5 end
6 end
7 Z ← xt

1 // random select an individual as solution
8 while i < G do
9 for i = 1 to N do

10 mutation:
11 vt

i ← xt
i + F× (xt

p1 − xt
p2)

12 crossover:
13 for j = 1 to L do
14 if rand < CR then
15 ut

i,j ← vt
i,j

16 else
17 ut

i,j ← xt
i,j

18 end
19 end
20 selection:
21 calculate Fu and Fx by Equation (9), calculate f (Fu) and f (Fx) by Equation (14)
22 if f (Fu) < f (Fx) then
23 xt

i ← ut
i , Fx ← Fu

24 calculate FZ by Equation (9), calculate f (FZ) by Equation (14)
25 if f (Fx) < f (FZ) then
26 Z ← xt

i
27 end
28 end
29 end
30 t← t + 1
31 end

3.5. Computational Complexity of DENNC

The computational complexity of DENNC model consists of two parts, the computa-
tional cost of DEPS for model pruning and the computational cost of fine-tuning pruned
model. In DEPS, the main complexity comes from fitness evaluation. Assuming the number
of weight parameters is P, the computational cost of fitness evaluation is O(P) for each in-
dividual. Therefore, for a population with N individuals, the computational cost is O(NP).
The total computational cost of DEPS is O(NPG) because of generation G. Assuming the
computational cost of neural network training for each epoch is O(T), the fine-tuning
costs O(e · T) computations, e denotes the number of epoch in fine-tuning. Thence, the
computational cost of DENNC in each cycle is O(NPG + e · T). If K stands for total number
of iteration, the computational complexity of our method is O(K(NPG + e · T)).

4. Experimental Studies

In this section, we demonstrate the performance of DENNC with experimental studies.
Firstly, we simply introduce datasets and experimental settings. Secondly, experimental
results on LeNet, AlexNet and VGG16 are presented in detail. Lastly, we analyze some
parameters and restoring connections fine-tuning strategies in the ablation studies.

Sensors 2021, 21, 880 9 of 20

4.1. Datasets and Experimental Settings

In experimental studies, we choose four different neural networks on two datasets,
LeNet-300-100 and LeNet-5 [33] on MNIST, AlexNet [2] and VGG16 [3] on CIFAR10.
A simple introduction about four models are shown as follow.

• LeNet-300-100 is a fully connected neural network which has two hidden layers with
300 and 100 neurons, respectively.

• LeNet-5 is a simple convolutional neural network with two convolutional layers and
three fully connected layers.

• AlexNet is a deep convolutional neural network, which includes five convolutional
layers and three fully connected layers.

• VGG16 is a more deeper convolutional neural network with sixteen layers in total, in
which thirteen convolutional layers and three fully connected layers are included.

Detailed network information, such as model type, accuracy and structure of each
layer, is shown in the following Table 2. MNIST [33] has a training set of 60,000 examples,
and a test set of 10,000 examples of handwritten digits. The images are centered in
a 28 × 28 image. CIFAR10 [34] consists of 60,000 32 × 32 color images in 10 classes, with
6000 images per class. There are 50,000 training images and 10,000 test images in CIFAR10.

Table 2. Detailed neural networks information.

Model LeNet-300-100 LeNet-5 AlexNet VGG16

Dataset MNIST MNIST CIFAR10 CIFAR10

Type FCN CNN CNN CNN

Accuracy 0.9774 0.9905 0.9004 0.8757

(784,300) 8@(5,5) 24@(3,3) 16@(3,3)
(300,100) 16@(5,5) 64@(5,5) 16@(3,3)
(100,10) (,120) 96@(3,3) 32@(3,3)

(120,84) 96@(3,3) 32@(3,3)
(84,10) 64@(5,5) 64@(3,3)

(,1024) 64@(3,3)
(1024,1024) 64@(3,3)
(1024,10) 128@(3,3)

128@(3,3)
128@(3,3)
128@(3,3)
128@(3,3)
128@(3,3)

(,1024)
(1024,1024)

structure

(1024,10)

The comparison methods consist of naive cut [35], iterative pruning [12] and multi-
objective neural network pruning (MONNP) [36]. Note all of these methods prune neural
network with threshold optimization. Naive cut method removes the weights which are
below the predefined global threshold. The computational complexity is O(P), which
is the smallest in these methods, where P is the number of weight parameters. Iterative
pruning method mentioned in [12] also prunes weights below predefined global threshold
firstly, and then fine-tunes the pruned model, recursively runs the above two operations
until the stop criterion is satisfied. When iteration number is K, the computational cost of
iterative pruning is O(K(P + eT)), where e and T mean the epoch number in fine-tuning
and the cost of fine-tuning for each epoch. The MONNP establishes a multi-objective
neural network pruning model and uses multi-objective particle swarm optimization to
handle the problem. Compared with proposed DENNC, the computational complexity
is similar.

Note that all model used in experiment are trained by ourselves because we fail to
obtain original model weights. Therefore there are some different results compared with
that of reference papers.

Sensors 2021, 21, 880 10 of 20

4.2. Experimental Results
4.2.1. Overall Results

Firstly, overall experimental results of proposed DENNC and comparison methods
are shown in Table 3. In Table 3, we use five metrics to measure the effect of neural network
pruning, which are the error of model, the number of weights, the percentage of pruned
weights, the memory resource of model and compression ratio, respectively. It is clear that
our method can efficiently prune these four models with a compressing ratio of 24.33, 14.47,
29.15 and 12.55, respectively. There is no doubt that the model obtained by our method
requires minimal memory resource. From the perspective of model error, our DENNC
performs best on LeNet-300-100 with smaller error, but on the other three models, the model
error of DENNC is bigger than that of original model. Compared with the other methods,
our method appears to be at a moderate level, and keeps acceptable errors. While it’s not
doing very well on error, our method pruned the most weight parameters on all models.
In the view of compressing ratio, the performance of our method is undoubtedly the best.
In addition to our method, the iterative pruning method performs better. However, under
the comprehensive consideration of error and compressing ratio, our method performs
better than the iterative pruning method, because the iterative pruning method has bigger
error on three models. In summary, the experimental results prove that our method can
efficiently compress models and outperforms the comparison pruning methods.

Secondly, we analyze the performance of the proposed DENNC on LeNet-5 pruning
task. Our DENNC belongs iterative pruning methods, and in each iteration, we pruning
weights by the differential evolutionary layer-wise weight pruning method. So the fitness
curves of the differential evolutionary layer-wise weight pruning under 100 generations are
shown in Figure 2. There are five curves corresponding to the fitness changes of iteration 1,
2, 5, 15 and 30, respectively. We can clearly know that as the number of iterations increases,
the overall fitness is decreasing. For example, the green line has smallest fitness and the
corresponding iteration is the maximum of 30. It reveals that our iterative pruning is
effective. For each curve, as evolutionary generation increases, the fitness is progressively
decreasing in general, even if it remains unchanged in some generations. We can also
observe that the range of variation for each curve is very limited, which indicates that the
effect of a single pruning session is limited and that iterative pruning is necessary. The
detailed iterative pruning effects with the number of iteration is shown in Figure 3. From
the fitness curve, we can know that as the number of iterations increases, the fitness is
decreasing in general. And in phases where the number of iterations is less than 5, fitness
decreases faster, and as the number of iterations becomes larger, fitness decreases more
slowly. The fitness is not always decreasing, sometimes the fitness may become slightly
lager with the increasing of iteration. It is may be the result of our recovery connection
fine-tuning strategy.

Next, we will analyze pruning results of each model in detail as follow.

4.2.2. LeNet on MNIST

We firstly prune LeNet-300-100 and LeNet5 on MNIST. The detailed pruning results
of each layer of these two neural networks are shown in Tables 4 and 5, respectively.

For LeNet-300-100, we present pruning results of each layer in Table 4. From Table 4,
we can know that the proposed method removes 95.89% weights in total. There are the
most number of weights in the first layer, and the percentage of removed weights is also
the highest. DENNC removes 97.08% weights of the first layer, and it is 85.75% weights of
the whole network. For the second and third layers, 89.15% and 19.87% connections are
pruned, respectively. In order to reveal pruning effect more intuitively, we plot histograms
of weights distribution before and after pruning in Figure 4. Note that the number of bins
in both histograms is 1000. From the figure, it is obvious that most of the small weights
closed to zero are removed. we also notice huge difference between the two vertical axes,
the maximum count in Figure 4a,b are 4500 and 90, respectively. Moreover, it leaves not
only large weights but also a small amount of weights near zero after pruning.

Sensors 2021, 21, 880 11 of 20

Table 3. Overall results of proposed method and comparison methods. The bold numbers mean the best results.

Model Method Error % # W Pruned W % Memory (M) CR

original 2.26 266,610 - 3.08 -
Naivecut 2.84 106,937 59.89 1.46 2.49

Iterative pruning 2.37 26,874 89.92 0.34 9.92
MONNP 2.2 44,364 83.36 0.57 6.01

LeNet-300-100

DENNC 2.07 10,962 95.89 0.14 24.33

original 0.95 45,278 - 0.55 -
Naivecut 1.71 19,198 57.5 0.26 2.35

Iterative pruning 1.72 3826 91.55 0.05 11.83
MONNP 0.91 8503 81.22 0.11 5.32

LeNet-5

DENNC 1.41 3444 93.09 0.04 14.47

original 9.96 5,488,106 - 41.92 -
Naivecut 11.66 1,153,600 78.98 9.57 4.76

Iterative pruning 11.51 275,503 94.98 2.19 19.92
MONNP 11.41 748,578 86.36 5.99 7.33

AlexNet

DENNC 11.59 192120 96.57 1.47 29.15

original 12.43 2,112,730 - 37.29 -
Naivecut 12.94 972,278 53.98 18.83 2.17

Iterative pruning 16.79 211,696 89.98 3.94 9.98
MONNP 16.42 312,895 85.19 5.93 6.75

VGG16

DENNC 13.16 168,489 92.03 3.08 12.55

0 10 20 30 40 50 60 70 80 90 100
Generation

0.015

0.02

0.025

0.03

0.035

0.04

F
it
n
es

s

Iteration1
Iteration2
Iteration5
Iteration15
Iteration30

Figure 2. The fitness curves of differential evolutionary neural network compression framework
(DENNC) under 100 generations on LeNet-5 pruning task.

0 5 10 15 20 25 30

Iteration

0.016

0.018

0.02

0.022

0.024

0.026

0.028

F
it
n
es

s

Figure 3. The fitness curve of DENNC under 30 iterations on LeNet-5 pruning.

Sensors 2021, 21, 880 12 of 20

Table 4. The detailed pruning results of each layer for LeNet-300-100 on MNIST.

Layer # Original W # Remained W Pruned W %

Linear1 235,500 6886 97.08
Linear2 30,100 3267 89.15
Linear3 1010 809 19.87

Total 266,610 10,962 95.89

(a) Weights distribution before pruning

(b) Weights distribution after pruning

0 0.5 1

Weight

0

500

1000

1500

2000

2500

3000

3500

4000

4500

C
ou

n
t

−1.5 −1 −0.5 0 0.5 1

Weight

0

500

1000

1500

2000

2500

3000

3500

4000

4500

C
ou

n
t

0 0.5 1

Weight

0

10

20

30

40

50

60

70

80

90

C
o
u
n
t

−1.5 −1 −0.5 0 0.5 1

Weight

0

10

20

30

40

50

60

70

80

90

C
o
u
n
t

Figure 4. The weight distributions of LeNet-300-100 before and after pruning. The number of bins in
both histograms is 1000.

For LeNet-5 model, detailed pruning results of each layer are shown in Table 5.
Overall, 93.09% weights are pruned in the proposed DENNC. In LeNet-5, there are 92.44%
weights in fully connected layers and 93.94% weights are removed of them. Among them,
96.03%, 93.06% and 19.41% connections of the three full connection layers were removed,
respectively. For two convolutional layers, the proposed method prunes 10.18% and 77.49%
weights, respectively. We also plot histograms of weights distribution before and after
pruning for LeNet-5. In Figure 5, the weights approximate a normal distribution of zero
mean, and most of the weights are in the range of [−0.4, 0.4] before pruning. After pruning,
only a few small weights are retained, especially for the weights between [−0.2, 0.2]. From
the above results, the proposed method is obviously effective for compressing LeNet-5.

Sensors 2021, 21, 880 13 of 20

Table 5. The detailed pruning results of each layer for LeNet5 on MNIST.

Layer # Original W # Remained W Pruned W %

Conv1 208 187 10.18
Conv2 3216 724 77.49

Linear1 30,840 1225 96.03
Linear2 10,164 624 93.86
Linear3 850 685 19.41

Total 45,278 3444 93.09

0 0.2 0.4 0.6
0

50

100

150

200

250

300

350

400

450

C
o
u
n
t

−1 −0.8 −0.6 −0.4 0 0.2 0.4 0.6−0.2
WWeeiighghtt

0

50

100

150

200

250

300

350

400

450

C
o
u
n
t

(a) Weights distribution before pruning

(b) Weights distribution after pruning

0 0.2 0.4 0.6
0

10

20

30

40

50

60

70

C
o
u
n
t

−1 −0.8 −0.6 −0.4 0 0.2 0.4 0.6−0.2
WWeeiightght

0

10

20

30

40

50

60

70

C
o
u
n
t

Figure 5. The weight distributions of LeNet5 before and after pruning. The number of bins in both
histograms is 500.

4.2.3. AlexNet on CIFAR10

AlexNet is a deep neural network which has five convolutional layers and three
fully connected layers. We present detailed pruning results of each layer in Table 6.
Totally speaking, 96.57% weights of AlexNet are pruned. For five convolutional layers,
the proposed DENNC removes 24.85%, 28.28%, 35.89%, 55.54% and 27.04% weights,
respectively. While overall pruning ratio for convolutional layers is about 40%, the weights
of the convolutional layers are only 4.24% of the total. Most of the weights are in fully
connected layers, especially in the first and second linear layers. For three fully connected
layers, 99.03% connections are removed in total, where the pruning ratio of the first layer is
99.08%, the pruning ratio fo the second layer is 99.34% and 45.15% connections are removed
in the third layer. Furthermore, we plot histograms of weights distribution before and
after pruning in Figure 6, which aims to show pruning result more vividly. From Figure 6,
we can know that most of the weights are in range [−0.15, 0.15] before pruning, and the
count of weights which approximate zero is around 3× 104. After pruning, the maximum
count in Figure 7b is around 800, which is very small compared with that of before pruning.
It is obvious that the proposed method prunes a huge amount of weight. Corresponding

Sensors 2021, 21, 880 14 of 20

to our pruning strategy, there is a small amount of weights close to zero after pruning.
In a word, the proposed DENNC is work well for pruning AlexNet on CIFAR10.

Table 6. The detailed pruning results of each layer for AlexNet on CIFAR10.

Layer # Original W # Remained W Pruned W %

Conv1 672 505 24.85
Conv2 38,464 27,586 28.28
Conv3 55,392 35,514 35.89
Conv4 83,040 36,918 55.54
Conv5 55,360 40,389 27.04

Linear1 4,195,328 38,709 99.08
Linear2 1,049,600 6876 99.34
Linear3 10,250 5623 45.15

Total 5,488,106 192,120 96.57

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

Weight

0

200

400

600

800

1000

C
o
u
n
t

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
0

200

400

600

800

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

Weight

0

200

400

600

800

1000

C
o
u
n
t

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
0

200

400

600

800

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

Weight

0

0.5

1

1.5

2

2.5

3

C
o
u
n
t

10
4

-0.15 -0.1 -0.05 0 0.05 0.1 0.15
0

0.5

1

1.5

2

2.5

3
10

4

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

Weight

0

0.5

1

1.5

2

2.5

3

C
o
u
n
t

10
4

-0.15 -0.1 -0.05 0 0.05 0.1 0.15
0

0.5

1

1.5

2

2.5

3
10

4

(a) Weights distribution before pruning

(b) Weights distribution after pruning

−2.5 −2 −1.5 −1 −0.5

−2.5 −2 −1.5 −1 −0.5

Figure 6. The weight distributions of AlexNet before and after pruning. The number of bins in both
histograms is 10,000.

4.2.4. VGG16 on CIFAR10

VGG16 model is a very classical deep model with very a large amount of weight
parameter. In this part, we prune VGG16 model on CIFAR10 and the results of each layer
are shown in Table 7. Because of enough number of convolutional layers, the amount
of convolutional layer weight parameters is not much different from that of the fully
connected layers. From the total pruning result, 83.35% weights of convolutional layers
are pruned, 98.73% connections of fully connected layer are removed and the proposed
method prunes 92.03% weights in total. From the Table 7, we can know that most of the
weights of convolutional are in layers of Conv9 to Conv13, and the pruning ratio of these
layers is 75.43%, 93.40%, 96.57%, 95.17% and 96.98%, respectively. For fully connected layer,
the pruning ratio of each layer is 94.60%, 99.36% and 87.19%, respectively. Moreover, we

Sensors 2021, 21, 880 15 of 20

also plot histograms of weights distribution of VGG16 model in Figure 7. The figure shows
that most of the weights are in range [−0.1, 0.1] before pruning, and the maximum count
in Figure 7a is approximate to 1.5× 104. After pruning, the maximum count in Figure 7b is
around 1000. Comparing Figure 7a,b, it is clear that a large amount of weight are removed
especially for the weight which is close to zero. However, there are still few small weights
which are close to zero, it corresponds to the strategy of recovery connection fine-tuning.

Table 7. The detailed pruning results of each layer for VGG16 model on CIFAR10.

Layer # Original W # Remained W Pruned W %

Conv1 448 324 27.59
Conv2 2320 1268 45.33
Conv3 4640 3099 33.20
Conv4 9248 4057 56.13
Conv5 18,496 15,200 17.82
Conv6 36,928 22,606 38.78
Conv7 36,928 21,315 42.28
Conv8 73,856 22,788 69.15
Conv9 147,584 36,257 75.43
Conv10 147,584 9746 93.40
Conv11 147,584 5066 96.57
Conv12 147,584 7130 95.17
Conv13 147,584 4455 96.98

Linear1 132,096 7139 94.60
Linear2 1,049,600 6724 99.36
Linear3 10,250 1313 87.19

Total 2,112,730 168,489 92.03

(b) Weights distribution after pruning

(a) Weights distribution before pruning

Weight

0 0.5 1 1.5 2 2.5 3
0

2000

4000

6000

8000C
o
u
n
t

0 0.5 1 1.5 2 2.5 3
0

2000

4000

6000

8000C
o
u
n
t

Weight

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
0

2000

4000

6000

8000

10,000

12,000

14,000

16,000

18,000

C
o
u
n
t

0 0.1 0.2
0

5000

−0.2 −0.1 0 0.1 0.2
0

5000

10,000

15,000

0 0.5 1 1.5 2 2.5 3

Weight

0

200

400

600

800

1000

1200

C
ou

n
t

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

Weight

0

200

400

600

800

1000

1200

C
ou

n
t

0 0.2
0

200

400

600

800

1000

−0.2 0 0.2
0

200

400

600

800

1000

Figure 7. The weight distributions of VGG16 model before and after pruning. The number of bins in
both histograms is 10,000.

Sensors 2021, 21, 880 16 of 20

4.3. Ablation Studies

In order to analyze the sensitivity of balance parameter and the effectiveness of used
strategy, we make ablation studies as follow. The ablation studies involve two experiments,
parametric sensitivity analysis and fine-tuning strategy analysis.

4.3.1. Parametric Sensitivity Analysis

According to definition above, the fitness function includes two terms, and these two
terms are contradictory usually. Thence, the balance parameter λ would be influential
for neural network pruning. We design following experiment for studying parametric
sensitivity. In this experiment, we separately discuss the pruning effect in the case of λ
equals to 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 4, 6, 8 and 10. The detailed results are shown in Table 8
and Figure 8.

In Table 8, there are three indices to evaluate pruning performance. The fitness can
provide an overall estimation for weight pruning, and the accuracy and sparsity measure
two important characteristics of weight pruning, respectively. From the table, we can know
that the parameter λ does affect the result of neural network weight pruning. Where we
apply different λ, there are significant differences on these three indices especially on the
accuracy and sparsity. And the fitness becomes larger with increasing parameter λ in
general. In order to show the influence of the parameter λ more intuitively, we plot two
curves about the accuracy and sparsity in Figure 8. In Figure 8, blue curve represents the
accuracy and orange curve means the sparsity. It is clear that as the parameter λ increases,
the accuracy is decreasing, but the sparsity is increasing. It is aligned with Equation (14),
the larger the λ, the greater the weight of the sparse term, therefore the sparsity of pruned
model is increasing with increased λ. Moreover, we can know that when λ is in the range
[0, 1], the sparsity changes drastically from 0.86 to 0.94, while when λ is in the range [1, 10],
the sparsity only increases from 0.94 to 0.98. And the changes of the accuracy is smoother
in general. Thus, it can be seen that the sparsity is more sensitive to λ than the accuracy.

Table 8. The pruning results of LeNet-5 under different parameters.

λ Fitness Accuracy Sparsity

0.1 0.02382 0.9901 0.8608
0.2 0.02978 0.9896 0.9031
0.4 0.04582 0.9871 0.9177
0.6 0.05516 0.9857 0.9319
0.8 0.06866 0.9843 0.9338

1 0.0790 0.9837 0.9373
2 0.1451 0.9791 0.9379
4 0.2518 0.9726 0.9439
6 0.2516 0.9686 0.9633
8 0.2610 0.9678 0.9714
10 0.2822 0.9648 0.9753

0 1 2 3 4 5 6 7 8 9 10
0.96

0.965

0.97

0.975

0.98

0.985

0.99

A
cc

u
ra

cy

0.86

0.88

0.9

0.92

0.94

0.96

0.98

S
p
ar

si
ty

 Accuracy

 Sparsity

Figure 8. Changes in various indexes under different λ.

Sensors 2021, 21, 880 17 of 20

4.3.2. Fine-Tuning Strategy Analysis

In proposed DENNC, we adjust the fine-tuning strategy to obtain better model ca-
pacity. In previous iterative pruning methods, fine-tuning is used to update remained
weights. However, we use fine-tuning to update not only remained weights but also some
removed weights. In this part, we will analyze the effectiveness of recovery connections
fine-tuning strategy.

Firstly, we analyze the influence of recovery connections fine-tuning strategy for
pruning fitness. As shown in Figure 9, blue histogram (DENNC) denotes pruning with
recovery connections fine-tuning strategy and orange histogram (DENNC-N) represents
pruning with normal fine-tuning strategy. The horizontal axis denotes iteration and vertical
axis indicates fitness of pruned LeNet-300-100. From the figure, the fitness decreases with
the increasing iteration, and the fitness of DENNC is less than that of DENNC-N in the
most iteration.

Secondly, in order to explore the impact of fine-tuning strategy more intuitively,
especially for model accuracy, we show two accuracy curves of the pruned models in
Figure 10. In Figure 10, we use orange and blue curves represent the accuracy of pruned
LeNet-300-100 with and without recovery connections fine-tuning strategy, respectively.
We can know that the pruned model using recovery connections fine-tuning is alway
has better accuracy. It is in accord with the purpose for which we designed this strategy.
Therefore, we can infer that the recovery connections fine-tuning strategy is efficient to
improve model accuracy.

Finally, we plot weight distribution of pruned LeNet-300-100 with and without recov-
ery connection fine-tuning strategy in Figure 11 to analyze the difference between these
two pruned model. From the figure, it is obvious that recovery connections fine-tuning
strategy could reserve more small weights. Figure 11a shows that there is a certain number
of weights near zero, but it does not exist in Figure 11b. Even though we assume that the
smaller the weight, the less important the corresponding connection, it does not mean
that small weights are useless. Sometimes small weights could bring more subtle features
which is also important for improving model performance.

0.045

0.065

0.085

0.105

0.125

0.145

0.165

0.185

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

fitness

DENNC DENNC-N

Figure 9. Changes in fitness with and without the pruning strategy of recovery connections for
LeNet-300-100. The horizontal axis denotes iteration of DENNC, and the vertical axis is fitness.

Sensors 2021, 21, 880 18 of 20

0 5 10 15 20 25 30

Iteration

0.93

0.94

0.95

0.96

0.97

0.98

0.99

A
c
cu

ra
cy

DENNC-N

DENNC

Figure 10. The accuracy of pruned LeNet-300-100 with and without recovery connections fine-tuning.
The orange curve indicates the accuracy of pruned model with recovery connections fine-tuning, and
the blue curve means the pruning result without recovery connections fine-tuning. The accuracy of
DENNC is better than that of DENNC-N.

0 0.5 1
0

10

20

30

40

50

60

70

80

90

C
ou

n
t

−1.5 −1 −0.5 0 0.5 1
0

10

20

30

40

50

60

70

80

90

C
ou

n
t

0 0.5 1
0

20

40

60

80

100

120

140

C
ou

n
t

−1.5 −1 −0.5 0 0.5 1
0

20

40

60

80

100

120

140

C
ou

n
t

WeWeiigghhtt

(b) Weight distribution without recovery connections fine-tuning

WeWeiigghhtt

(a) Weight distribution of with recovery connections fine-tuning

Figure 11. The weight distributions of LeNet-300-100 with and without recovery connections fine-
tuning. The bins of these two histograms is 10,000.

5. Conclusions and Future Works

In this paper, we proposed a differential evolutionary weight pruning method to
compress neural networks. It is based on iterative pruning framework, consists of two
phases, model pruning and model fine-tuning, respectively. In model pruning phase, we
analyzes the pruning sensitivity of each layer by differential evolutionary approach, and
then the sensitivity is used to guide the pruning process. In model fine-tuning phase, the

Sensors 2021, 21, 880 19 of 20

connections that have been removed are also considered for proper recovery, which is
able to improve model capacity. Experimental results demonstrate that our method can
efficiently compress model, there is least 10× compressing ratio for each model, especially
29× compressing ratio in AlexNet. Compared with similar threshold pruning methods,
out method performs better than these comparison methods overall. Moreover, we also
do ablation studies for parametric sensitivity analysis and fine-tuning strategy analysis.
Experiments show parameter λ is able to reflect the pruning result, and better model can
be obtained by using fine-tuning strategy.

There are still some unresolved issues in this paper, for example, the time cost of the
proposed method is expensive and with obtained sparse neural network it is also hard to
accelerate inference. Therefore, in future work, we want to speed up the proposed method
with parallel computing. Furthermore, we will also focus on neural network structural
pruning with heuristic optimization.

Author Contributions: Conceptualization, T.W. and X.L.; methodology, T.W.; software, T.W. and
X.L.; validation, T.W., X.L. and N.L.; formal analysis, T.W.; investigation, T.W.; resources, N.L.;
data curation, J.S.; writing—original draft preparation, T.W.; writing—review and editing, X.L.;
visualization, J.S.; supervision, D.Z.; project administration, D.Z.; funding acquisition, D.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by National Natural Science Foundation of China (Grant
No. 62076204), the National Natural Science Foundation of Shaanxi Province under Grantnos.
2018JQ6003 and 2018JQ6030, the China Postdoctoral Science Foundation (Grant Nos. 2017M613204
and 2017M623246).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Canziani, A.; Paszke, A.; Culurciello, E. An analysis of deep neural network models for practical applications. arXiv 2016,

arXiv:1605.07678.
2. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Advances in

Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2012; pp. 1097–1105.
3. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
4. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
5. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper

with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
7–12 June 2015; pp. 1–9.

6. LeCun, Y.; Denker, J.S.; Solla, S.A. Optimal brain damage. In Advances in Neural Information Processing Systems; The MIT Press:
Cambridge, MA, USA, 1990; pp. 598–605.

7. Hassibi, B.; Stork, D.G. Second order derivatives for network pruning: Optimal brain surgeon. In Advances in Neural Information
Processing Systems; The MIT Press: Cambridge, MA, USA, 1993; pp. 164–171.

8. Jorgensen, T.D.; Haynes, B.P.; Norlund, C.C. Pruning artificial neural networks using neural complexity measures. Int. J. Neural
Syst. 2008, 18, 389–403. [CrossRef] [PubMed]

9. Molchanov, P.; Mallya, A.; Tyree, S.; Frosio, I.; Kautz, J. Importance Estimation for Neural Network Pruning. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 11264–11272.

10. Liu, Z.; Sun, M.; Zhou, T.; Huang, G.; Darrell, T. Rethinking the value of network pruning. arXiv 2018, arXiv:1810.05270.
11. Lee, N.; Ajanthan, T.; Torr, P.H. SNIP: Single-shot network pruning based on connection sensitivity. arXiv 2018, arXiv:1810.02340.
12. Han, S.; Pool, J.; Tran, J.; Dally, W. Learning both weights and connections for efficient neural network. In Advances in Neural

Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2015; pp. 1135–1143.
13. Dong, X.; Chen, S.; Pan, S. Learning to prune deep neural networks via layer-wise optimal brain surgeon. In Advances in Neural

Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2017; pp. 4857–4867.
14. Castellano, G.; Fanelli, A.M.; Pelillo, M. An iterative pruning algorithm for feedforward neural networks. IEEE Trans. Neural

Netw. 1997, 8, 519–531. [CrossRef] [PubMed]

http://doi.org/10.1142/S012906570800166X
http://www.ncbi.nlm.nih.gov/pubmed/18991362
http://dx.doi.org/10.1109/72.572092
http://www.ncbi.nlm.nih.gov/pubmed/18255656

Sensors 2021, 21, 880 20 of 20

15. Stepniewski, S.W.; Keane, A.J. Pruning backpropagation neural networks using modern stochastic optimisation techniques.
Neural Comput. Appl. 1997, 5, 76–98. [CrossRef]

16. Anwar, S.; Hwang, K.; Sung, W. Structured pruning of deep convolutional neural networks. ACM J. Emerg. Technol. Comput. Syst.
2017, 13, 32:1–32:18. [CrossRef]

17. He, Y.; Zhang, X.; Sun, J. Channel pruning for accelerating very deep neural networks. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1389–1397.

18. Reed, R. Pruning algorithms—A survey. IEEE Trans. Neural Netw. 1993, 4, 740–747. [CrossRef] [PubMed]
19. Molchanov, P.; Tyree, S.; Karras, T.; Aila, T.; Kautz, J. Pruning convolutional neural networks for resource efficient transfer

learning. arXiv 2016, arXiv:1611.06440.
20. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob.

Optim. 1997, 11, 341–359. [CrossRef]
21. Price, K.; Storn, R.M.; Lampinen, J.A. Differential Evolution: A Practical Approach to Global Optimization; Springer Science & Business

Media: Boston, NY, USA, 2006.
22. Qin, A.K.; Huang, V.L.; Suganthan, P.N. Differential evolution algorithm with strategy adaptation for global numerical

optimization. IEEE Trans. Evol. Comput. 2009, 13, 398–417. [CrossRef]
23. Denil, M.; Shakibi, B.; Dinh, L.; Ranzato, M.; De Freitas, N. Predicting parameters in deep learning. In Advances in Neural

Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2013; pp. 2148–2156.
24. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and

huffman coding. arXiv 2015, arXiv:1510.00149.
25. Hu, H.; Peng, R.; Tai, Y.W.; Tang, C.K. Network trimming: A data-driven neuron pruning approach towards efficient deep

architectures. arXiv 2016, arXiv:1607.03250.
26. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning filters for efficient convnets. arXiv 2016, arXiv:1608.08710.
27. Chen, W.; Wilson, J.; Tyree, S.; Weinberger, K.; Chen, Y. Compressing neural networks with the hashing trick. In Proceedings of

the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 2285–2294.
28. Dettmers, T. 8-bit approximations for parallelism in deep learning. arXiv 2015, arXiv:1511.04561.
29. Gupta, S.; Agrawal, A.; Gopalakrishnan, K.; Narayanan, P. Deep learning with limited numerical precision. In Proceedings of the

International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 1737–1746.
30. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.
31. Romero, A.; Ballas, N.; Kahou, S.E.; Chassang, A.; Gatta, C.; Bengio, Y. Fitnets: Hints for thin deep nets. arXiv 2014, arXiv:1412.6550.
32. Yim, J.; Joo, D.; Bae, J.; Kim, J. A gift from knowledge distillation: Fast optimization, network minimization and transfer learning.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 4133–4141.

33. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

34. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; Technical report; Citeseer: University Park, PA,
USA, 2009.

35. Srinivas, S.; Babu, R.V. Data-free parameter pruning for deep neural networks. arXiv 2015, arXiv:1507.06149.
36. Wu, T.; Shi, J.; Zhou, D.; Lei, Y.; Gong, M. A Multi-objective Particle Swarm Optimization for Neural Networks Pruning.

In Proceedings of the 2019 IEEE Congress on Evolutionary Computation, Wellington, New Zealand, 10–13 June 2019; pp. 570–577.

http://dx.doi.org/10.1007/BF01501173
http://dx.doi.org/10.1145/3005348
http://dx.doi.org/10.1109/72.248452
http://www.ncbi.nlm.nih.gov/pubmed/18276504
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1109/TEVC.2008.927706
http://dx.doi.org/10.1109/5.726791

	Introduction
	Background and Related Work
	Differential Evolution
	Neural Network Compression
	Neural Network Pruning
	Parameter Quantization
	Knowledge Distillation

	Methodology
	Preliminaries
	Framework of Proposed Method
	Differential Evolutionary Neural Network Weight Pruning
	Fine-Tune Pruned Neural Network
	Computational Complexity of DENNC

	Experimental Studies
	Datasets and Experimental Settings
	Experimental Results
	Overall Results
	LeNet on MNIST
	AlexNet on CIFAR10
	VGG16 on CIFAR10

	Ablation Studies
	Parametric Sensitivity Analysis
	Fine-Tuning Strategy Analysis

	Conclusions and Future Works
	References

