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Abstract: In this paper, we proposed a novel community detection method based on the network
structure transformation, that utilized deep learning. The probability transfer matrix of the network
adjacency matrix was calculated, and the probability transfer matrix was used as the input of the
deep learning network. We use a denoising autoencoder to nonlinearly map the probability transfer
matrix into a new sub space. The community detection was calculated with the deep learning
nonlinear transform of the network structure. The network nodes were clustered in the new space
with the K-means clustering algorithm. The division of the community structure was obtained.
We conducted extensive experimental tests on the benchmark networks and the standard networks
(known as the initial division of communities). We tested the clustering results of the different types,
and compared with the three base algorithms. The results showed that the proposed community
detection model was effective. We compared the results with other traditional community detection
methods. The empirical results on datasets of varying sizes demonstrated that our proposed method
outperformed the other community detection methods for this task.

Keywords: community detection; autoencoder; probability transfer matrix

1. Introduction

The real-life connections of many systems are represented in the form of graphs. These system
connections could be represented by networks [1]. These network connections ignore the diversity
of the system. The connection relationship could be analyzed by examining the network structure.
These networks exhibit complex network characteristics. There have been some network analysis
methods widely used in complex networks, such as in the small world [2] and scale-free network [3].

The community detection method is a graph partitioning technique that is commonly used
in network structure analysis [4]. Some networks have important nodes that show the clustering
characteristics of networks. The graph partitioning method could be used in these networks to divide
the entire network into sub networks, also known as community detection. The community partition
method has significance in solving the network structures for many real-world networks, such as
infectious diseases in a crowd or the analysis of neuronal clustering structures in the brain’s cognitive
function [5,6].

The deep learning neural network has been used to study various types of network structures,
in order to achieve a variety of tasks. Our approach is inspired by recent successes of deep
learning. We considered the original network’s structure’s use of deep neural networks for nonlinear
transformation. We then clustered the network nodes into different classes in the new vector
representation of the network structure. We proposed a community detection method based on the
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autoencoder structural transformation of the network connection matrix. The key contributions of this
paper are summarized as follows:

(1). We propose a nonlinear network structure transformation method based on the probability
transfer matrix. The probability transfer matrix is an explicit representation matrix of the graph.

(2). We propose a community detection method based on the autoencoder structural transformation.
The autoencoder structural transformation is an effective method of feature representation, as it
could map a high-dimensional data space to a nonlinear, low-dimensional space.

2. Related Work

With the increasing need to analyze social networks, many different community structure detection
approaches have been proposed. Girvan and Newman first proposed a community detection method
as based on the calculation of edge betweenness [4].

The community detection method originates from the graph partition analysis method. There have
been many community detection methods proposed to perform community partitioning in real social
networks [7,8]. These community detection methods are divided into two categories: the method of
community detection based on modularity Q optimization, and the community detection method
without modularity Q optimization. Modularity Q was initially proposed by Newman et al. [7].
The traditional modularity Q is considered to be used to measure the network partitioning performance.

Many community detection methods have been proposed based on modularity optimization.
Li proposed that the partition method could be used to maximize modularity via the spectral relaxation
method [9]. Zhang et al. proposed a Qcut community partitioning method [10]. The modularity
function has a resolution limit problem, where it cannot identify the small community network
for communities that are smaller than a certain scale [11]. The community division of modularity
optimization is primarily used for the community division of some unknown network structures.
For the networks that have provided the ground-truth of network structures, the partition results
based on the modularity Q are not in accordance with standard network community structures.
The community detection method, based on modularity Q, is not appropriate for the division of such
networks [12]. The community detection and performance evaluation of these networks are done with
community partition methods without modularity Q optimization.

Other community detection methods have also been proposed. The non-negative matrix
factorization partitioning method, which uses the adjacency matrix decomposition of the network,
shows good performance for community detection [13]. A method based on the stochastic block model is
proposed to partition networks (SBM), which is similar to a Bayes network [14]. Langone et al. proposed
a method for the community division based on kernel spectral partitioning [15]. The performance of the
community detection algorithms should be appropriately evaluated, to address the issues surrounding
the network community partition with known initial community structures.

The deep learning neural network has been used to study various types of network structures
in order to achieve a variety of tasks. These include classification and feature representation [16].
The deep autoencoder is considered to be an effective method of feature representation, as it could
map a high-dimensional data space to a nonlinear, low-dimensional space [17]. Its performance
is better than that of linear feature transform processing technology, such as Principal components
analysis (PCA). Cao [18] proposed a novel model to learn graph representations, which generates a
low-dimensional vector representation for each vertex. The clustering and visualization tasks achieved
a superior performance.

Autoencoder is a symmetric, unsupervised learning neural network, which employs self-supervision
to train so that it can non-linearly reduce dimensionality, with the ability to reconstruct data features.
The autoencoder neural network has symmetry.

In this paper, we propose a new community detection method, which combines the random walk
model and deep autoencoder to realize the community partitioning.
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In accordance with the adjacency matrix of a given network A, the probability transfer matrix of P
was calculated by random walk distance. The k step transfer matrix of Pk was calculated. We postulated
that the transfer matrix Pk was an explicit representation matrix of the graph. It is not appropriate for
direct applications of community division. We took the Pk as the input of the deep neural network,
and used the denoising autoencoder to transfer the matrix of Pk into another feature space, X. The X
vector was used as the characteristics of the initial network node representation. We calculated the
transformation of the probabilistic matrix with the autoencoder. The effectiveness of the proposed
transformation was confirmed by using the K-means algorithm to cluster the new node feature space T
into some classes. The original network structure was divided into k community structures. A method
of community detection based on the deep denoising autoencoder feature learning was implemented.

3. The Proposed Method

We now detail our proposed method. The framework of the proposed method is shown in
Figure 1. The framework consists of three major steps. First, given a primitive network, we introduce
random walk model (Section 3.1) to capture network structural information and generate a probability
transfer matrix. Next, we introduce the stacked denoising autoencoder to learn low-dimensional
feature representations and obtain the new representation matrix (Section 3.2). After that, we use a
Euclidean space clustering algorithm to directly cluster the nodes of the new representation matrix,
such as the K-means clustering algorithm.

Figure 1. The framework of the proposed algorithm. (a) Given a primitive network. (b) Adjacency
matrix. (c) Transfer probability matrix. (d) The deep autoencoder network. (e) The new vector space.
(f) K-means clustering and result. (g) The community partitioning result.

3.1. Probability Transfer Matrix

The K-means algorithm was applied to divide the network into communities in a Euclidean
space. To obtain the new Euclidean space, the map of the adjacency matrix of the graph G needed
to be transformed into a new nonlinear space. A network can be represented in the form of a graph
G = (V, E), where V is a collection of nodes, E was a collection of edges that connect nodes, and N = |V|
was the number of nodes. A =

{
ai j
}

was the adjacency matrix of graph G, which was a symmetric
matrix. For a node i belonging to V, D(i) was the degree for node i, D was a N * N diagonal matrix,
Dii = d(i), namely D was the degree matrix of G. The transition probability of the i node to the j node
was defined as

pi j =
ai j

d(i)
. (1)
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The definition of the probability transfer matrix of random walk P =
{
pi j
}

could also be expressed as

P = D−1A (2)

If the P2 was the two-step probability transfer matrix for graph G, P2 was defined as P2 = P * P.
For a given value k, the k step length random walk probability transfer matrix was Pk. The probability
transition matrix was different when the number of steps was different.

The adjacency matrix of the network graph G was used to obtain the k step probability transition
matrix Pk of the graph G. In previous research, the spectral decomposition method could be used
to calculate spectral clustering. The principal component analysis (PCA) could be used, with the Pk

matrix being used as a row vector, where it is projected into a new vector space by linear transformation.
Then, the new vector space was used for further clustering analysis. We studied the effectiveness of the
nonlinear transformations of the deep learning autoencoder. The Pk matrix was considered to be the
input data for the nonlinear transformation, and was mapped to a different space vector X. The original
matrix Pk showed a high-dimensional transformation or a low-dimensional transformation for the new
space X. The new matrix X, as well as the clustering that occasionally occurred, was used to calculate
the network community division.

3.2. Deep Nonlinear Matrix Reconstruction

We proposed a nonlinear matrix transformation method of the probability transfer matrix by
utilizing the deep neural networks. This was used for community detection. The deep neural networks
could be used for feature learning. Many deep neural network models, such as the autoencoder [19]
and the convolution network [20] models, have been proposed.

An autoencoder is a neural network that could reproduce the input signal indefinitely. For the
replication to take place, the autoencoder must capture the most important factor for representing the
input data. The autoencoder requires the input a data to encode. This was the point at which the
network probability transfer matrix was used in the inputs for automatic encoding, x = P. The ith line
of the matrix represented the input information of node i for a hidden y, through the deterministic
mapping, e.g.,

y = S(wx + b), (3)

where S was a non-linearity such as the sigmoid.

S(x) =
1

1 + e−x (4)

The latent representation y, or code, was then mapped back (with a decoder) into a reconstruction
z of the same shape as x. The mapping occurred through a similar transformation, e.g.,

z = s(w/y + b/), (5)

z could be viewed as a prediction of the x under a given coding y. The purpose of an autoencoder
was to minimize the reconstruction error function L(xz) = ‖x− z‖2 by selecting the proper w, b.

Following the decoding of the autoencoder, we obtained the new representation matrix X(i) of the
original probability transition matrix P, for each level of the deep neural network.

To determine if the new matrix X was favorable for community detection, we used a Euclidean
space clustering algorithm to directly cluster the nodes, such as the K-means clustering algorithm.

The K-means algorithm finds optimal solutions with a number of K prototypes {Ci}i=1,2,..,K.
In K-means clustering, objective function is defined as the sum of the squared Euclidean distance
between each data point xi and the cluster center uj, to which xi belongs. The K-means Algorithm 1
has been widely used for data clustering
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Algorithm 1 Description:

Input: network adjacency matrix A, and parameter k.

1. Generate network probability transfer matrix Pk,
2. PK was used as input of autoencoder to carry out nonlinear structure change, and a new space matrix X

was obtained.
3. In the X matrix that used the K-means algorithm, the N network node was divided into K societies VK.

Output: the division of network societies Vk.

4. Results and Discussions

4.1. Network Dataset

In order to evaluate the effectiveness of the proposed model, we performed the test with the
benchmark and real networks. We used the testing networks with the ground-truth. That is, the number
of clusters in the K-means algorithm was equal to the number of communities. The two benchmark
networks and the five real networks were adopted. The networks are shown in Table 1.

Table 1. Network description used in the testing.

Network Node Edge K

GN Network 128 1024 4
LFR Network 1000 7692 28

karate 34 78 2
Dolphins 62 159 2
football 115 613 12

Polbooks 105 441 3
Polblogs 1224 16752 2

With the networks known, the number of communities was tested, in order to compare the
performance of the community detection methods. The two benchmark networks used were widely
used in community detection. The first one was the Girvan–Newman (GN) benchmark. The GN
benchmark network had 128 nodes that were divided into four groups. Each group had 32 nodes [4].
The other was the Lancichinetti-Fortunato-Radicchi (LFR) benchmark network. The LFR had 1000
nodes [21]. The number of communities was 28, which made it difficult to identify the structure of
the communities.

We selected five real networks with various sizes that were commonly used in the community
detection algorithm performance evaluation. These networks are available from the website (Http:
//www-personal.umich.edu/~{}mejn/netdata/).

4.2. Baseline Comparisons

We compared the results with the three different types of baseline algorithms to demonstrate the
performance of the proposed method.

To demonstrate the effectiveness of the nonlinear transformation of the denoising autoencoder,
we used two additional types of matrix transform methods to compare the results. These included
the spectral clustering matrix decomposition method (SC), the K-means clustering method after the
principal component analysis (PCA+kmeans), and the K-means clustering algorithm directly in the
probability transfer matrix P (P+kmeans).

We compared the results from the various parameters. We used two parameters in our proposed
method. The number of steps k of the transition probability matrix, and the number of structure layers
D of the deep neural network, were used to evaluate the partitioning performance under the various
parameter conditions.

Http://www-personal.umich.edu/~{}mejn/netdata/
Http://www-personal.umich.edu/~{}mejn/netdata/
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The proposed method was shown to be effective for the community detection, by comparing the
results with several existing community partitioning algorithms. We used the existing two types of
partition methods; the partitioning algorithm based on modularity optimization, and the partitioning
algorithms without modularity optimization.

The performance results were evaluated by calculating the standard mutual information values
between the discovered community structure and the ground-truth community structure.

4.3. Normalized Mutual Information

Mutual information is a commonly used method. If the community structure and the number of
clusters of a network have been given in advance, the Normalized Mutual Information (NMI) can be
applied to measure the similarity of the detected community structure and the original community
structure. Mutual information as an evaluation function has been widely used in community structures.
If A and B represent the original partition and the detected partition, respectively, C is the confusion
matrix, where Cij is the number of nodes in the ith group of the partition A, that are also in the jth
group of the partition B. The calculation method of NMI is as follows:

NMI(A, B) =
−2
∑CA

i=1
∑CB

j=1 Ci j log(
Ci jN
CiC j

)∑CA
i=1 Ci log(Ci

N ) +
∑CB

i=1 C j log(
C j
N )

(6)

where CA and CB are the number of groups in the partitions A and B. Ci is the sum of the elements of C
in row i, and Cj is the sum of the elements of C in column j. N is the number of nodes. The value of
NMI is between 0 and 1. The larger value represents the detected community structures that are more
consistent with the original partition, which means good results. Mutual information is an external
performance measurement method. Because our testing networks have ground-truth, we can use
mutual information value to evaluate the performance of the different methods.

4.4. Network Structures of Autoencoder

The number of neurons in the various layers was not the same when applied to a different number
of nodes in the network. In order to compare the influence of the various layers on the clustering results,
we divided the deep neural network into four layers. The first layer was the input layer. The number
of neurons for each layer is shown in Table 2. The neurons were activated by the sigmoid function.

Table 2. Deep Nonlinear Reconstruction Network Structures.

Network Layers Configuration

GN Network 128-64-32
LFR Network 1000-500-250

karate 34-17-8
Dolphins 62-32-16
football 115-58-30

Polbooks 105-52-16
Polblogs 1224-612-256

4.5. Baseline Results

In the first experiment, we set the parameter k of the probability transfer matrix to 2. The first
layer was the input layer. We took the first output layer, or the second layer of the deep neural network,
as the feature mapping of the original adjacency network. We used the K-means to cluster the nodes
into K clusters within this space. The results of the clustering were compared with the other three
cases. The results are shown in Table 3.



Symmetry 2020, 12, 944 7 of 10

Table 3. Normalized Mutual Information (NMI) results of different structure transformations.

Network This Paper P + Kmeans SC PCA + Kmeans

GN Network 1 1 1 0.8019
LFR Network 0.9157 0.8949 0.9103 0.8439

karate 1 0.8365 1 0.8365
Dolphins 1 1 0.8166 1
football 0.8935 0.8633 0.8887 0.8623

Polbooks 0.5566 0.5551 0.4366 0.5318
Polblogs 0.6675 0.6702 0.2402 0.6702

As can be seen from Table 3, the performance of the proposed community detection method
was generally better than the other three processing methods after the feature transformation of the
denoising autoencoder. In Tables 3–6, the bold numbers represent the best results in each method.

Table 4. NMI results with different probability transfer matrices.

Network k = 2 k = 3 k = 4

GN Network 1 1 0.8293
LFR Network 0.9157 0.9218 0.9558

karate 1 1 1
Dolphins 1 1 1
football 0.8935 0.8666 0.8643

Polbooks 0.5566 0.5566 0.5629
Polblogs 0.6675 0.6933 0.6845

Table 5. NMI results of different deep layers.

Network Layer2 Layer3 Layer4

GN Network 1 0.8024 1
LFR Network 0.9157 0.8957 0.9265

karate 1 0.199 0.08
Dolphins 1 0.5311 0.2533
football 0.8935 0.8781 0.8356

Polbooks 0.5566 0.3767 0.3852
Polblogs 0.6675 0.0333 0.5843

Table 6. NMI results of different community detection methods.

Network THIS PAPER NMF SKSC WSBM Fastmo

GN Network 1 1 0 0.0333 1
LFR Network 0.9157 0.9002 0.6846 - 1

karate 1 1 1 0.09 0.7236
Dolphins 1 0.8904 1 1 0.5029
football 0.8935 0.8282 0.8131 0.4811 0.8929

Polbooks 0.5566 0.5693 0.5566 0.0390 0.5111
Polblogs 0.6675 0.6924 0.3989 - 0.6416

We can see from Table 3 that the proposed community structure method obtained the best results
in six networks. For example, our proposed algorithm obtained the biggest value of NMI in the LFR
Network, wherein NMI is 0.9157.

The results from the probability transfer matrix were different when the parameter k of the
probability transfer matrix was different. The number of steps was set to 2, 3 and 4. We obtained the
different probability transfer matrix and performed the K-means algorithm to obtain the clustering
results. The clustering results are shown in Table 4.
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Table 4 illustrates that, when the probability transfer matrices were different, the results obtained
by the community detection were not the same. The best results for all data sets from a fixed matrix
could not be obtained.

We used the different output layers of the autoencoder as the output feature mapping matrix.
The results of each layer were different, depending on the different numbers of neurons used to
encode and decode. We took every output layer of the autoencoder of each network as the input data.
The K-means clustering algorithm for clustering was applied. The community partitioning results are
shown in Table 5.

As can be seen from Table 5, we obtained the best community division when we took the output of
the second layer of the autoencoder and applied it as the input of the K-means algorithm. We concluded
that exploring the underlying structure of networks via deep learning could improve the performance
of community detection.

As can be seen from Tables 4 and 5, the clustering results have little relationship with the number
of network layers and different probability transfer matrices.

4.6. Comparison with Other Community Detection Methods

There are many community partitioning algorithms that have been proposed. We used these real
networks, which are widely used to evaluate the performance of community partitioning. We compared
them with other community partitioning methods. The networks we chose had a known number of
communities, so the community detection methods of modularity maximization were not suitable
for comparison. We chose a fast community detection method based on modularity optimization
(fastmo) [22]. We selected several commonly used community detection methods that specified the
number of communities before partitioning. These included the community detection with non-negative
matrix factorization method (NMF) [13], the kernel spectral community partition method (SKSC) [14],
and the stochastic block model-based community detection method (WSBM) [15]. The experimental
results are shown in Table 6.

As can be seen from Table 6, the proposed algorithm achieves the best results in four networks.
While it does not obtain the best experimental results in all networks, it was typically superior to the
other four detection methods.

5. Conclusions

We proposed a deep learning community detection method based on the network structure
transformation. This was chosen to avoid the deficiencies of traditional linear transformations of PCA,
or the problems of the community partitioning method based on modularity optimization. This was
done through the autoencoder to nonlinearly transform the network probability matrix into the
different layers of the deep neural network. K-means clustering was used in a low-dimensional vector
representation. We performed different experiments and compared the results with other methods.
The results showed that the proposed method was superior to the other partition methods, for both the
benchmark and the real networks. Our model showed that the autoencoder could extract meaningful
information from the network graph structure, and perform a nonlinear transformation to generate
novel feature representations. After the conversion of the autoencoder, the novel representation
was more conducive to the identification of the network community structure. Here, we used the
simplest K-means clustering algorithm to obtain superior partitioning results over the other community
detection methods. There has been some research that uses automatic graph subspace learning
recognition with an autoencoder [23,24]. Our work also added the network graph feature transform
learning clustering algorithm, and complex network community partitioning recognition. Our future
research will utilize more complex clustering algorithms to classify the output layer features of deep
learning [25,26].
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Our proposed method is a two-stage work, that applies clustering after having learned a
representation. Our future research will utilize more complex deep clustering algorithms, that jointly
optimize feature learning and clustering.
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