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Abstract: The integration of Internet of things (IoT) and cloud computing technology has made our
life more convenient in recent years. Cooperating with cloud computing, Internet of things can
provide more efficient and practical services. People can accept IoT services via cloud servers anytime
and anywhere in the IoT-based cloud computing environment. However, plenty of possible network
attacks threaten the security of users and cloud servers. To implement effective access control and
secure communication in the IoT-based cloud computing environment, identity authentication is
essential. In 2016, He et al. put forward an anonymous authentication scheme, which is based on
asymmetric cryptography. It is claimed that their scheme is capable of withstanding all kinds of known
attacks and has good performance. However, their scheme has serious security weaknesses according
to our cryptanalysis. The scheme is vulnerable to insider attack and DoS attack. For overcoming these
weaknesses, we present an improved authentication and key agreement scheme for IoT-based cloud
computing environment. The automated security verification (ProVerif), BAN-logic verification, and
informal security analysis were performed. The results show that our proposed scheme is secure and
can effectively resist all kinds of known attacks. Furthermore, compared with the original scheme in
terms of security features and performance, our proposed scheme is feasible.
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1. Introduction

Internet of things (IoT) takes advantage of massive sensors, intelligent terminals, global positioning
system, and other technologies to establish connections between people and things whenever and
wherever, and realize intelligent control and management [1]. For example, users can use smartphones
to remotely control lamps, TVs, and refrigerators at home through the Internet of things. Internet
of things makes people’s lives more convenient, and also makes the social economy develop faster.
However, limited by the low power and computation ability of embedded devices, applying the IoT in
the real applications is still a critical issue. To settle the matter, researchers apply cloud computing to
the Internet of things.

Cloud computing makes plentiful computing and storage resources accessible to all of the servers
and users through the Internet. A cloud server has more resources and more powerful computation
ability. Cooperating with the cloud server, IoT devices can provide a better quality of services for
users [2]. In a typical scenario of the IoT-based cloud computing environment as shown in Figure 1, IoT
devices and sensors submit the IoT-releated data they collected to a cloud server via a wired/wireless
network. Users can access the cloud servers to get the IoT-releated data from anywhere at any time.
Furthermore, Users can send commands to the IoT devices through the cloud server for productive
remote control. The IoT-based cloud computing environment combines the advantages of IoT and
cloud computing, making the Internet of things more efficient and practical.
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server for productive remote control. The IoT-based cloud computing environment combines the 
advantages of IoT and cloud computing, making the Internet of things more efficient and practical. 

As the cloud servers provide IoT services for users over an insecure public channel, the 
communications between users and cloud servers must be confidential [3]. It is essential to 
authenticate each other in an IoT-based cloud computing environment. Only authorized users can 
access the cloud server to obtain the services of IoT devices. Figure 1 shows the assumed architecture 
for an IoT-based cloud computing environment. As a trusted third party, the registration center (RC) 
provides registration services for users and cloud servers. After that, users and cloud servers establish 
secure communication through mutual authentication. 

Authentication and key agreement protocols are playing a crucial part in the security of an IoT-
based cloud computing environment. Since the first authentication scheme was put forward by 
Lamport in 1980 [4], the research on the authentication protocol has not stopped. Numerous schemes 
were proposed based on different cryptography technologies. Generally, the scheme using 
symmetric key cryptography [5–14] has better performance while it cannot achieve forward security. 
For the scheme using asymmetric cryptography [15–23], the balance between security and 
performance is a crucial problem. 
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Figure 1. Proposed model of an IoT-based cloud computing environment. 

In 2016, He et al. presented an anonymous authentication protocol [24], which is based on 
asymmetric cryptography. They declared that their scheme is capable of withstanding various known 
attacks and has good performance. However, we found that their scheme is vulnerable to DoS attack 
and insider attack under our proposed adversary model. 

Contributions 

The main contributions of this article include: (1) we propose a new adversary model in Section 
2.3. (2) In Section 4, we show that He et al.’s scheme is unable to defend against insider attack and 
DoS attack under our proposed adversary model. (3) In Section 5, we present an improved 
authentication and key agreement scheme for the IoT-based cloud computing environment. The 
proposed scheme modifies the registration and authentication phases, uses ‘fuzzy verifier’, and adds 
the validation in the side of cloud servers, so as to effectively resist insider attack and DoS attack. (4) 
It is proven that our proposed scheme is secure via an automated security verification tool ProVerif 
[25] in Section 6.1. Meanwhile, we present the proofs of BAN logic [26] verification in Section 6.2. 

Figure 1. Proposed model of an IoT-based cloud computing environment.

As the cloud servers provide IoT services for users over an insecure public channel, the
communications between users and cloud servers must be confidential [3]. It is essential to authenticate
each other in an IoT-based cloud computing environment. Only authorized users can access the
cloud server to obtain the services of IoT devices. Figure 1 shows the assumed architecture for an
IoT-based cloud computing environment. As a trusted third party, the registration center (RC) provides
registration services for users and cloud servers. After that, users and cloud servers establish secure
communication through mutual authentication.

Authentication and key agreement protocols are playing a crucial part in the security of an
IoT-based cloud computing environment. Since the first authentication scheme was put forward by
Lamport in 1980 [4], the research on the authentication protocol has not stopped. Numerous schemes
were proposed based on different cryptography technologies. Generally, the scheme using symmetric
key cryptography [5–14] has better performance while it cannot achieve forward security. For the
scheme using asymmetric cryptography [15–23], the balance between security and performance is a
crucial problem.

In 2016, He et al. presented an anonymous authentication protocol [24], which is based on
asymmetric cryptography. They declared that their scheme is capable of withstanding various known
attacks and has good performance. However, we found that their scheme is vulnerable to DoS attack
and insider attack under our proposed adversary model.

Contributions

The main contributions of this article include: (1) we propose a new adversary model in Section 2.3.
(2) In Section 4, we show that He et al.’s scheme is unable to defend against insider attack and DoS
attack under our proposed adversary model. (3) In Section 5, we present an improved authentication
and key agreement scheme for the IoT-based cloud computing environment. The proposed scheme
modifies the registration and authentication phases, uses ‘fuzzy verifier’, and adds the validation in
the side of cloud servers, so as to effectively resist insider attack and DoS attack. (4) It is proven that
our proposed scheme is secure via an automated security verification tool ProVerif [25] in Section 6.1.
Meanwhile, we present the proofs of BAN logic [26] verification in Section 6.2. Furthermore, informal
security analysis is put forward in Section 6.3. (5) In Section 7, we compare the proposed scheme with
He et al.’s scheme in terms of security features and performance.
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2. Preliminaries

2.1. Bilinear Pairing

Let G1 be a cyclic additive group with a large prime order q and G2 a cyclic multiplicative group
of the same order q. Let P and g be generators of G1 and G2 separately. A bilinear pairing is a map
e : G1×G1 → G2 and satisfies the following properties:

(1) Bilinear: Give e (a ·P, b·Q) = e(P, Q)ab for all P, Q ∈ G1, a, b ∈ Z∗q.
(2) Non-degenerate: There exists P, Q ∈ G1 such that e (P, Q) , 1.
(3) Computable: There exists an efficient algorithm to calculate e (P, Q) for all P, Q ∈ G1 in

polynomial time.

2.2. Related Mathematical Problems

The mathematical problems for designing authentication protocols are as follows.

2.2.1. Discrete Logarithm Problem

Given X = τ·P (x = g τ
)
, where X ∈ G1(x ∈ G2), it is relatively easy to calculate X(x) given τ

and P (τ and g), while it is relatively hard to determine τ given X and P (x and g).

2.2.2. Computational Diffie–Hellman Problem

For a, b ∈ Z∗q, given a·P, b·P ∈ G1(g a, gb
∈ G2

)
, it is hard to find (a·b)·P ∈ G1(g ab

∈ G2).

2.3. Adversary Model

The adversary model makes clear assumptions about the adversary’s ability in advance.
The adversary model of remote authentication protocol always follows the classic Dolev–Yao model [27].
Recently, Side-channel technology [28] enables attackers to extract information from smart cards,
and the ability of the adversary is enhanced. In this paper, we improve the adversary models in
literature [29] and literature [30], and propose a more rigorous (but practical) multi-factor authentication
protocol adversary model (see Table 1).

Table 1. The capabilities of adversaries.

Symbol Description

Capability 1. The adversary can enumerate all elements of |DID| ∗ |DPW | offline.

Capability 2. The adversary can obtain user ID (The user ID should be assumed to be
sensitive information when evaluating the anonymity of the protocol).

Capability 3. The adversary can eavesdrop, intercept, insert, delete, or block messages
flowing through the public channel.

Capability 4. For the n-factor protocol, the adversary can obtain n-1 of the n
authentication factors simultaneously.

Capability 5. The adversary has a chance to capture an expired session key.

Capability 6. The adversary can obtain the long-term private keys of participants.
(when evaluating forward secrecy).

Capability 7. An insider adversary can obtain user’s registration information and
capture user’s smartcard (when evaluating insider attack).

In real life, when someone finds the lost smart card and the owner cannot be found, usually, the
person who finds the smart card will give it to the insider to find the owner. Therefore, it is possible
for insiders to obtain users’ smart cards. Meanwhile, the insiders have the opportunity to obtain the
user’s registration information. Thus, Capability 7 is realistic.
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3. Review of He et al.’s Scheme

This section briefly reviews the authentication scheme proposed by He et al. There are the
following phases in their scheme. Table 2 shows the notations used herein.

Table 2. Notations.

Symbol Description Symbol Description

RC Registration Center Ui User
τ, τ̂ Private key of RC IDUi Identification of Ui
P Large prime PWUi Password of Ui
q prime order SCUi Smart card of Ui

G1 Additive group S j Cloud Server
G2 Multiplicative group IDS j Identification of S j

gpub, Ppub Public key of RC DS j Private key of S j
e(∗, ∗) Bilinear pairing

⊕
XOR operation

h0−h6 Hash function skUi , skS j Session key of Ui and S j

3.1. Setup Phase

RC selects G1, G2, e(∗, ∗) and chooses his private keys τ, τ̂ ∈ Z∗q. Then, it calculates g = e(P, P),
gpub = gτ, Ppub = τ̂·P as public keys. Furthermore, RC selects seven secure hash functions {hi}, i = 0–6
and publishes all public parameters.

3.2. User Registration Phase

1. Ui chooses IDUi , PWUi , and a random number bUi freely. Then, Ui computers h0 (ID Ui
, PWUi , bUi ) .

Finally, Ui sends the registration message {ID Ui , h0 (ID Ui
, PWUi , bUi)} towards RC.

2. RC selects ωUi ∈ Z∗q freely and computes gUi = gωUi , ξUi = h1 ( IDUi , gUi
) , τUi = ωUi + τ·ξUi ,

ϕUi = τUi

⊕
h0 (ID Ui

, PWUi , bUi ) , ϑUi = h0(h 0 ( IDUi , PWUi , bUi ) , ϕUi
) . Then, RC transmits{

g Ui
, ϕUi

, ϑUi } towards Ui.

3. Ui writes { gUi ,ϕUi
,ϑUi , bUi } into SCUi .

3.3. Cloud Server Registration Phase

1. S j transmits IDS j to RC.

2. RC calculates DS j =
1

τ̂+h2

(
IDSj

) and responses {DS j } to S j via a private channel.

3. S j receives and stores DS j safely.

3.4. Login and Authentication Phase

1. Ui inserts SCUi to a reader, and inputs IDUi and PWUi . SCUi verifies the equality check
for ϑUi? = h0 (h 0 ( IDUi , PWUi , bUi ) , ϕUi

) . If it holds true, SCUi ensures that IDUi and
PWUi are correct. Then, SCUi randomly generates a number rUi ∈ Z∗q and calculates
RUi = rUi ·(P pub + h2 (ID S j

) ·P), x = grUi . Finally, Ui transmits a login request {RUi } towards S j.

2. S j receives RUi and calculates x = e (R Ui
, DS j ) . Then, S j randomly chooses a number rS j ∈ Z∗q

and calculates y = g
rSj , αS j = h3(R Ui

, x, y). Finally, S j responds
{
y, αS j } towards Ui.

3. Ui receives
{
y, αS j

} and checks the equality for αS j? = h3 (R Ui
, x, y). If αS j , h3 (R Ui

, x, y),
Ui terminates the session. Otherwise, Ui calculates θUi = h4 (ID Ui

, RUi , x, y),
τUi = ϕUi

⊕
h0(ID Ui

, PWUi , bUi ) , αUi = τUi+θUi ·rUi , the session key skUi = h5

(ID Ui
, IDS j , x, y, yrUi ), and CUi = h6(x)

⊕
(ID Ui

, gUi
, αUi ) . Finally, Ui transmits CUi

towards cloud server S j.
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4. S j receives CUi and recovers IDUi , gUi , αUi via computing (ID Ui
, gUi

, αUi) = h6(x)
⊕

CUi .
Furthermore, S j calculates ξUi = h1(ID Ui

, gUi
) , θUi = h4(ID Ui

, RUi , x, y) and checks

the equality for gαUi ? = gUi
·g
ξUi
pub·x

θUi . If it holds true, S j gets the session key

skS j = h5 (ID Ui
, IDS j , x, y, x

rSj ) .

3.5. Password Modification Phase

1. Ui inputs IDUi , PWUi . SCUi checks the equality ϑUi? = h0(h 0 ( IDUi , PWUi , bUi ) , ϕUi
) .

2. If ϑUi , h0(h 0 ( IDUi , PWUi , bUi ) , ϕUi
) , SCUi rejects the modification request. Otherwise,

Ui inputs PW∗Ui
. SCUi chooses a new random number b∗Ui

, calculates ϕ∗Ui
= ϕUi

⊕
h0

( IDUi , PWUi , bUi )
⊕

h0(ID Ui
, PW∗Ui

, b∗Ui
) , ϑ∗Ui

= h0 (h 0 ( IDUi , PW∗Ui
, b∗Ui

) , ϕ∗Ui
) . Finally,

SC replaces
{
g Ui

, ϕUi
, ϑUi , bUi } with {gUi ,ϕ

∗

Ui
, ϑ∗Ui

, b∗Ui
} and the new password is PW∗Ui

.

4. Cryptanalysis of He et al.’s Scheme

4.1. Insider Attack

In our proposed adversary model, an insider adversary is able to acquire the user’s registration
information and smart card. Suppose an insider adversary A acquires the registration information
{ID Ui , h0(ID Ui

, PWUi , bUi)} of Ui. Furthermore, A gets Ui’s smart card and extracts the values gUi , ϕUi ,
ϑUi and bUi . Using this information, A can launch the following attacks through the following procedure.

4.1.1. Offline Password Guessing

Suppose an insider being an adversary A knows the registration information
{ID Ui , h0(ID Ui

, PWUi , bUi)} of Ui. Furthermore, A gets Ui’s smart card and extracts the values gUi , ϕUi ,
ϑUi and bUi . Using this information, A is able to launch an offline password guessing attack through
following these steps:

1. A guesses a candidate password PW∗i .
2. A calculates x = h0(IDUi , PW∗i , bUi).
3. A checks whether x? = h0(IDUi , PWUi , bUi) holds. If not, A repeats Steps 1–3 until he acquires a

true password. Otherwise, A has already succeeded in getting the true password. The attack
is finished.

The computational overhead of this offline password attack is Th ∗ |Did| ∗ |Dpw|, where Th is the running
time of one-way hash function, and DiD and Dpw are the spaces of user identity and password,
respectively. According to [31,32], we have |DiD| ≤ |Dpw| ≤ 106. According to experiment data in [33],
we have Th ≈ 0.591µs. The adversary can obtain the true password in seven days. If using a
high-performance cloud computing platform, the attack can be completed in a few hours.

4.1.2. User Impersonation

1. A randomly generates a number rUi ∈ Z∗q and calculates RUi = rUi ·(P pub+h2(ID S j
)·P), x = grUi .

Afterwards, A transmits the request RUi to server S j.
2. Upon receiving

{
y,αS j

} from S j, A computes θUi = h4(ID Ui
, RUi , x, y), τUi = ϕUi

⊕
h0(

IDUi , PWUi , bUi ) , where ϕUi and h0(ID Ui
, PWUi , bUi ) were obtained before. Subsequently,

A calculates αUi = τUi+θUi ·rUi , and gets the session key skUi = h5(ID Ui
, IDS j , x, y, yrUi ) . Finally,

A sends CUi = h6(x)
⊕

(ID Ui
, gUi

,αUi ) to S j.

The information generated by A is legal. The cloud server S j considers A as the user Ui.
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4.2. Possible DoS Attack

In the authentication phase, S j doesn’t validate the login request information until formula

gαUi ? = gUi
·g
ξUi
pub·x

θUi is validated. Even if the adversary sends illegal information, the cloud server
still responds and completes the relevant calculations. This results in unnecessary communication
costs and time costs and leads a possible DoS attack.

5. Our Improved Scheme

For overcoming the weaknesses above, we put forward an enhanced authentication and key
agreement protocol. Figure 2 depicts our proposed scheme.
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5.1. Setup Phase

RC selects G1, G2, e(∗, ∗) and chooses his private keys t1, t2, t3 ∈ Z∗q. Then, RC calculates
g = e(P, P), gpub = gt1 , Ppub = t2·P as public keys. Furthermore, RC selects seven secure hash functions

{hi}, i = 0–6. Finally, RC publishes all public parameters
{
(hi), i = 0–6, G1, G2, e, q, P, g, Ppub

}
.

5.2. User Registration Phase

1. Ui chooses IDUi , PWUi and a number bUi freely. Then, Ui computers
PWB = h0(ID Ui

||PWUi ||bUi)mod n, 24
≤ n ≤ 26. Note that n is an integer that determines the

capacity of (ID, PW). Then, it transmits the registration message {ID Ui , PWB} towards RC.

2. RC selects wUi ∈ Z∗q freely and computes gUi = gwUi , fUi = h1
(
IDUi , gUi

)
, tUi = wUi+t1· fUi ,

dUi = tUi

⊕
PWB, vUi = h0(PWB||d Ui

)mod n, mUi = h0(h 0(ID Ui
)||h0(t 3)). Then, RC responses{

g Ui
, dUi , vUi , mUi

}
to Ui via a private secure channel.

3. Ui receives
{
g Ui

, dUi , vUi

}
and computes kUi = dUi

⊕
h0(ID Ui

, PWUi

)
, MUi = mUi

⊕
PWB.

Finally, Ui writes
{
g Ui

, kUi , vUi , MUi , bUi

}
into SCUi .
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5.3. Cloud Server Registration Phase

1. S j sends IDS j to RC.

2. Upon reception of IDS j , RC calculates DS j = 1
t2+h2(ID Sj

)
·P and sends {D S j , h0 (t 3)} to S j via a

private channel.
3. S j stores {D S j , h0 (t 3)} in secret.

5.4. Login and Authentication Phase

1. Ui inserts SCUi to the reader and inputs IDUi and PWUi . SCUi calculates
dUi = kUi

⊕
h0(ID Ui

||PWUi
) , PWB = h0(ID Ui

||PWUi ||bUi)mod n and verifies the equality check
for vUi? = h0(PWB||d Ui

)mod n. If vUi , h0(PWB||d Ui
)mod n, SCUi rejects the login request.

Otherwise, it randomly chooses rUi ∈ Z∗q and calculates RUi = rUi ·(P pub+h2(ID S j
)·P),

x = grUi , mUi = MUi

⊕
PWB, XUi = xmUi , nUi = x·h0(ID Ui

) . Finally, Ui transmits login
request {R Ui , XUi , nUi } towards S j.

2. S j receives {R Ui , XUi , nUi } and calculates x = e(R Ui
, DS j), mUi = h0((n Ui

⊕
x)||h0(t 3)). Then,

S j verifies the equality check XUi? = xmUi . If XUi , xmUi , S j terminates the session. Otherwise,
S j randomly selects rS j ∈ Z∗q and calculates y = g

rSj , aS j = h3 (R Ui
, x, y, nUi

) . Finally, S j
transmits

{
y, a S j

} towards Ui.

3. Upon reception of
{
y, a S j

} from S j, Ui verifies the equality check aS j? = h3(R Ui
, x, y, nUi

) .
If aS j , h3(R Ui

, x, y, nUi
) , Ui terminates the session. Otherwise, Ui calculates

OUi = h4 (ID Ui
, RUi , x, y), tUi = dUi

⊕
PWB, aUi = tUi+OUi ·rUi , the session key

skUi = h5 (ID Ui
, IDS j , x, y, yrUi ) and CUi = h6 (x)

⊕
(ID Ui

||gUi
||aUi ||y). Finally, Ui transmits

CUi towards S j.
4. S j receives CUi and recovers IDUi , gUi and aUi via computing (ID Ui

||gUi
||aUi ||y) = h6 (x)

⊕
CUi .

Furthermore, S j calculates fUi = h1 (ID Ui
, gUi

) , OUi = h4 (ID Ui
, RUi , x, y) and checks the

equality for gaUi ? = gUi
·g

fUi
pub·x

OUi . If it holds true, S j gets the session key skS j= h5

(ID Ui
, IDS j , x, y, x

rSj ).

5.5. Password Modification Phase

1. Ui inputs IDUi , PWUi . SCUi computes dUi = kUi

⊕
h0(ID Ui

||PWUi
) , PWB = h0(ID Ui

||PWUi ||bUi)

mod n and checks the equality vUi? = h0(PWB||d Ui
)mod n.

2. If vUi , h0(PWB||d Ui
)mod n, SCUi rejects the request. Otherwise, Ui inputs PWnew

Ui
. SCUi

randomly generates b∗Ui
and calculates knew

Ui
= kUi

⊕
h0(ID Ui

||PWUi)
⊕

h0(ID Ui
||PWUi ||bUi)

⊕
h0(ID Ui

||PWnew
Ui
||bnew

Ui
)
⊕

h0(ID Ui
||PWnew

Ui
), vnew

Ui
= h0(h 0 ( IDUi ||PWnew

Ui
||bnew

Ui
) , knew

Ui

⊕
h0

(ID Ui
||PWnew

Ui
)). Finally, SCUi replaces

{
g Ui

, kUi , vUi , bUi } with
{
g Ui

, knew
Ui

, vnew
Ui

, bnew
Ui
}.

6. Security Analysis

6.1. Security Verification Using ProVerif

ProVerif [25] is one of the most widely used automated security verification tools. The security
validation of ProVerif works on applied π calculus, and ProVerif can verify the authentication and
confidentiality of authentication protocol. We elaborate the design process and results of security
validation using ProVerif in this section.

First, we define two channels for communication between participants, an insecure channel Pch
and a secure channel SEch.

(*–Channels–*)
free SEch:channel [private]. (* Secure Channel *)
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free Pch:channel. (*Insecure Channel *)
Then, public and private parameters and constructors are defined as follows:
(*—————-Variable and constants———————*)
const P: bitstring.
const g: bitstring.
const q: bitstring.
const n: bitstring.
free Uid: bitstring. (* User ID *)
free PWi: bitstring [private]. (* Password of user *)
free bUi:bitstring. (* Random number of user in registration phase *)
free Sid: bitstring. (* Server ID *)
free t1, t2, t3: bitstring [private]. (* Private key of RC *)
free Ppub: bitstring. (* Ppub = t2. P *)
free gpub: bitstring. (* gpub = Exp (g, t1) *)
(*—————-Constructor———————*)
fun CONCAT (bitstring, bitstring): bitstring. (* CONCAT operation *)
fun Div1 (bitstring): bitstring. (* Division operation and get the first part *)
fun Div2 (bitstring): bitstring. (* Division operation and get the second part *)
fun h0 (bitstring): bitstring. (* Hash operation h0 *)
fun h1 (bitstring,bitstring): bitstring. (* Hash operation h1 *)
fun h2 (bitstring): bitstring. (* Hash operation h2 *)
fun h3 (bitstring,bitstring,bitstring,bitstring):bitstring. (* Hash operation h3 *)
fun h4 (bitstring,bitstring,bitstring,bitstring):bitstring. (* Hash operation h4 *)
fun h5 (bitstring,bitstring,bitstring,bitstring,bitstring): bitstring. (* Hash operation h5 *)
fun h6 (bitstring): bitstring. (* Hash operation h6 *)
fun Xor (bitstring, bitstring): bitstring. (* XOR operation *)
fun Smul (bitstring, bitstring): bitstring. (* Scalar multiplication operation *)
fun Padd (bitstring, bitstring): bitstring. (* Point addition operation *)
fun BPL (bitstring, bitstring): bitstring. (* Bilinear paring operation *)
fun Exp (bitstring, bitstring): bitstring. (* Exponentiation operation *)
fun Mod (bitstring, bitstring): bitstring. (* Mod operation *)
fun Mul (bitstring, bitstring): bitstring. (* multiplication operation *)
fun Add (bitstring, bitstring): bitstring. (* Addition operation *)
fun Inverse (bitstring): bitstring. (* inverse operation *)
The following four events are specified to check authentication between the user and server:
(*—————-Events———————*)
event beginUserUi (bitstring).
event endUserUi (bitstring).
event beginServerSj (bitstring).
event endServerSj (bitstring).
The processes UserUi, ServerSj, and RC represent Ui, S j and RC, respectively.
(*—————-Processes———————*)
(*—————-User Ui———————*)
let UserUi =

(* Registration Phase *)
let PWB = Mod (h0 (CONCAT (CONCAT (Uid, PWi), bUi)), n) in
out (SEch, (Uid, PWB));
in (SEch, (gUi: bitstring, dUi:bitstring, vUi:bitstring, mUi:bitstring));
let kUi = Xor (dUi, h0(CONCAT (Uid, PWi))) in
let MUi = Xor (mUi, PWB) in
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(*Login and Authentication Phase *)
event beginUserUi (Uid);
let PWB = Mod (h0 (CONCAT (CONCAT (Uid, PWi), bUi)), n) in
let dUi = Xor (kUi, h0 (CONCAT (Uid, PWi))) in
let vUi’ = h0 (CONCAT (PWB, dUi)) in
if vUi’ = vUi then
new rUi:bitstring;
let RUi = Smul (rUi, Padd (Ppub, Smul (h2 (Sid), P))) in
let x = Exp (g, rUi) in
let mUi = Xor (MUi, PWB) in
let XUi = Exp (x, mUi) in
let nUi = Xor (x, h0 (Uid)) in
out (Pch, (RUi, XUi, nUi));
in (Pch, (y:bitstring, aSj:bitstring ));
let aSj’ = h3 (RUi, x, y, nUi) in
if (aSj = aSj’) then
let oUi = h4 (Uid,RUi, x, y) in
let tUi = Xor (dUi, PWB) in
let aUi = Add (tUi, Mul (oUi, rUi)) in
let SKij = h5 (Uid,Sid, x, y, Exp (y, rUi)) in
let CUi = Xor (h6 (x), CONCAT (CONCAT (CONCAT (Uid, gUi), aUi), y)) in
out (Pch, CUi);
event endUserUi (Uid)
else
0.
(*—————-Server Sj———————*)
let ServerSj =

(* Registration Phase *)
out (SEch, Sid);
in (SEch, (DSj: bitstring, ht3: bitstring));
(* Login and Authentication Phase *)
event beginServerSj (Sid);
in (Pch, (RUi: bitstring, XUi:bitstring, nUi:bitstring));
let x = BPL (RUi, DSj) in
let mUi = h0 (CONCAT (Xor (nUi, x), ht3)) in
let XUi’ = Exp (x, mUi) in
if XUi’ = XUi then
new rSj: bitstring;
let y = Exp (g, rSj) in
let aSj = h3 (RUi, x, y, nUi) in
out (Pch, (y, aSj));
in (Pch, CUi:bitstring);
let aUi = Div2 (Div1 (Xor (h6 (x), CUi))) in
let gUi = Div2 (Div1 (Div1 (Xor (h6 (x), CUi)))) in
let Uid = Div1 (Div1 (Div1 (Xor (h6 (x), CUi)))) in
let fUi = h1 (Uid, gUi) in
let oUi = h4 (Uid, RUi, x, y) in
let gaUi = Exp (g, aUi) in
let gaUi’ = Mul (Mul (gUi, Exp (gpub, fUi)), Exp (x,oUi)) in
if gaUi = gaUi’ then
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let SKij = h5 (Uid, Sid, x, y, Exp (x, rSj)) in
event endServerSj (Sid)
else
0.
(*—————-Registration Centre RC———————*)
let RC =

(* Registration with User *)
in (SEch, (Uid: bitstring, PWB: bitstring));
new wUi: bitstring;
let gUi = Exp (g, wUi) in
let fUi = h1 (Uid, gUi) in
let tUi = Add (wUi, Mul (t1, fUi)) in
let dUi = Xor (tUi, PWB) in
let vUi = Mod (h0 (CONCAT (PWB, dUi)), n) in
let mUi = h0 (CONCAT (h0 (Uid), h0(t3))) in
out (SEch, (gUi, dUi, vUi, mUi));
(*Registration with Servers*)
in (SEch, Sid: bitstring);
let DSj = Inverse (Add (t2, h2(Sid))) in
let ht3 = h0(t3) in
out (SEch, (DSj, ht3));
0.
We simulate our proposed protocol as unbounded parallel execution of the three

processes mentioned:
process
((! UserUi) | (! RC) | (! ServerSj))
The following queries are used to test mutual authentication and session key security of the

improved protocol.
(*————-Queries—————–*)
free SKij: bitstring [private].
query attacker (SKij).
query id: bitstring; inj-event (endUserUi (id)) = = > inj-event (beginUserUi (id)).
query id: bitstring; inj-event (endServerSj (id)) = = > inj-event (beginServerSj (id)).
At last, we get the simulation result:
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According to RESULT 2 and RESULT 3, mutual authentication between Ui and S j succeeded.
Furthermore, RESULT 1 indicates that no adversary is capable of exposing the session key.

6.2. Formal Security Analysis Using BAN-Logic

Burrows–Abadi–Needham logic [26] is a modal logic based on belief, which is proposed by
Burrows et al. We use BAN-logic to prove that user Ui and server S j have succeeded in session key
agreement. Table 3 is the BAN-logic notations and the basic BAN-logic rules are shown in Table 4.
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Table 3. BAN logic notations.

Symbol Description

P| ≡ X P believes X.
P � X P sees X.
P| ∼ X P sends X.
P⇒ X P has jurisdiction over X.
(X) X is fresh.

(X, Y) X or Y is part of (X, Y).
(X)K Use key K to compute X.

P K
↔ Q P and Q achieve the shared key K for communication.

Table 4. Basic BAN-logic rules.

Rule Description

Message-meaning rule P|≡(P K
↔Q),P�(X)K

P|≡Q| ∼X

Freshness-conjuncatenation rule P|≡(X)
P|≡(X,Y)

Nonce-verification rule P|≡(X),P|≡Q| ∼X
P|≡Q|≡X

Jurisdiction rule P|≡Q|⇒X,P|≡Q|≡X
P|≡X

Believe rule P|≡Q|≡(X,Y)
P|≡Q|≡X , P|≡X,P|≡Y

P|≡(X,Y)

6.2.1. Idealized Form

Message 1: Ui → S j : RUi , XUi ,
(
IDUi

)
Ui

x
↔S j

Message 2: S j → Ui : y,
(
RUi , y, nUi

)
Ui

x
↔S j

Message 3: Ui → S j :
(
IDUi , gUi , aUi , y

)
Ui

x
↔S j

6.2.2. Verification Purposes

Purpose 1: Ui| ≡ (U i
sk
↔ S j).

Purpose 2: Ui| ≡ S j| ≡ (U i
sk
↔ S j).

Purpose 3: S j| ≡ (U i
sk
↔ S j).

Purpose 4: S j| ≡ Ui| ≡ (U i
sk
↔ S j).

6.2.3. Assumptions about Initial State

Assumption 1: Ui| ≡
(
rUi

)
.

Assumption 2: S j| ≡
(
rS j

)
.

Assumption 3: Ui| ≡ (U i
x
↔ S j).

Assumption 4: S j| ≡ (U i
x
↔ S j).

Assumption 5: S j| ≡ Ui| ≡ (ID S j
)

Assumption 6: Ui| ≡ S j ⇒ (U i
Sx
↔ S j) .

Assumption 7: S j| ≡ Ui ⇒ (U i
Sx
↔ S j)

6.2.4. Proofs

1. According to Message 2, we get the following: Ui � (y,
(
RUi , y, nUi

)
Ui

x
↔S j

).
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2. According to Assumption 3 and the message-meaning rule, we get the following: Ui| ≡ S j | ∼

(RUi , y, nUi).

3. Based on Assumption 1 and the freshness–conjuncatenation rule, we can prove: Ui| ≡
(
RUi , y, nUi

)
.

4. From Step 2, Step 3, and the nonce-verification rule, we obtain the following: Ui| ≡ S j| ≡(
RUi , y, nUi

)
.

5. According to Step 4 and believe rule, Ui| ≡ S j| ≡
(
IDUi , IDS j , y, rUi

)
.

6. According to Step 5, Assumption 3 and sk = h5 (ID Ui
, IDS j , x, y, yrUi ), we prove that: Ui| ≡

S j| ≡ (U i
sk
↔ S j) (Purpose 2).

7. Based on Step 6, Assumption 6, and jurisdiction rule, we prove that: Ui| ≡ (U i
sk
↔ S j) (Purpose 1).

8. From Message 3, we get: S j �
(
IDUi , gUi , aUi , y

)
Ui

x
↔S j

.

9. Based on Assumption 4 and the message-meaning rule, we obtain the following: S j| ≡ Ui | ∼(
IDUi , gUi , aUi , y

)
.

10. From Assumption 2 and the freshness-conjuncatenation rule, we can obtain: S j| ≡(
IDUi , gUi , aUi , y

)
.

11. Based on Step 9, Step 10, and the nonce-verification rule, we obtain the following: S j| ≡ Ui| ≡(
IDUi , gUi , aUi , y

)
.

12. According to Assumption 5, Step 11, y = g
rSj , and the believe rule, we obtain the following:

S j| ≡ Ui| ≡
(
IDUi , IDS j , rS j , y

)
.

13. According to Step 12, Assumption 4, and sk = h5 (ID Ui
, IDS j , x, y, x

rSj ), we prove that: S j| ≡

Ui| ≡ (U i
sk
↔ S j) (Purpose 4).

14. According to Step 13, Assumption 7, and jurisdiction rule, we prove that: S j| ≡ (U i
sk
↔ S j)

(Purpose 3).

From Purposes 1–4, Ui and S j believe that the session key has been established between
them successfully.

6.3. Informal Security Analysis

6.3.1. Anonymity and Untraceability

In authentication phase, the adversary can intercept the login request information from users
and the response information from cloud servers. The constructions of CUi , XUi and nUi are related
to IDUi , CUi = h6(x)

⊕
(ID Ui

||gUi
||aUi ||y), XUi = xmUi , nUi = x

⊕
h0 (ID Ui

). Obviously, under the
protection of shared secret x and hash function, the adversary is unable to obtain IDUi . On the other
hand, the generation of x is affected by random number rUi , so the parameters CUi , XUi and nUi

generated by Ui in each session changes. Even if an adversary intercepts
{
CUi , XUi , nUi

}
and other

information, he can’t judge whether two sessions come from the same user, and can’t track the user’s
access behavior effectively.

6.3.2. Forward Secrecy

Suppose the adversary captured the private keys t1, t2, t3 and intercepts
(R Ui

, XUi , nUi , y, aS j
, CUi) propagated in the public channel. The adversary can calculate x through

the private key, but he can’t calculate yrUi and x
rSj in polynomial time, so the adversary is unable to

capture session key skUi = h5 (ID Ui
, IDS j , x, y, yrUi ) = h5 (ID Ui

, IDS j , x, y, x
rSj ) = skS j

.
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6.3.3. Two-Factor Security

It is obviously less difficult for adversary to break through the user’s password than for smart
cards. In the proposed scheme, the process of SCUi verification is a fuzzy verification process,
vUi? = h0 ((h 0 (ID Ui

||PWUi ||bUi)mod n)||(k Ui

⊕
h0 (ID Ui

||PWUi)))mod n. Even if (ID ∗Ui
, PW∗Ui

)

guessed by the adversary has passed the verification of the smart card, it still needs to go through the
online login authentication process to determine whether it is correct. Specifically, an adversary needs
to log in online |Did|·|Dpw|/26 times to get the correct password, about 234 times, the cloud server can
easily resist this attack.

6.3.4. Session Key Agreement

In the proposed scheme, Ui and S j reach a session key for future communication
after the login and authentication phase is completed, skUi= h5(ID Ui

, IDS j , x, y, yrUi )

= h5(ID Ui
, IDS j , x, y, x

rSj ) = skS j
.

6.3.5. Resistance of Other Attacks

Insider attack: In our proposed adversary model, an insider can acquire user’s registration
information {ID Ui , PWB} and smart card parameter

{
g Ui

, kUi , vUi , bUi

}
. Since PWB is generated by

modulo operation, the insider adversary cannot directly acquire PWUi via offline password guessing.
On the other hand, when the insider adversary wants to authenticate with the cloud server S j as Ui, he
cannot compute dUi = kUi

⊕
h0(ID Ui

||PWUi

)
. Therefore, no effective attack can be launched.

Cloud Server Spoofing Attack: If the adversary wants to complete authentication with user Ui as
cloud server S j, he needs to generate legal response information; however, only when the adversary
gets DS j can he generate legal login request information. Therefore, the attack is unfeasible.

Replay attack: In the improved scheme, the change of random number rUi and rS j will affect the
login request information and cloud server response information. As a result, the replay attack cannot
be launched.

DoS attack: Different from He et al.’s scheme, S j verifies Ui’s login request before subsequent
operations in the improved scheme XUi? = xmUi . Only legitimate users could generate legitimate
login information, so the improved scheme is capable of withstanding DoS attack.

According to the above analysis, we know that an insider adversary cannot guess the user’s
password offline and impersonate a user, even if he obtains the user’s smart card and registration
information. As a result, offline password guessing attack, stolen smart card attack, and user
impersonation attack are unfeasible.

7. The Comparisons of Security and Performance

We compare the proposed protocol with [24] in terms of security features. The comparisons are
demonstrated in Table 5.

We compare the proposed protocol with [24] in terms of time complexity. Since RC is usually
regarded as a powerful device, our efficiency analysis focuses on users and servers. For the
sake of convenience, we define Tbp, Tpm, Tpa, Texp, Th to represent time of bilinear paring operation,
point scalar multiplication operation, point addition operation, exponentiation operation, and hash
function respectively.

The XOR operation, concatenate operation, the modular multiplication, and modular operation
are neglected while comparing with the related operation mentioned above. Based on the experiments
conducted on a Quad-core 2.45G processor with 2 GB memory and an I5-4460S 2.90GHz processor
with 4 GB memory in [24], we get the running time of above operations in Table 6.
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Table 5. Comparison of security features.

Security Features and Defensible Attacks He et al.’s Ours

Anonymity √ √

Un-traceability √ √

Two-factor security √ √

Forward Secrecy √ √

Session key agreement √ √

Insider attack
⊕ √

Cloud server spoofing attack √ √

Replay attack √ √

DoS attack
⊕ √

User impersonation attack √ √

Offline password guessing attack
⊕ √

Smart card stolen attack √ √

Table 6. The running time of related operations based on [24].

User Cloud Server

Tpm 13.405 ms 2.165 ms
Tpa 0.081 ms 0.013 ms
Texp 2.249 ms 0.339 ms
Th 0.056 ms 0.007 ms
Tbp 32.713 ms 5.427 ms

All participants register with RC only once, and users do not change their passwords frequently.
Therefore, the computation cost of registration phase and password modification phase is not discussed.
Table 7 summarizes the results of efficiency comparison.

Table 7. Comparison of computation cost.

He et al.’s Ours

User 2 × Tpm + Tpa + 2 × Texp + 7 × Th ≈ 31.781ms 2 × Tpm + Tpa + 3 × Texp + 9 × Th ≈ 34.142ms
Cloud server Tbp + 5 × Texp + 5 × Th ≈ 7.157ms Tbp + 6 × Texp + 6 × Th ≈ 7.503ms

8. Conclusions

Numerous research efforts on authentication and key agreement scheme can be witnessed in
recent years. In 2016, He et al. proposed an anonymous authentication protocol using asymmetric
cryptography, which is looking promising. However, we discovered vulnerabilities of their scheme
under our proposed adversary model. Furthermore, we propose an improved authentication and key
agreement scheme for IoT-based cloud computing environment, and provide ProVerif tool verification
and formal security analysis via BAN-logic. The comparisons of security and performance show
that the computational cost of our proposed scheme is slightly higher but is much safer than the
original scheme.
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