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Abstract: In recent years, the topic of progressive structural collapse has received more attention
around the world, and the study of element importance is the key to studying progressive collapse
resistance. However, there are many elements in truss structures, making it difficult to predict their
importance. The global stiffness matrix contains the specific information of the structure and singularity of
the matrix can reflect the safety status of the structure, so it is useful to evaluate the key elements based on
the global stiffness matrix for truss structures. In this paper, according to the tangent stiffness-based method
for the element importance, the square pyramid grid was chosen as an example, and the distribution rules
of key elements under different support conditions, stiffness distributions, and geometric parameters were
studied. Then, three common symmetric grid forms, i.e., diagonal square pyramid grids, biorthogonal
lattice grids, and biorthogonal diagonal lattice grids, were selected to investigate their importance
indices of elements. The principle in this work can be utilized in progressive collapse analysis and
safety assessment for spatial truss structures.
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1. Introduction

In recent years, the topic of progressive structural collapse has received more and more attention
around the world. Mashhadiali and Kheyroddin [1] studied the progressive collapse with diagrid and
hexagrid building models. Kang and Tan [2,3] carried out an experimental study on the resistance and
failure mode of concrete frames with column removal, which showed that the horizontal forces on
the progressive collapse resistance should be considered. Weng et al. [4] provided a set of damage
assessment criteria for RC frames subject to progressive collapse. There were more experimental
and numerical studies on frames with column removal to study the resistance against progressive
collapse [5–7]. Mohamed and Khattab [8] examined the progressive collapse response of steel structures,
where the moment-resisting frame was only constructed in the perimeter of a regular steel frame.

It should be noted that the analysis of frame structures accounts for a large proportion of previous
studies. Compared with frame structures, investigation on the progressive collapse resistance of
spatial truss structures is relatively rare and lacks depth. The existing research is mainly focused on
the preliminary stage of collapse accident and theoretical analysis. The spatial truss structures are
usually used in large public places and serious damage will be caused by the occurrence of collapse.
It is necessary to study the ability of the resistance against the progressive collapse of truss structures.
Kim and Park [9] studied a truss which includes steel columns and open-web truss girders rigidly
connected to form effective seismic load-resisting systems. The behavior of a metallic truss under
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progressive damage was investigated, and a possible strategy to sustain damage with random removal
of one truss element was defined [10]. Zhao et al. [11] presented an experimental study on the dynamic
progressive collapse behavior of planar trusses. A 3D finite element model of a double-layer space grid
structure was built to investigate the structural behavior, and several collapse scenarios were studied
using the alternative method [12].

The widely used method for analysis of the progressive collapse of structures is the alternative
load path method that can determine whether the structure may undergo progressive collapse with
the removal of failed elements. The structural robustness can indicate the performance of the structure
against the effects of emergencies and progressive collapse. Assessing the importance of elements
is the basis for studying structural robustness. The importance indices of elements can reflect the
influence of individual member failures on global structural performance caused by sudden events
under conventional loads. Based on the robustness, some theories and methods for element importance
have been proposed successfully using new evaluation indices.

Ye et al. [13] established the element importance index based on the generalized structural stiffness
of frame structures. The load pattern and load transferred path are discussed. Jiang and Chen [14]
proposed a method for identifying the sensitive and key elements and studied the robustness of the
steel truss roof using both nonlinear static and dynamic analysis while their procedure is complex.
An evaluation index for how well-formed a node is, based on the displacement and strain energy
under a unit force, was performed by Zhu and Ye [15]. Some researchers proposed an energy-based
structural damage index to judge whether the progressive collapse of a steel frame structure occurs.
Furthermore, they developed a probabilistic assessment method for a steel frame with a column
removal subject to catastrophic events [16,17]. Gordini et al. [18] investigated the effect of length
imperfection in the bearing capacity of double-layer domes space structures probabilistically and
studied the structure’s reliability using the Monte Carlo simulation method. Cai et al. [19] proposed
two structural performance indices based on eigenvalues of the stiffness matrix to predict element
importance of truss structures. Li et al. [20] proposed a new method to quantify robustness and
considered the dynamic effects and the internal force redistribution within a frame structure. A suitable
method for evaluating single-layer grid structures by incremental dynamic analysis using a quantitative
evaluation index called the collapse margin ratio was established by Tian et al. [21]. Yan et al. [22]
proposed a method to identify the critical members of single-layer lattice domes using an index which
implicitly estimates the relative vulnerability to node buckling with a removed member.

During the resistance analysis for the progressive collapse of spatial truss structures, it is impossible
to analyze each initial failure because of the number of elements. Researchers often rely on their own
experience to subjectively select the key elements for analysis in advance. However, this selection
method lacks a theoretical basis. Therefore, it is essential to develop a scientific approach to choose
the key elements during the study. Group theory is usually used on structures with a large number
of elements [23–28]. The method is effective for structures with symmetric or periodic properties,
which are prevalent structural forms in practical engineering. The global tangent stiffness matrix
contains the specific information of the structure, whose singularity can reflect the safety status of
the structure, so it is reasonable to judge the importance of the element based on the global stiffness
matrix [19]. This paper follows the idea of group theory and divides the elements into groups to
improve computational efficiency. Then, according to the tangent stiffness-based method for the element
importance, the square pyramid grid was chosen to study the distribution rules of key elements under
different support conditions, stiffness distributions, and geometric parameters. Then, topology of
some common grids was investigated. Three kinds of grid structures—diagonal square pyramid
grids, biorthogonal lattice grids, and biorthogonal diagonal lattice grids—were selected to study their
importance indices of elements and the distribution of key elements.
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2. Stiffness-Based Evaluation Method for Element Importance

Combining the idea of sensitivity [29], the importance indices of elements based on the tangent
stiffness in this paper are defined as:

αi =
γ0 − γi

f

γ0
(1)

where γ0
f is the determinant of the tangent stiffness of undamaged structures, and γi

f is the determinant
of the tangent stiffness of the structure after the failure of the element i. The αi is in the range of [0,1].
When the index is equal to 1.0, the element is regarded to be the most important. Conversely, the element
with the index zero will not change the tangent stiffness of the truss structure.

Before predicting the key elements of the grid structure, the grid structure needs to be modeled and
calculated. Combined with the tangent stiffness-based method and using MATLAB for programming,
the general steps of the program, shown in Figure 1, are as follows.

(a) According to the symmetry of the truss structures, the simulated model is obtained.
(b) The stiffness matrix of the undamaged structures is calculated based on the topology and geometry

of the truss, the cross-sections and the material behavior of the elements, and the boundary of
the structures.

(c) The Newton–Raphson method is used to get the determinant of the tangent stiffness of the
undamaged structures under external loads.

(d) Delete the ith element, and obtain the determinant of the tangent stiffness of the structure after
the failure of the element i.

(e) Calculate the element importance index of element i based on Equation (1).
(f) Repeat (d) and (e) to obtain element importance indices of all elements.
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3. Analysis of a Square Pyramid Grid

A square pyramid grid, shown in Figure 2, has been chosen to study the distribution of the key
elements. The number of grids in both directions is 8 × 8, the length of the grids is 2.5 m, and the height
of the grids is 1.5 m. Each node of the upper chord is subjected to a load P in the vertical direction.
The upper perimeter nodes are fixed. Moreover, elements are made of steel with elastic modulus
2.1 × 1011 N/m2. The elements of the upper chords and lower chords are steel pipes with 60 mm in
diameter and 4 mm in thickness. For the diagonal web bars, steel pipes of 51 mm in diameter and
4 mm in thickness are used.
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3.1. Effect of the Support Condition

There are two kinds of support conditions. The upper perimeter nodes are all fixed, or only one of
the opposite upper boundary nodes are fixed. The load is applied to each upper node in the vertical
direction, and the structure is still axisymmetric, shown in Figure 3. The element importance index of
the structure under the vertical load of 20 kN on each node is shown in Table 1.Symmetry 2020, 12, x FOR PEER REVIEW 5 of 13 
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Table 1. Element importance index under different support conditions.

Element
Number

Opposite Boundary
Fixed Support

All Boundary
Fixed Support

Percent
Change (%)

Element
Number

Opposite Boundary
Fixed Support

All Boundary
Fixed Support

Percent
Change (%)

9 0.999 0.6308 36.86 167 0.82 0.8004 2.39
10 0.8649 0.7127 17.60 168 0.8 0.7816 2.30
12 0.781 0.7506 3.89 201 0.9381 0.8009 14.63
17 0.999 0.6478 35.16 202 0.901 0.7377 18.12
18 0.8737 0.7258 16.93 203 0.8864 0.7215 18.60
20 0.7986 0.7591 4.95 208 0.8648 0.8517 1.51
33 0.999 0.6506 34.87 210 0.8052 0.7695 4.43
36 0.8035 0.7601 5.40 215 0.8609 0.8569 0.46
76 0.8279 —- —- 222 0.86 0.8579 0.24
89 0.6542 0.6478 0.98 224 0.7888 0.7816 0.91
92 0.762 0.7591 0.38 257 0.6498 0.5041 22.42

105 0.6517 0.6506 0.17 291 0.862 0.5347 37.97
108 0.7608 0.7601 0.09 296 0.7448 0.7244 2.74
145 0.8156 0.8009 1.80 325 0.7445 0.6958 6.54
146 0.7479 0.7377 1.36 329 0.7291 0.7061 3.15
147 0.7286 0.7215 0.97 334 0.7197 0.7103 1.31
152 0.8738 0.8517 2.53 355 0.8676 0.5185 40.24
153 0.8118 0.7889 2.82 360 0.7405 0.7191 2.89
154 0.7888 0.7695 2.45 368 0.7249 0.7158 1.26
166 0.8767 0.8579 2.14

According to Table 1, we can see that:
(a) The release of the support constraint increases the importance of most elements, which are near

the unfixed support. The importance indices of M9, M10, M18, etc. have changed significantly. After the
constraints at both ends of M76 are removed, M76 is no longer an isolated chord; cooperative work
with the overall structure can reflect its importance.

(b) The importance indices of M9, M17, and M33 are very high. When M17 fails, the remaining
chords at the left end node are geometrically coplanar, forming a first-order infinitely small mechanism.
The stiffness perpendicular to the plane is mainly provided by the geometric stiffness. The failure of
these chords significantly reduces the stiffness in this direction. Their importance index is close, but not
equal, to 1.

(c) The distribution of important elements changes with support conditions. The most important
lower chord changes from M166 to M201 (both are near the support and perpendicular to the support
side), and the most important web changes from M296 to M355 (change from the support corner to the
middle unfixed side).

3.2. Effect of the Element Stiffness

The cross sections of the lower chords have been changed to Φ 60 mm × 3 mm (537 mm2),
Φ 60 mm × 4 mm (704 mm2),Φ 63 mm× 5 mm (911 mm2) in turn, to compare their element importance.
The upper surrounding nodes are all fixed with the other boundary conditions unchanged. The nodal
load is 20 kN in the vertical direction. The element number is shown in Figure 3, and the result is given
in Table 2.

Table 2. Important indices of partial elements under different element stiffness.

Element Number ϕ60 × 3 ϕ60 × 4 ϕ63 × 5

9 0.6333 0.6294 0.6262
18 0.7281 0.7248 0.7222
36 0.7627 0.7592 0.7563

100 0.7627 0.7591 0.7562
160 0.7666 0.7971 0.8244
166 0.8295 0.8573 0.8808
201 0.7611 0.8002 0.8332
257 0.5245 0.5023 0.4829
296 0.7334 0.7234 0.7148
360 0.7287 0.7181 0.7092
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According to Table 2, the change in the cross-sectional area can represent the variation in the
stiffness of the element, where the importance of the element decreases as the element stiffness increases.
As the cross-section stiffness of the lower chord increases, the importance of the lower chord increases
while the importance of the web and upper chord decreases. The level of change in the element
importance of the lower chord is the most obvious, followed by that of the web, and that of the upper
chord is the smallest.

4. Effect of the Geometric Parameters

4.1. Number of the Grids

Parametric analysis on the number of grids has been conducted, including 6 × 6, 6 × 8, 6 × 10,
8 × 8, 8 × 10, and 10 × 10. The upper surrounding nodes are all fixed while keeping other conditions
unchanged. The distribution characteristic of the most important elements of the upper chords,
the lower chords, and the webs are discussed, as shown in Figure 4. Because the grid structure is
axisymmetric in both directions, only a quarter of the structure is demonstrated. Moreover, thick blue
lines, thick black lines, and thick red lines represent key elements in the upper chords, lower chords,
and web members, respectively.Symmetry 2020, 12, x FOR PEER REVIEW 7 of 13 
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It can be seen from Figure 4 that the positions of key elements in the web remain unchanged and
not affected by the number of grids. When the plane of the grid is square, the numbers of the most
important upper and lower chords are both two chords. When the plane of the grid is rectangular,
the most important upper chord is located at the most central position along the horizontal direction,
and the most important lower chord is located near the axis of symmetry in the vertical direction.
Although the number of grids affects element importance indices, it does not significantly change the
corresponding positions. When the grids are determined, the locations of key elements are determined.

4.2. Sizes of the Grids

We have now tuned the grid sizes to 2.5 m × 1.5 m, 2.5 m × 2.0 m, 2.5 m × 2.5 m, and 2.5 m × 3.0 m
in turn for comparison. The upper surrounding nodes are all fixed with the other conditions remaining
the same. The same external load is applied in the vertical direction, and the corresponding analysis
results are given in Table 3.

Table 3. Importance index of partial elements under different sizes of the grids.

Element Number 2.5 m × 1.5 m 2.5 m × 2.0 m 2.5 m × 2.5 m 2.5 m × 3.0 m

9 0.6021 0.6144 0.6294 0.6460
36 0.7362 0.7470 0.7592 0.7716

100 0.8355 0.7996 0.7591 0.7187
108 0.8356 0.7996 0.7592 0.7188
160 0.7636 0.7794 0.7971 0.8154
166 0.8274 0.8417 0.8573 0.8731
222 0.9506 0.9068 0.8573 0.8074
224 0.9012 0.8384 0.7808 0.7301
296 0.6870 0.7060 0.7234 0.7385
360 0.6850 0.7016 0.7181 0.7333

According to Table 3, the importance indices of elements are more sensitive to adjustment in grid
size, especially M222 and M224. When the grid is square, the importance indices of the lower chords
M166 and M222 are both the highest. When the horizontal grid size reduces, the importance index of
the lower chord M222 in the horizontal direction increases, becoming the most important element.
In contrast, the importance index of the chord M166 decreases. The adjustment of linear stiffness of
elements can be achieved by changing the grid size. Therefore, it can be concluded that the importance
of the element increases with linear stiffness.

5. Effects of the Topology of the Grid Structures

In this subsection, grid structures with different topologies are investigated. Three kinds of
symmetric grid structures—diagonal square pyramid grid structures, biorthogonal lattice grid
structures, and biorthogonal diagonal lattice grid structures—are studied for their importance indices
of elements, shown in Figures 5–7. The grid size of all of the upper chords is 1.2 m × 1.2 m. Eight nodes
are distributed over horizontal and vertical members, and the heights of the grids are 1.0 m. The upper
surrounding nodes are assumed to be fixed, subject to uniform vertical load. The elastic modulus of
each element is 2.1 × 1011 N/m2. For a diagonal square pyramid grid, the cross-section 89 mm × 4 mm
(1068 mm2) is for upper chords, 102 mm × 7 mm (2089 mm2) is for lower chords, and 89 mm × 5 mm
(1319 mm2) is for webs. For a biorthogonal lattice grid structure and a biorthogonal diagonal lattice
grid structure, the cross-section 60 mm × 4 mm (704 mm2) is for upper chords, the cross-section
60 mm × 4 mm (704 mm2) is for lower chords, and the cross-section 51 mm × 4 mm (591 mm2) is for
web members. The symmetrical area of the grids, the number of elements, and the distribution of
key elements are all shown in Figures 5–7. The importance indices of some elements are shown in
Tables 4–6.
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From the results in Tables 4–6, it can be seen that the load hardly affects the importance indices
of elements. The importance index under no load can be directly used in the analysis of the key
elements of the grid truss structure. Usually, the sequence of key elements for three kinds of grids
structure is vertical webs, lower chords, upper chords, and diagonal chords. In the upper chords,
the more important elements are all concentrated in the center of the upper chord plane. In the lower
chords, the more important elements are all located around the lower chord plane, whose redundancy
is lower. For the diagonal square pyramid grid structure, the importance indices of other elements
are relatively higher, except for the elements near the support in the webs. The importance index
of the webs is higher than that of the other chords. For the biorthogonal lattice grid structure and
the biorthogonal diagonal lattice grid structure, the importance indices of vertical webs are generally
very high, reaching above 0.94, due to their low redundancy in the vertical direction. In the vertical
direction, the vertical web members are both the main contributor to stiffness and the main path for
transferring loads.
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Table 4. Importance index of partial elements in a diagonal square pyramid grid structure.

Element Number
Load (kN)

Element Number
Load (kN)

0 5 10 15 0 5 10 15

9 0.5947 0.5962 0.5976 0.5991 365 0.7884 0.7892 0.7899 0.7907
65 0.6516 0.6529 0.6541 0.6554 413 0.8824 0.8829 0.8834 0.8839
92 0.8543 0.8548 0.8552 0.8556 461 0.6472 0.6484 0.6496 0.6509

155 0.8536 0.8541 0.8546 0.8550 485 0.7884 0.7892 0.7900 0.7907
220 0.8538 0.8543 0.8547 0.8552 488 0.9612 0.9613 0.9614 0.9615
292 0.9072 0.9076 0.9079 0.9083 542 0.9603 0.9606 0.9608 0.9611
306 0.9136 0.9140 0.9145 0.9149 550 0.9611 0.9614 0.9617 0.9619
308 0.8566 0.8573 0.8581 0.8589 616 0.9604 0.9606 0.9608 0.9609

Table 5. Importance indices of partial elements in a biorthogonal lattice grid structure.

Element Number
Load (kN)

Element Number
Load (kN)

0 5 10 15 0 5 10 15

11 0.7939 0.7953 0.7968 0.7982 229 0.9473 0.9479 0.9485 0.9490
31 0.8311 0.8323 0.8335 0.8346 237 0.9501 0.9506 0.9512 0.9517
81 0.7816 0.7831 0.7846 0.7861 243 0.9446 0.9452 0.9458 0.9464
90 0.8033 0.8047 0.8060 0.8074 244 0.9487 0.9492 0.9498 0.9503

107 0.8195 0.8207 0.8220 0.8232 250 0.9448 0.9453 0.9458 0.9463
108 0.8313 0.8325 0.8337 0.8348 253 1.0000 0.9983 0.9984 0.9985
145 0.8919 0.8927 0.8934 0.8942 278 0.7160 0.7180 0.7199 0.7219
159 0.7973 0.7987 0.8001 0.8014 283 0.7836 0.7852 0.7868 0.7883
193 0.9034 0.9040 0.9047 0.9053 287 0.7839 0.7855 0.7871 0.7887
199 0.9043 0.9050 0.9056 0.9062 291 0.7894 0.7910 0.7925 0.7940
205 0.9031 0.9038 0.9045 0.9052 341 0.7619 0.7636 0.7653 0.7670
207 0.8192 0.8205 0.8218 0.8230 357 0.7768 0.7784 0.7800 0.7815

Table 6. Importance index of partial elements in a biorthogonal diagonal lattice grid structure.

Element Number
Load (kN)

Element Number
Load (kN)

0 5 10 15 0 5 10 15

1 0.8176 0.8207 0.8238 0.8267 382 0.9561 0.9572 0.9583 0.9593
22 0.7881 0.7917 0.7952 0.7985 390 0.9417 0.9428 0.9439 0.9449
25 0.8550 0.8574 0.8597 0.8620 408 0.9545 0.9559 0.9571 0.9585

113 0.7853 0.7889 0.7924 0.7958 411 1.0000 0.9984 0.9986 0.9989
122 0.8505 0.8529 0.8554 0.8577 503 0.8268 0.8296 0.8324 0.8351
225 0.8816 0.8836 0.8855 0.8874 534 0.7843 0.7880 0.7917 0.7952
237 0.8974 0.8991 0.9008 0.9024 536 0.7746 0.7784 0.7822 0.7858
275 0.8264 0.8293 0.8322 0.8350 552 0.6889 0.6941 0.6992 0.7042
345 0.8953 0.8970 0.8987 0.9003 559 0.7275 0.7321 0.7366 0.7409
369 0.9390 0.9400 0.9411 0.9421 573 0.7821 0.7858 0.7894 0.7929

6. Conclusions

In this paper, according to the evaluation method of the important elements based on stiffness,
the importance indices of elements were calculated using the MATLAB program. The square pyramid
grid structure was taken as the original structure, and the characteristics of the key elements of the
structure with different support conditions, stiffness distribution, and geometric parameters were
studied. Then, the grid structures with different topologies were investigated. Three kinds of grid
structures—diagonal square pyramid grids, biorthogonal lattice grids, and biorthogonal diagonal
lattice grids—were investigated for their importance indices of elements.

For different types of grid structures, if the periphery of the upper chords is restrained,
the distribution positions of key elements of the upper and lower chords remain unchanged. In the
upper chords, the higher important elements are concentrated at the center of the upper chord plane.
In the lower chords, the higher important elements are located around the lower chord plane.

After releasing the restraints at the support, the importance indices of most elements near the
released support will increase, which means that structural design requires special consideration of
these elements. It is significant for the influence of the element section stiffness and the grid size on the
importance indices of the elements. The change of these two parameters is essentially a change in the
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linear stiffness of the element. When the key elements are located, it is useful to increase linear stiffness
to decrease importance indices. Moreover, the number of grids affects the importance of the elements
but does not change the distribution position of key elements. Once the forms of grids are determined,
the locations of key elements are determined. These elements should be designed particularly.

This work can be extended in two directions. The applicability of the method to the complex spatial
truss structures without symmetry and periodicity should be discussed. Then, the computational cost
will be regarded as an important target to optimize the method. The other is the threat assessment.
The possibility of an external threat and initial failure should be investigated. The probabilistic
approaches and Monte Carlo simulation will be introduced. Moreover, experiments will be performed
to verify the proposed method.
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