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Abstract: Traffic state prediction provides key information for intelligent transportation systems (ITSs)
for proactive traffic management, the importance of which has become the reason for the tremendous
number of research papers in this field. Over the last few decades, the decomposition-reconstruction
(DR) hybrid models have been favored by numerous researchers to provide a more robust framework
for short-term traffic state prediction for ITSs. This study surveyed DR-based works for short-term
traffic state forecasting that were reported in the past circa twenty years, particularly focusing on
how decomposition and reconstruction strategies could be utilized to enhance the predictability
and interpretability of basic predictive models of traffic parameters. The reported DR-based models
were classified and their applications in this area were scrutinized. Discussion and potential future
directions are also provided to support more sophisticated applications. This work offers modelers
suggestions and helps to choose appropriate decomposition and reconstruction strategies in their
research and applications.

Keywords: decomposition-reconstruction; traffic state forecasting; intelligent transportation system;
predictability; interpretability

1. Introduction

Short-term traffic state forecasting has always been one of the hotspots in the field
of transportation research and a prerequisite for the successful operation of intelligent
transportation systems (ITSs). Interest in it may stem from the growing demand for
developing user-friendly platforms, such as advanced traffic management systems (ATMSs)
and advanced traveler information systems (ATISs). Accurate and real-time traffic state
forecasting helps to proactively manage the transportation network and enhance the travel
experience for commuters [1–3].

In recent years, an increasing number of detection sensors have been deployed in
transportation networks to detect traffic information, such as traffic flow and speed, in real
time. Furthermore, the automatic fare collection systems for public transit collect a large
amount of data, such as passenger flows. These data can be used for traffic counting and
analysis, such as road traffic noise mapping computations or traffic pattern recognition [4,5].

The objective of short-term traffic state prediction is to estimate how traffic parameters,
such as flow and speed, will evolve in the next few minutes or hours based on historical or
observed traffic data. A large body of research has been published in this area over the last few
decades. The approaches proposed by researchers for short-term traffic state prediction can be
roughly divided into two categories: statistical approaches [6] and data-driven approaches [7–9].

Statistical approaches have been widely used in previous research for a well-developed
theoretical framework and better interpretability, such as exponential smoothing (ES),
Kalman filter (KF), and autoregressive integrated moving average (ARIMA).
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Data-driven methods have attracted increasing popularity for two reasons: First, con-
ventional statistical methods fail to capture the nonlinear features of traffic state series [10].
Second, the massively and widely deployed traffic sensors increase data volume and avail-
ability [11]. More applied data-driven methods include support vector regression (SVR),
neural networks (NN) with various deep architectures, such as recurrent NNs (RNNs) and
convolutional NNs (CNNs), and tree-based models, such as extreme gradient boosting
(XGBoost). Data-driven models usually outperform statistical approaches in terms of accu-
racy; however, such models are generally black boxes with poor interpretability and are
computationally inefficient [7].

Significant achievements have been made in the application of short-term traffic
state prediction to alleviate traffic congestion. However, according to a review report by
Vlahogianni et al. [2], several challenges still exist and are relatively understudied. Three of
these challenging issues are: (a) how to discard the noise or improve the quality of probed
traffic data used for forecasting, because a larger fraction of noise in the time series of
the traffic parameters results in a more tedious development of forecasting models, and
usually worse forecasting accuracy [2]; (b) how to cogently define and retrieve temporal
characteristics and spatial dependencies of the traffic state, because the incorporation of
these patterns may tangibly support the improvement of predictions [12]; and (c) how to
improve the transparency of data-driven approaches or enhance the explanatory power of
these models, as this information makes the forecasting model more robust and adaptable
to the dynamically changing traffic environment [7].

Over the past 20 years or so, more than one hundred publications have used the
decomposition-reconstruction (DR) strategy, also known as “divide-and-conquer” in some
pieces of literature [13,14], to model the short-term traffic state. The concept of the DR
strategy is mainly based on two assumptions: (a) predictability [15] (DR-based methods
can be used to eliminate or suppress noise in traffic state sequences, remove outliers, and
fill in missing values, in this way improving sequence smoothness and predictability) and
(b) interpretability [16] (DR-based methods help identify intrinsic travel patterns (such as
daily variations) in traffic state sequences that can be separated to enhance the explanatory
power of the forecasting models).

Generally, DR processes provide a rich framework for modeling and analyzing time-
varying traffic states (flow, speed, etc.). Various intrinsic travel patterns can be identi-
fied and extracted based on the different decomposition strategies used by researchers.
For example, a wavelet transform (WT)-based strategy was used in [17] to extract var-
ious frequency features from the traffic flow sequences. Compared to benchmark non-
decomposition methods (i.e., basic predictive models such as ARIMA and NNs) that are
directly based on raw data without considering underlying patterns, DR procedures treat
traffic count data such as traffic flow as a superposition of various components, such as
periodic trend components and random fluctuating components. DR procedures aid in
separating these components, thereby enhancing the stability and predictability of the data
used for prediction [17]. In the literature reviewed, DR methods are usually reported to gain
an improved prediction accuracy ranging from 5% to 80% compared to the corresponding
benchmark non-decomposition methods (e.g., ANN and SVM [14]).

This paper presents a survey of different DR process strategies, including the Fourier
transform (FT), WT, empirical mode decomposition (EMD), variational mode decompo-
sition (VMD), and singular spectrum analysis (SSA), applied to short-term traffic state
prediction over the past two decades. Other methods, such as structural time series (STS)
and seasonal trend decomposition using LOESS (STL), were also surveyed. Although sev-
eral review papers have been published on short-term traffic state prediction [1,2,6–9,12,18],
to the best of the authors’ knowledge, no single review has been devoted to DR-based
hybrid models in this field. This study aims to fill this gap and mainly focuses on how
DR strategies have been utilized in the past 20 years to enhance the predictability and
interpretability of basic predictive models of traffic parameters including flow, speed, travel
time, passenger/freight volume, travel demand, and even accidents. Specifically, the range



Sensors 2022, 22, 5263 3 of 21

of transportation modes investigated in this study included highways/urban roads, public
transit (bus and metro), railways, and aviation. The scope of the investigation overall
followed that of a previous study [7], in which papers to predict traffic parameters includ-
ing flow, passenger volume, speed, density, and occupancy were surveyed concurrently.
However, this study extended the scope of the survey presented in Ref. [7]. Models for
the prediction of bus travel time, passenger flow in metro systems, and air and rail passen-
ger demands were also considered. These prediction applications, including short-term
forecasting of traffic flow, speed, and travel time of highways or city roads, passenger
demand for air or railways, and passenger volume in public transit systems, although
slightly different in the use of data types, belong to the same domain of traffic-counting
analysis and therefore were surveyed concurrently in this study. The survey of this paper
sheds light on the current state of practice across multiple studies and inspires us to discuss
issues that require further research.

The remainder of this paper proceeds as follows. Section 2 contains a general theoretical
overview of DR procedures. Section 3 reviews DR-based short-term traffic state forecasting
models categorized according to the types of decomposition strategies. We then discuss in
Section 4 several limitations in the application of these DR procedures and attempt to provide
a set of insights for further research. Finally, Section 5 summarizes the study.

2. Decomposition-Reconstruction-Based Short-Term Traffic State Forecast: An Overview

Generally, DR-based hybrid models for short-term traffic state prediction share a
similar framework, despite using different decomposition or reconstruction strategies, as
shown in Figure 1. This framework comprises three stages: decomposition, prediction, and
reconstruction. In the decomposition stage, an original traffic parameter sequence is decom-
posed into several sub-sequences with different characteristics through the decomposition
operator; in the forecasting stage, the aforementioned statistical methods and data-driven
methods will provide their respective advantages to obtain the forecasting output, and in
the reconstruction stage, the forecasting outputs of all sub-sequences are reconstructed into
the final results.
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Despite the clarity of the general procedure, several points should be noted:

(a) Input data can be either a single time series or panel data [19]. Panel data generally
consist of multiple sequences of traffic parameters collected from multiple detection
devices or locations, such as loop detectors, bus stops, or shared bicycle stations.

(b) The traffic parameter data used for decomposition are not strictly required to be
complete and there may be missing or outlier values. DR procedures can be used to
identify missing data or outliers in the original data and perform data correction [20,21].
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(c) Various decomposition strategies have their strengths and weaknesses. In practical
applications, there is no consistent conclusion regarding the decomposition strategy
that can achieve the best prediction performance. From the published literature, most
of the decomposition strategies adopted belong to one of the following types: FT, WT,
EMD, VMD, SSA, STS, and STL. In addition, a few researchers have also tried the joint
decomposition strategy, most commonly secondary decomposition (SD) [22,23], which
means that after using one decomposition strategy to decompose the original data,
another decomposition strategy is used for further decomposition of the decomposed
sub-series to obtain more detailed traffic pattern information. However, it should be
noted that the SD strategy significantly increases the computational complexity, and
researchers need to carefully consider the balance between prediction accuracy and
computational cost.

(d) Not all decomposed sub-series are necessarily fed into the predictor, and researchers
select or reconstruct the components they consider valuable according to their ex-
pertise. For example, in some studies [24,25], the residual component obtained by
decomposition was discarded to achieve denoising. As another example [26,27],
researchers have used feature selection algorithms to obtain the most suitable compo-
nents as inputs for basic predictors.

(e) In the prediction stage, the statistical or data-driven methods are selected by the model-
ers according to their expertise; however, it is not necessary to assign the same type of
predictors for all components. A more general approach is to choose the most suitable
algorithm according to the characteristics of the components (such as predictability
or stationarity) [28,29]. In addition, in a few other studies [19], only one predictive
model was established, in which all selected features were input simultaneously.

(f) In the reconstruction stage, researchers can either perform linear reconstruction, such
as an equal-weighted summation of the results of each predictor [28], or nonlinear
reconstruction, for example, adopting an SVM to achieve the optimally weighted
combination of each component [30].

3. Decomposition-Reconstruction-Based Hybrid Models

In this section, we review DR-based short-term traffic state prediction models that use
different decomposition strategies. Specifically, FT-based, WT-based, EMD-based, VMD-
based, and SSA-based papers are reviewed in Section 3.1, Section 3.2, Section 3.3, Section 3.4,
Section 3.5, respectively. Section 3.6 introduces the remaining two decomposition strategies:
STS and STL.

The statistics of the surveyed studies using various decomposition strategies (including
their variants) are shown in Figure 2. It can be observed that the most used decomposition
strategies are the EMD and WT methods, accounting for approximately half.
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3.1. Fourier Transform

As one of the most popular transform methods, the FT has been commonly utilized in
previous transportation research areas, including data abnormality detection [20], public
parking space prediction [31], and dominant frequency extraction [32].

Typically, a traffic state time series can be viewed as a superposition of potential
frequency components (e.g., daily and weekly), and a common intuition is that one can
achieve better forecasting accuracy by incorporating such frequency-level information into
their prediction models.

Peng et al. [33] developed a frequency-aware spatiotemporal network (FASTNet) for
traffic flow forecasting. The spectrum of a traffic flow series that reflects certain travel
patterns of passengers was obtained by applying the discrete Fourier transform (DFT). The
traffic flow is then accurately predicted through a filtering mechanism based on frequency
and spatiotemporal networks.

Chen et al. [34] adopted FT to decompose traffic flow into different components in
terms of three aspects: periodicity and volatility, traveling purposes, and vehicle types.
Therefore, time-series analysis and supervised learning were used to predict the different
components according to their characteristics.

Luo et al. [35] used DFT to extract common trends in road traffic flow series and
predicted them by extreme extrapolation. Chang et al. [36] proposed a novel data fusion
method for travel time prediction and adopted FT for continuous parameterized modeling
of the spatiotemporal pattern of spot speed (time-mean speed). Peeta et al. [20] presented
an FT-based fault-tolerant mechanism to detect and correct data abnormalities owing to
malfunctioning sensors for the seamless operation of an online architecture for active traffic
control. Wang et al. [25] studied the noise removal problem of traffic flow sequences. They
used a fast Fourier transform (FFT) method to denoise the noisy traffic flow signal and
proposed a cross-validation-based adaptive cutoff frequency selection method (A-CFS)
to determine the proper cutoff frequency, thereby effectively separating high-frequency
noise from valuable information. Experiments were conducted using real-world traffic
flow data obtained from a highway near Birmingham, UK, and the results demonstrated
the competitiveness of the proposed method compared with two other commonly used
denoising methods, WT and EMD.

3.2. Wavelet Transform and Its Variants
3.2.1. Wavelet Transform

WT was developed based on the FT and provides a more powerful technique for
multiresolution analysis of time series in both the time and frequency domains. In particular,
WT is more effective than classical FT in analyzing nonstationary time-series data, and it
can decompose the time series into several sub-sequences with different frequencies for
independent analysis [37]. Discrete wavelet transform (DWT) and continuous wavelet
transform (CWT) are its two basic forms; however, because traffic time series are discrete
sequences, only DWT is suitable for short-term traffic forecasting [38].

The fundamentals of WT are shown in Figure 3a. The previous-level sequence is de-
composed into a detail sequence (high-frequency component) and an approximate sequence
(low-frequency component) using a low- and high-pass filter for an independent analysis.
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Xiao et al. [39] were some of the first scholars to incorporate WT into transportation
research. They developed a short-term traffic speed forecasting framework that could
eliminate noise due to random travel conditions (e.g., weather conditions), in which the
wavelet denoising method was emphasized and analyzed. Jiang et al. [40] designed a novel
nonparametric time-delay recurrent wavelet neural network for traffic flow prediction
that adaptively integrated wavelets with neural networks. Xie et al. combined WT with
a neural network [38] and the Kalman filter [24] for short-term traffic volume forecasting
and discussed the differences between the two types of basis wavelets on the performance
of WT-based models. Similar reports can also be found in [41] by Ghosh et al. In [41], the
WT and Bayesian hierarchical methodology (BHM) collaborated to model short-term flow
evolution at two intersections in the city center of Dublin.

Diao et al. [29] applied DWT to decompose the traffic volume sequence into an appro-
priate (low-frequency) component and several detailed (high-frequency) components, and
employed a tracking model and a novel Gaussian process model to forecast the appropriate
component and detail components, respectively. Moreover, the WT algorithm has been em-
bedded to improve the performance of ARIMA [42], artificial NN (ANN) [19], least squares
support vector machines (LS-SVMs) [43], CNN-RNN [44], and the multi-dimensional Taylor
network model (MTN) [17] in short-term traffic flow forecasting.

The implementation of WT is not limited to short-term traffic flow prediction and has
also been reported in the forecasting of freeway travel time [45], urban traffic speed [46],
urban rail transit ridership [47], passenger volume in subway systems [48], and real-time
video traffic [49].

Practical applications from the previously reported works in the literature demonstrate
that the WT method helps (a) acquire denoised historical traffic state measurements to
improve predictability, and (b) identify intrinsic patterns in the traffic state and thus
improve the interpretability of constructed forecasting models.

3.2.2. Variants of Wavelet Transform

A variant of the WT is called wavelet packet transform (WPT). The principle of WPT
is similar to that of the WT, except that WPT decomposes both the low- and high-frequency
components. In general, the frequency band obtained through the DWT is more detailed
than that of the WT. Figure 3b shows the fundamentals of WPT.

Jiang et al. [50] proposed a hybrid WPD–ACF method for short-term traffic flow fore-
casting, where the statistical autocorrelation function (ACF) was utilized for decomposition
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level determination in wavelet multiresolution analysis of traffic flow time series. Zhao
et al. [22] adopted a secondary decomposition structure to predict passenger demand for
China’s high-speed rails (HSRs). Specifically, the SSA method was first used to decompose
the original data into one principal component and several detail components, and the
principal component was further decomposed by WPD. The decomposed sub-series of the
principal component was fed into the CNN for prediction, whereas the detailed compo-
nents were modeled using SVM. The influence of WPD on the performance of the NN was
also compared with other commonly used decomposition methods in [51].

According to published reports, WPD is usually more effective than WT for short-term
traffic state forecasting. However, it should be noted that WPD has a higher computational
complexity; thus, the general applicability of WPD requires further verification.

Furthermore, a few reports [37,43,52] have also pointed out that some defects exist in
DWT that may make it unsuitable for further time-series analysis. Therefore, the stationary
edition of the DWT, known as the stationary wavelet transform (SWT), was proposed
by researchers to overcome these defects [37,43,53]. For instance, Dunne et al. [37] used
precipitation as an exogenous variable and executed the SWT algorithm and neuro-wavelet
methods to predict hourly traffic flow. Evaluation results at two dissimilar traffic sites in
Dublin showed the generalizability and portability of the SWT. Boto-Giralda et al. [53]
incorporated the SWT denoising process and the classification and pattern recognition
capabilities of self-organizing fuzzy NNs (SFNNs) to analyze the decomposed traffic
flow components independently. Experiments based on real-world data collected by four
detectors located on interstate roads I-5, I-90, and I-405 (USA) demonstrated the outstanding
performance of the proposed method.

3.3. Empirical Mode Decomposition and Its Variants
3.3.1. Empirical Mode Decomposition

The classical empirical mode decomposition (EMD) method was first introduced by
Huang et al. [54] at NASA as a key part of the Hilbert–Huang transform for analyzing
nonlinear and nonstationary data. The EMD method can adaptively decompose a nonsta-
tionary signal into a finite and often small number of stationary intrinsic mode functions
(IMFs) and a residue. Importantly, decomposed IMFs with different frequency bands
(including the residue) can represent the physical meaning of reality [55]. The effectiveness
of EMD has been demonstrated in extensive practice, including traffic engineering, for
analyzing nonlinear and nonstationary processes.

Hamad et al. [56], for the first time, incorporated EMD into multilayer feedforward
NNs with backpropagation for travel speed prediction. Experimental results based on
real-world loop detector data obtained from I-66 in Fairfax, Virginia, showed that by decom-
posing the speed time series into its basic components via EMD, more accurate forecasts
could be obtained. Wang et al. [57,58] and Kianifar et al. [59] performed similar studies by
combining EMD with ARIMA and SVR, respectively, for highway speed prediction. Wang
et al. [57] also explored the accuracy of the hybrid model under different traffic scenarios,
including a work zone on Interstate I91 in Springfield, MA, and an on/off-ramp on Georgia
State Route 400. Kianifar et al. [59] proposed a stacking ensemble learning method and
tested its effectiveness on the Strategic Road Network (SRN1) dataset managed by the
Highways Agency of England. Chen et al. [60] explored a novel bus travel time forecasting
technique that combined EMD for speed data analysis and GM for travel time prediction.
Their experiments at the Taiwan National Central University showed that the combined
technique performed well.

Wei et al. [26] presented a hybrid EMD–NN approach for short-term passenger flow
prediction in metro systems. This approach selects only the meaningful IMFs by applying
Pearson product-moment correlation (PCC) and Kendall rank correlation (KRC) as inputs
for back-propagation NNs (BPNs) while considering temporal factors as external inputs
(e.g., the day of the week, the period of the day). A similar study was conducted by Moscoso-
Lopez et al. [61], who created an optimal forecasting model for daily freight volume at ports.
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In their model, EMD transforms the time series into several simpler-to-predict sub-series,
and permutation entropy (PE) identifies the complexity of the decomposed sub-series to
aggregate the least complex ones and reduce the computational cost, whereas ANNs are
applied to forecast the identified sub-series.

Although the effectiveness of EMD in short-term traffic state prediction has been
proved by more works of literature [62–64], a few limitations of EMD have still been
noticed, such as the “end effect” and “modal aliasing”, which may lead to misrepresenting
of the decomposed IMFs [65,66]. Accordingly, Yang et al. [67] built a hybrid model including
EMD and stacked auto-encoders (SAEs) and utilized a slope-based approach to address the
“end effect” problem that existed in EMD. The proposed model was tested for traffic flow
prediction using data from three freeways in the UK.

3.3.2. Variants of Empirical Mode Decomposition

In view of the modal aliasing problem, several extended versions of EMD have been
proposed, including ensemble empirical mode decomposition (EEMD) [68,69], complete
ensemble empirical mode decomposition (CEEMD), and complete ensemble empirical
mode decomposition with adaptive noise (CEEMDAN) [70,71]. These extended versions
alter the distribution of the extreme points (places where a function takes on an extreme
value) by adding noise to the original signal. The added noise signals cancel each other
out through multiple integrated averaging processes, and the real signal components are
gradually revealed in this process.

An EEMD-based hybrid model with a random vector functional link network (RVFL)
as the basic predictor was proposed in [68] for short-term travel time forecasting. EEMD is
first implemented to decompose the complex travel time series into several simpler IMFs,
which are then modeled using the same number of RVFLs. The results were obtained using
a linear combination of all RVFL outputs. In contrast to simple linear summation, Jiang
et al. [30] employed SVM in short-term HSR passenger flow prediction experiments to
achieve the final nonlinear reconstruction, in which particle swarm optimization (PSO) was
used for model parameter calibration.

Zhang et al. [72] proposed an innovative hybrid approach, DeepEnsemble, for network-
wide short-term traffic speed forecasting. The core steps of this approach include decompos-
ing noisy traffic speed data using EEMD and constructing 3D tensors for CNN prediction.
A case study on a large-scale urban expressway network in Beijing, China demonstrated
the superiority of the proposed approach. Liu et al. [27] investigated the application of
EEMD and deep belief networks (DBNs) for short-term traffic flow forecasting. After
decomposing the traffic flow data into several IMFs and a residue with EEMD, a subset
of essential features was extracted using the minimum redundancy maximum relevance
(MRMR) method considering day properties and weather conditions. The DBNs were then
used to predict each selected component. Validation experiments were conducted using
data from the Portland–Vancouver metropolitan region.

Similar reports can be found in [28,64,66,73–75]. In [28], the approximate entropy (AE)
method was used to evaluate the complexity of the decomposed components, and the echo
states NN (ESNN), SVR, and ARMA were selected to predict the traffic flow components
with high, medium, and low complexities, respectively. Chen et al. [73] slightly modified
the EEMD method and adopted a quantum NN (QNN) for traffic flow forecasting. Chen
et al. [74] and Tang et al. [75] used an ANN and fuzzy C-means NN (FCMNN) to predict
the decomposed traffic flow series, respectively. Bao et al. [66] also involved a slope-based
method to restrain the “end effect” phenomenon occurring during the shifting process
of EEMD for air passenger traffic forecasting. To predict both the port cargo throughput
and vessel traffic flow, Li et al. [64] further regrouped the high-frequency components
decomposed by EMD and EEMD to achieve higher predictability.

Additionally, reports of short-term traffic forecasting based on CEEMDAN can also
be found in [70,71,76]. Tian et al. [70] slightly improved the CEEMDAN algorithm and
utilized permutation entropy (PE) to analyze the random properties of the decomposed
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IMFs. The kernel online sequential extreme learning machine (KOSELM) and ARIMA were
then selected according to the different random properties of the IMFs for short-term traffic
flow prediction at signalized intersections. Wang et al. [71] adopted the improved weighted
permutation entropy (IWPE) to obtain new reconstructed components after decomposing
the raw nonlinear and nonstationary highway traffic flow data using CEEMDAN. In
the prediction stage, a grey wolf optimizer (GWO) is used to calibrate the least-squares
support vector machine (LSSVM) established for each reconstruction component. Luo
et al. [76] combined CEEMDAN and extreme gradient boosting (XGBoost) for lane-level
traffic flow predictions.

3.4. Variational Mode Decomposition

The VMD method was initially developed by Dragomiretskiy et al. [77] in 2014 to
provide a better solution to the decomposition problem. The VMD strategy addresses
several limitations of previous techniques, such as the stationarity assumption in FT [78],
basis wavelet and decomposition level selections in WT [50], and sensitivity to noise and
sampling in EMD [54]. A notable strength of VMD was displayed in traffic engineering
studies [79], and a body of experiments showed that VMD can provide valuable insights
into the understanding of the intrinsic properties of traffic data [14].

Bing et al. [79] combined the VMD algorithm with a long short-term memory (LSTM)
model for multistep ahead short-term traffic flow forecasting. Case studies proved that
VMD outperformed EMD and WT in extracting trend information from traffic-flow data.
Kim et al. [14] predicted the travel speed in urban networks in South Korea and analyzed
the spectral and statistical properties of the decomposed traffic speed modes via VMD. Their
experiment demonstrated that forecasting travel speed in urban networks becomes easier
if the typical daily and commuting patterns can be explained through decomposed modes.
Jin et al. [80] proposed a hybrid approach to short-term air passenger demand forecasting.
VMD was first adopted to mitigate the complexity of the original data, and then the ADF
test was executed to classify all the decomposed modes via VMD into stable and unstable
sets. In the prediction stage, the ARMA and KELM models were employed to forecast the
stable and unstable components, respectively. The final outputs were nonlinearly integrated
using another KELM.

More experiments on short-term traffic flow prediction were conducted in [81,82],
where VMD was combined with an ESN for prediction. VMD has also been applied
to public transport forecasting [83,84]. Zhang et al. [83] applied VMD to enhance the
forecasting of metro passenger volume. VMD decomposes the raw noisy data series into
several stable modes, which are then input simultaneously to a light-gradient boosting
machine (LightGBM) for easier prediction. Zhou et al. [84] used the VMD and deep
learning methods to achieve accurate bus arrival predictions. Experiments showed that
VMD improved the forecasting accuracy of near-term bus link speed. Furthermore, Shi
et al. [85] optimized the selection of parameters in VMD, such as the number of modes,
using a scalable artificial bee colony (SABC) algorithm for network traffic flow prediction.

3.5. Singular Spectrum Analysis

Another frequency-based decomposition method is singular spectrum analysis
(SSA) [86,87], which has received relatively less attention but still shows promising applica-
tion prospects from the published literature [88].

Zhang et al. [89] experimented with traffic flow forecasting in Houston, Texas, and
proposed a multistep ahead forecasting method that decomposes the original data into
three individual modeling components: an intraday or periodic trend, a deterministic part,
and a volatility part. The three components with different physical meanings were modeled
using the spectral analysis strategy, ARIMA, and the GJR-GARCH model (generalized
autoregressive conditional heteroskedasticity with a conditional variance formulation),
respectively. Their experimental results provide valuable insight into the underlying
periodic characteristics and volatile nature of traffic flow data. Based on [89], Zhang
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et al. [90] decomposed the traffic flow data from freeway I-694 EB in the twin cities into
four different components, namely a periodic, trend, stationary, and volatility part, to
further explore the underlying traffic patterns. The approaches proposed in [89,90] have
notable advantages over general data-driven methods (e.g., NNs, usually black boxes) for
interpreting the intrinsic characteristics of traffic data.

Furthermore, Guo et al. [91] used SSA as a smoothing strategy to improve the accuracy
of short-term traffic flow predictions. The performance of SSA was evaluated under both
normal (non-incident) and abnormal (incident) traffic conditions using data from a corridor
in Central London. Kazemi et al. [92] employed the recursive SSA technique to process
traffic state data in an online manner and used denoised traffic state measurements for
microscopic time-variant car-following behavior simulation. A practical validation of
real-world traffic data collected at the Hollywood freeway section of the US 101 highway
was conducted.

Xiao et al. [93,94] established hybrid models based on SSA and deep learning tech-
nologies for air transport demand forecasting in Hong Kong. In [93], SSA functioned to
identify and extract the trend and seasonality properties of air transport demand, while
deep learning technologies, including adaptive-network-based fuzzy inference system
(ANFIS) and improved particle swarm optimization (IPSO), were responsible for modeling
and forecasting the uncertainty and volatility in demand. In [94], the original air passenger
volume sequence was first decomposed into three components: trend, seasonal oscillations,
and an irregular component, which were then modeled by a generalized regression neural
network (GRNN) and radial basis function networks (RNFNs), respectively.

Barba et al. [95–97] utilized the singular value decomposition (SVD) of the Hankel
matrix (HSVD), which is a variant and one of the steps in SSA, to assist in the establishment
of traffic accident prediction models. In [95], HSVD was used to smooth the time series
of injured people in traffic accidents in the Chilean region, while the ARIMA and ANN
models were adopted for prediction. In [96], the authors proposed a simplified form of
SSA combined with AR and ANN methods for accurate traffic accident forecasting in
Santiago de Chile. In [97], the traffic accident prediction method is based on the multilevel
singular value decomposition (MSVD) of a Hankel matrix. The authors also compared the
performance of MSVD with SWT (mentioned in Section 3.2.2) on high and low-frequency
components extraction.

The traffic state evolves with strong correlations over both time and space, and fully
exploiting these spatiotemporal correlations has become a focus of increasing research. Zhu
et al. [21] demonstrated how multi-channel singular spectrum analysis (MSSA) could be
utilized to unearth spatiotemporal patterns to iteratively estimate traffic speed conditions
over a large traffic network in Shanghai, China, especially when they cannot be directly ob-
served or calculated. Chen et al. [98] introduced truncated SVD for intrinsic spatiotemporal
traffic speed pattern extraction and applied SVD-combined tensor decomposition (STD) for
robust missing data recovery. Hassan et al. [99] proposed an anomaly detection scheme
based on MSSA applied in ITSs. This scheme was designed to extract spatiotemporal prop-
erties through traffic speed data streams collected from different highway ramps across the
greater Toronto area in Canada.

More reports on the application of SSA to traffic data smoothing, noise reduction,
and pattern extraction can be found in [100,101]. The reported studies point to the great
potential of SSA for traffic pattern recognition and short-term traffic forecasting.

3.6. Other Strategies

In addition to the above decomposition strategies, other alternatives have also been
reported in the literature and have yielded positive results in practical applications. In this
section, we introduce two other decomposition strategies: STS and STL.
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3.6.1. Structural Time Series

As a special time-series analysis technique, STS models treat complex traffic variables
(such as flow and speed) as superpositions of various components with different interpreta-
tions (such as trends, cycles, seasons, and irregular components). A general univariate STS
model for a traffic variable y can be expressed as Equations (1)–(3), involving all possible
types of physical components:

yi = µi + ϕi + γi + εi, εi ∼ NID(0, σ2
ε ) (1)

µi+1 = µi + βi + ηi, ηi ∼ NID(0, σ2
η) (2)

βi+1 = βi + δi, δi ∼ NID(0, σ2
δ ) (3)

where yi is the observed target traffic variable at time i and µi, ϕi, γi, and εi denote the
trend, seasonal, cycle, and random error components, respectively.

The STS method provides a clear and flexible description of complex variables. Thus,
it is easier to accurately express the dynamic characteristics of a sequence over time.
The powerful representation capability of STS enables the original traffic sequence to be
decomposed into different components for separate modeling.

Ghosh et al. [102] proposed a multivariate STS method and applied it to short-term
urban traffic flow prediction. Different components of the original traffic dataset, such as
trend, seasonal, cyclical, and calendar variations, were modeled and analyzed separately
using the STM method. A case study of severe traffic congestion in central Dublin, Ireland,
demonstrated that the proposed STS model can accurately predict real-time traffic flow at
multiple intersections within an urban transport network. Junus et al. [103] studied the
behavior of road accidents in Peninsular Malaysia using the STS approach. Experimental
results showed that different unobserved components can be separated by the STS method
for individual modeling. De Nailly et al. [104] decomposed the data of daily incoming
flows of passengers to two transport lines in the Parisian public transport network. A better
interpretation of the Paris traffic patterns was obtained from the decomposed data.

3.6.2. Seasonal and Trend Decomposition Using LOESS

Another common alternative decomposition model is seasonal and trend decomposi-
tion using LOESS (locally estimated scatterplot smoothing) or STL. STL can be viewed as a
filtering procedure without mathematical theoretical assumptions that easily decomposes
time-series data into additive variation components, that is,

yi = ti + si + ri (4)

where yi is the observed target traffic variable at time i and ti, si, and ri denote the trend,
seasonal, and remainder components, respectively.

Zhu et al. [105] used STL to decompose taxi trip data for over seven years in Manhattan
(New York City) and detected traffic events from the decomposed remainder component.
The experimental results show that STL can effectively reveal the dynamic characteristics of
urban travel patterns and identify events. Zhou et al. [106] adopted the STL method to fore-
cast the taxi demand. Three simpler components were modeled using different forecasting
methods and integrated with the optimal weights obtained by a genetic algorithm (GA).
Qin et al. [107] decomposed air and railway passenger flow data from China into seasonal,
trend, and remainder components using the STL approach and employed an improved
ESN and seasonal-naive method to forecast the trend, remainder, and seasonal component,
respectively. Zhao et al. [108] performed a similar study in which the STL method was
introduced to assist the prediction of short-term subway passenger flow.

3.7. Summary

The various decomposition strategies have their advantages and disadvantages. WT
and EMD are currently the most widely discussed strategies for short-term traffic state



Sensors 2022, 22, 5263 12 of 21

forecasting. However, in practical applications, modelers must choose according to the
characteristics of the research problem and observed data. Table 1 provides a simple
comparison of different decomposition strategies.

Table 1. Comparison of various decomposition strategies.

Decomposition Strategy Pros Cons References

FT Clean and broadband frequency
spectrum Stationarity assumption [20,25,31,33–36]

WT Simultaneous and multiresolution
analysis of both time and frequency

Manual selection of basis wavelet and
decomposition level [17,19,23,24,29,38–42,44–48]

WPT Provides more detailed information Same as WT [22,50]
SWT Translation invariance Same as WT [37,43,53]

EMD Adaptive End effect; modal aliasing; sensitivity to
noise and sampling [26,55–62,67]

EEMD Adaptive; suppress mode aliasing
Relatively high reconstruction error and
computational cost; poor decomposition

completeness
[27,28,30,64,66,68,72–75]

CEEMDAN Adaptive; almost no additional noise in
the reconstructed signal Higher computational cost [70,71]

VMD Effectively suppress modal aliasing;
robust to sampling and noise A predefined number of modes [14,79–85]

SSA Widely applicable Manual determination of a few
parameters [21,22,89–101]

STL Widely applicable and flexible Same as SSA [105–108]

STS Same as STL Homoscedasticity assumption of
residuals [102–104]

4. Discussion

Although the successful application of the DR-based framework in short-term traffic
state forecasting has been demonstrated, several relatively under-conceived challenges still
exist. Which DR strategy performs best? How do we determine the optimal feature subset
and suitable basic predictors? How can a DR program be executed in practical applications?
How can a model’s interpretability be enhanced? In this section, we focus our discussion
on the following issues: comparison of decomposition strategies (Section 4.1), feature selec-
tion (Section 4.2), determination of basic predictors (Section 4.3), possibility of involving
future unknown information (Section 4.4), identification of travel patterns and enhancing
model interpretability (Section 4.5), applications in different domains (Section 4.6), and
improvement for benchmark non-decomposition models (Section 4.7).

4.1. Comparison of Decomposition Strategies

As mentioned above, because different decomposition strategies can improve the
performance of basic short-term traffic state predictors, a natural question arises: Which
decomposition method contributes the most to the degree of performance improvement?
Several researchers have compared the performance gains of different decomposition
strategies [25,51,109–112]. For example, in [112], EEMD outperformed DWT and EMD
when using SVM for short-term traffic flow prediction, whereas in [25], FT combined with
the A-CFS method had an advantage over the DWT and EEMD methods. Furthermore,
SD-based strategies were considered in other studies to provide more detailed information
and thus outperform single strategies [22,23]. However, there is no consensus in the existing
literature on this issue. Therefore, the authors suggest that future research should provide
insights into the selection of different decomposition strategies. Note that this proposal is
not intended to derive an optimal policy for all problems and scenarios, which is impossible
according to the so-called “No Free Lunch Theorem” [113]. There is no “super algorithm”
that works best for all problems. The purpose of this proposal is instead to provide a
general analytical framework for different questions.
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4.2. Feature Selection

As previously mentioned, not all components must be input into the basic predic-
tors. Feature selection aims to find an optimal feature subset by eliminating irrelevant
or redundant features (i.e., components obtained by decomposition strategies), thereby
improving the accuracy and reducing the computational costs. In contrast, the selection of
truly relevant or meaningful features simplifies the model to help understand the process
of data generation (interpretability). This demonstrates the importance of feature selection.

From the published works of literature, several methods have been developed to
select the appropriate feature subsets for the DR-based short-term traffic state prediction
framework. Table 2 summarizes these methods. Pearson’s correlation coefficient (PCC) is
one of the simplest methods to help understand the linear relationship between features
(decomposed sub-series) and response variables (original series) and is thus adopted in
pieces of literature [26]. However, PCC is only sensitive to linear relationships, and therefore
cannot be fully used as the basis for the selection of an optimal feature subset. Other
methods, including ACF and PE, have been adopted, but are not entirely reliable. Therefore,
the authors suggest the development of more sophisticated feature selection engineering.

Table 2. Summary of adopted feature selection methods.

Feature Selection Methods References

ACF (autocorrelation function) [37,40,50,80]
FASTNet (frequency-aware spatio-temporal network) [33]
A-CFS (adaptive cutoff frequency selection method) [25]

PCC (Pearson product moment correlation coefficient) [26]
KCC (Kendall rank correlation coefficient) [26,62]

SCC (Spearman correlation coefficient) [62]
MRMR (minimum redundancy maximum relevance) [27]

PE (permutation entropy) [61,70]
AE (approximate entropy) [28,108]

IWPE (improved weighted permutation entropy) [71]
PSR (phase space reconstruction) [82,100]

4.3. Determination of Basic Predictors

The performance of a DR-based short-term traffic state prediction framework is largely
dependent on the selection of basic predictors. From the published literature, most studies
have adopted data-driven methods, especially NNs with deep structures. However, a
shared view is that the best prediction performance is achieved when the basic predictor
is determined according to the characteristics of the decomposed components, for exam-
ple, selecting a statistical model such as ARIMA for the linear stationary components.
In addition, numerous researchers have held that a hybrid framework combining both
statistical and data-driven predictors can enhance stability and interpretability. Therefore,
the authors suggest that future research should focus more on analyzing the characteristics
of components and provide advice on the selection of appropriate basic predictors for
components with different characteristics.

4.4. Possibility of Involving Future Unknown Information

Although DR-based prediction frameworks have been reported, a common flaw that
has been overlooked by many researchers is that DR frameworks are prone to involving un-
known future information. Suppose a traffic parameter time series is V = {Vtrain, Vtest} =
{V1, V2, . . . , VA, . . . , VA+B}, where Vtrain = {V1, V2, . . . , VA} is used for a model’s param-
eters calibration, and Vtest = {VA+1, VA+2, . . . , VA+B} is used for verifying a calibrated
model’s performance. In most studies, in order to compare the prediction accuracy of DR-
based models with benchmark non-decomposition methods, the entire dataset V is used
for decomposition. In this way, the test set Vtest involving future information contributes to
both the decomposition process and training process, which makes the comparison unfair.



Sensors 2022, 22, 5263 14 of 21

For practical applications, the authors suggest that the DR-based hybrid framework
can be implemented in the following two ways. The first method is to execute the entire
decomposition procedure step by step as new samples become available. This method
is feasible but computationally inefficient. Another method is to perform recursive algo-
rithms, such as the recursive SSA proposed by Mirmomeni et al. [114] for dynamic and
online applications.

4.5. Identification of Travel Patterns and Enhancing Model Interpretability

DR-based hybrid frameworks provide a platform for identifying the underlying travel
patterns. From the published works of literature, most studies have focused on the identifi-
cation of temporal travel patterns, such as trends, cycles, fluctuations, and others. However,
there are few existing studies on the development of spatial correlations, which makes
sense for the construction of short-term traffic state evolution models, especially at the
city-wide or network-wide level; therefore, there is a need for further studies in this area.
The related literature provides sufficient evidence to support the idea that the incorporation
of spatial correlations can enhance short-term traffic state prediction [115–117]. However,
properly capturing these correlations is difficult because they typically do not follow a
simple distance rule. We expect that DR procedures based on cross-sectional (cross-traffic
link) data may be helpful in discovering spatial correlations. Researchers can analyze the
correlation coefficients from the extracted unobserved components. This idea, however,
has not yet been reported in the literature.

On the other hand, the identified spatiotemporal correlation patterns help improve
the explanatory power of the forecasting models; for example, one can understand urban
commuting travel patterns (e.g., peak phenomenon of passenger flow and differences in
travel characteristics between weekdays and weekends) from the extracted trends and cycles.
Although some achievements have been made, there is still room for improvement in this field.
Therefore, the authors suggest that future research should consider not only the improvement
of the accuracy but also the explanatory power when developing a predictive model.

4.6. Applications in Different Domains

As mentioned above, DR procedures have been widely used by researchers in different
fields for various forecasting tasks, such as traffic flow, speed, and travel time forecasting
for highways or urban roads, air or rail passenger demand forecasting, and metro passenger
volume forecasting. Simply put, DR procedures provide a general and rich framework that
researchers can use to improve basic predictive models. The versatility and generality of
this framework makes its applications not limited to the field of traffic engineering; it is also
suitable for prediction tasks in other counting applications, such as wind speed forecasting.
However, it is important to mention that one of the most important commonalities of this
type of forecasting task is that the data used for forecasting can be seen as a superposition
of various components with different characteristics (such as high/low frequency, trends,
or cycles) that may be extracted for separate analysis. For example, the daily air passenger
demand has both a seasonal cycle and a year-over-year trend. If the prediction object is not
composed of different components, then the DR procedure may not be applicable. Table 3
provides a brief summary of the applications in each domain. From the published literature,
EMD and WT are the most popular and widely used strategies in various applications.
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Table 3. Summary of applications in various domains.

Transportation
Modes Parameters 1

References

FT WT EMD VMD SSA STL/STS

Highway/urban
road

Flow [25,33–35] [17,19,24,29,37,38,40–44,50,53] [27,28,63,67,70,71,73–76] [79,81,82,85] [89–92,100] [102]
Speed - [39,46] [56–59,72] [14] [21,98,99] -

Travel time [36] [45] [68] - - -

Metro Passenger
volume - [47,48] [26,55,62] [83] [101] [108]

Bus Speed/travel
time - - [60] [84] - -

Aviation Passenger
demand - - [66] [80] [93,94] [107]

Railway Passenger
demand - [22] [30] - [22] [104,107]

Others - [20,31] - [61,64] - [95–97] [103,105,106]

1 Parameters refer to the predicted traffic state variables.

4.7. Improvement for Benchmark Non-Decomposition Models

DR procedures have been widely reported to enhance the basic predictive models
for short-term traffic state forecasting. This section provides quantitative information for
improving the prediction accuracy of different DR strategies, as shown in Table 4. The
prediction accuracy of the decomposition methods was measured using the mean absolute
percentage error (MAPE), formulated as

MAPE =
1
n∑n

t=1

∣∣∣∣yt − ŷi
yt

∣∣∣∣ (5)

where yi and ŷi denote the actual and predicted values at time i, respectively, and n denotes
the number of samples.

Table 4. Degree of performance improvement.

References Application Dataset Baseline
Prediction Accuracy 2 (Degree of Improvement)

BL 1 FT WT EEMD VMD

[25]

Traffic flow
forecasting of

highway

England National
Highways 3 KF 0.1078 0.0875

(+18.8%)
0.0900

(+16.5%)
0.0896

(+16.8%) -

[51] PeMS 4 LSTM 0.0886 - 0.0306
(+59.1%)

0.0840
(+5.19%)

0.0635
(+28.3%)

[109] PeMS 4 ANN 0.1231 - 0.0520
(+57.7%) - -

[111] PeMS 4 LSTM 0.0901 - 0.0246
(+72.6%)

0.0210
(+76.7%) -

[112] TDRL 5 SVM 0.1118 - 0.0954
(+14.6%)

0.0928
(+17.1%) -

1 BL refers to the baseline non-decomposition models such as KF, LSTM, ANN, and SVM. 2 Prediction accuracy
is measured by the mean absolute percentage error (MAPE). Degree of improvement (DI) is measured by
DI = MAPEBL−MAPEDR

MAPEBL
, where MAPEBL and MAPEDR denote the MAPEs of the baseline and DR models,

respectively. 3 Website (highwaysengland.co.uk). 4 PeMS (Caltrans Performance Measurement System). 5 TDRL
(Transportation Data Research Laboratory) in University of Minnesota Duluth.

Note that this information was collected from [25,51,109,111,112], in which at least two
different decomposition strategies were used for comparison. Quantitative comparisons
across the literature were not considered in this study. The reasons are twofold. First, the
datasets used by various applications are different. Generally, they are aggregated at 15 min
granularity for short-term traffic flow, speed, and travel time forecasting of highways or
city roads [17,19,24,27,28,37,38,40–44,70,71,81,82]. In applications of bus speed or travel
time prediction, they are aggregated at 5–30 min granularity [47,48,55,62,83,101,108]. In
applications of air or railway passenger demand prediction, the granularity is usually
greater than 24 h [22,30,66,80,93,94,102,107]. Second, different optimization techniques
(such as GA [106] and the bat algorithm [81]) have been adopted in these applications,
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which make different efforts to optimize the basic models and thus may not facilitate a fair
comparison of different DR programs.

From the results of [25,51,109,111,112], WT and EEMD showed good performance
in most cases, whereas FT outperformed WT and EEMD only when used with other
tricks. Although these works have studied the performance improvement of different
DR programs, more comparisons are required. More importantly, the authors suggest
conducting experiments on publicly available standard datasets to further explore the
degree of performance improvement of different DR procedures.

5. Conclusions

This study surveyed recently reported DR-based frameworks for short-term traffic
state forecasting, focusing on how decomposition and reconstruction strategies can be
utilized to enhance the predictability and interpretability of basic predictors of traffic
variables, including flow, speed, travel time, passenger/freight volume, travel demand,
and even accidents. Specifically, we first introduced the general procedures of DR-based
hybrid frameworks; thereupon, the applications of decomposition strategies, including
FT, WT, EMD, VMD, SSA, STL, STS, and some of their variants in short-term traffic state
prediction were reviewed. Furthermore, several challenges and possible future directions
for the application of these DR-based procedures were discussed.

The review and discussion in this paper enable researchers to gain a comprehensive
understanding of the current state of short-term traffic state prediction based on the DR
framework, thereby avoiding duplication of effort. The contribution of this work also
includes providing a reference for modelers to choose appropriate decomposition and
reconstruction strategies and some insights for future research.
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