
symmetryS S

Article

Extending the Convergence Domain of Methods of
Linear Interpolation for the Solution of
Nonlinear Equations

Ioannis K. Argyros 1,∗, Stepan Shakhno 2 and Halyna Yarmola 3

1 Department of Mathematics, Cameron University, Lawton, OK 73505, USA
2 Department of Theory of Optimal Processes, Ivan Franko National University of Lviv, Universitetska Str. 1,

79000 Lviv, Ukraine; stepan.shakhno@lnu.edu.ua
3 Department of Computational Mathematics, Ivan Franko National University of Lviv, Universitetska Str. 1,

79000 Lviv, Ukraine; halyna.yarmola@lnu.edu.ua
* Correspondence: ioannisa@cameron.edu

Received: 26 May 2020; Accepted: 29 June 2020; Published: 1 July 2020
����������
�������

Abstract: Solving equations in abstract spaces is important since many problems from diverse
disciplines require it. The solutions of these equations cannot be obtained in a form closed. That
difficulty forces us to develop ever improving iterative methods. In this paper we improve the
applicability of such methods. Our technique is very general and can be used to expand the
applicability of other methods. We use two methods of linear interpolation namely the Secant
as well as the Kurchatov method. The investigation of Kurchatov’s method is done under rather
strict conditions. In this work, using the majorant principle of Kantorovich and our new idea of the
restricted convergence domain, we present an improved semilocal convergence of these methods.
We determine the quadratical order of convergence of the Kurchatov method and order 1+

√
5

2 for the
Secant method. We find improved a priori and a posteriori estimations of the method’s error.

Keywords: nonlinear equation; iterative process; convergence order; secant method; Kurchatov
method; Banach space; divided difference; local; semi-local convergence
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1. Introduction

We consider solving equation
F(x) = 0 (1)

using iterative methods. Here F : Ω ⊂ B1 → B2, B1, B2 are Banach spaces, Ω is an open region of B1.
Secant method

xn+1 = xn − [xn, xn−1; F]−1F(xn), n = 0, 1, . . . (2)

is a popular device for solving nonlinear equations. It is due to the following: simplicity of the
method; small amount of calculations on each iteration and use of the value of an operator from
only two previous iterations in the iterative formula of the method. A lot of works are dedicated to
this method [1–3]. In [4] the Secant method is used for solving the nonlinear least squares problem.
The Kurchatov’s method of linear interpolation

xn+1 = xn − [2xn − xn−1, xn−1; F]−1F(xn), n = 0, 1, . . . (3)
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is less known. This method has the same order of convergence as Newton’s method but does not
require the calculation of derivatives. In (2) and (3), [u, v; F] is a divided difference of the first order for
the operator F at the points u and v [5,6].

In this work we will investigate the Secant method and Kurchatov’s method using the
Kantorovich’s principle of majorants. For the first time, this principle was used by L.V. Kantorovich
for investigating the convergence of the classical and modified Newton’s method, having built for
the nonlinear operator a majorizing real quadratic function [7]. Corresponding to this, the iterative
sequence for nonlinear operator is majorized by a converging sequence for nonlinear equation with
one variable. Later the nonlinear majorants for investigating other methods of solving nonlinear
functional equations have been built. In work [8] with the help of the majorant principle, a method
with the order of convergence 1.839..., which in its iterative formula uses the value of an operator
from the three previous iterations, is investigated. Specifically, a real cubical polynomial, which
majorizes the given nonlinear operator is built. With that, the Lipschitz conditions are put upon the
divided differences’ operator of the second order [8,9]. We investigate the Secant method with different
conditions that have been put upon the nonlinear operator. In particular, if the Lipschitz condition
for the divided differences of the first order are fulfilled, the quadratic majorizing function of one
variable is built, and if the Lipschitz condition for operator of divided difference of the second order
are fulfilled, the cubical majorizing function is built. The cubical majorizing function for Kurchatov’s
method is also built. Methods of linear interpolation applied to these functions produce a numerical
sequence, which majorizes by norm the iterative sequence, produced by applying these methods to the
nonlinear operator. In all cases, the a priori and a posteriori error estimations of the linear interpolation
methods are also provided.

2. Divided Differences and Their Properties

Let us assume that x, y and z are three points in region Ω.

Definition 1 ([6]). Let F be a nonlinear operator defined on a subset Ω of a Banach space B1 with values in a
Banach space B2 and let x, y be two points of Ω. A linear operator from B1 to B2 which is denoted by [x, y; F]
and satisfies the conditions:

(1) for all fixed two points x, y ∈ Ω

[x, y; F](x− y) = F(x)− F(y), (4)

(2) if exist a Fréchet derivative F′(x), then

[x, x; F] = F′(x) (5)

is called a divided difference of F at the points x and y.

Note that (4) and (5) do not uniquely determine the divided difference with the exception of the
case when B1 is one-dimensional. For specific spaces, the differences are defined in Section 6.

Definition 2 ([8]). The operator [x, y, z; F] is called divided difference of the second order of function F at the
points x, y and z, if

[x, y, z; F](y− z) = [x, y; F]− [x, z; F]. (6)

We assume that for [x, y; F] and [x, y, z; F] the conditions of the Lipschitz type are being satisfied
in the following form:

‖[x, y; F]− [x, z; F]‖ ≤ p‖y− z‖, x, y, z ∈ Ω, (7)

‖[y, x; F]− [z, x; F]‖ ≤ p̄‖y− z‖, x, y, z ∈ Ω, (8)
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‖[x, y, z; F]− [u, y, z; F]‖ ≤ q‖x− u‖, u, x, y, z ∈ Ω. (9)

If the divided difference [x, y; F] of F satisfies (7) or (8), then F is differentiable by Fréchet on Ω.
Moreover, if (7) and (8) are fulfilled, then the Fréchet derivative is continuous by Lipschitz on Ω with
the Lipschitz constant L = p + p̄ [8].

Let us denote U(x0, τ) = {x ∈ Ω : ‖x − x0‖ < τ} and U(x0, τ) = {x ∈ Ω : ‖x − x0‖ ≤ τ} .
The semilocal convergence of the Secant method uses the conditions (C):

(c1) F : Ω → Y is nonlinear operator with [·, ·; F] : Ω ×Ω →L(B1, B2) denoting a first order
divided difference on Ω.

(c2) Let x0, x−1 ∈ Ω. Suppose that the linear operator A0 is invertible and let a, c be nonnegative
numbers such that

‖x0 − x−1‖ ≤ a, ‖A−1
0 F(x0)‖ ≤ c.

(c3) Assume that the following conditions hold on Ω

‖A−1
0 (A0 − [x0, x0; F])‖ ≤ p̃‖x0 − x−1‖ for some p̃ > 0

or
‖A−1

0 (A0 − [x0, x0; F])‖ ≤ b0.

Moreover, assume the following Lipschitz conditions hold for all u, v, z ∈ Ω for some p̃0 > 0 and
˜̃p0 > 0

‖A−1
0 ([x0, x0; F]− [x0, v; F])‖ ≤ p̃0‖v− x0‖

and
‖A−1

0 ([x0, u; F]− [z, u; F])‖ ≤ ˜̃p0‖z− x0‖.

Set b = min{b0, p̃a}. Define

Ω0 = Ω ∩U(x0, r̃), r̃ =
1− b

p̃0 + ˜̃p0

provided b < 1.
(c4) The following Lipschitz conditions hold on Ω0 for some p̄0 > 0 and ¯̄p0 > 0

‖A−1
0 ([z, u; F]− [z, v; F])‖ ≤ p̄0‖u− v‖

and

‖A−1
0 ([u, z; F]− [v, z; F])‖ ≤ ¯̄p0‖u− v‖.

Set p = max{ p̄0, ¯̄p0}.
(c5) Suppose pa < 1, and define r̄ =

1− pa
2p

and

h̄(t) = −pt2 + (1− pa)t.

Moreover, suppose

c ≤ h̄(r̄) =
(1− pa)2

4p
. (10)

(c6) U0 = U(x0, r̄0) ⊂ Ω, where r̄0 is the unique root in (0, r̄] of equation h̄(t)− c = 0.
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Remark 1. The following Lipschitz condition is used in the literature for the study of iterative methods using
divided differences [1–4,8–16] for p0 > 0

‖A−1
0 ([x, y; F]− [u, v; F])‖ ≤ p0(‖x− u‖+ ‖y− v‖),

although it is not really needed, since tighter conditions are really needed (see conditions (C) and proofs
that follow).

By these definitions we have
p̃0 ≤ p0,

˜̃p0 ≤ p0,

p ≤ p0,

Ω0 ⊆ Ω.

The sufficient semilocal convergence criterion in the literature arrived at different ways and corresponding
to (c5) [1] is

c ≤ h(r) =
(1− p0a)2

4p0
, (11)

where
h(t) = −p0t2 + (1− p0a)t, r =

1− p0a
2p0

provided that p0a < 1 (stronger than pa < 1).

Then, we have
c ≤ h(r) ⇒ c ≤ h̄(r̄), (12)

but not necessarily vice versa, r ≤ r̄ and h̄(t) ≤ h(t) for each t ∈ [0, r].
Hence, the applicability of the Secant method is extended and under no additional conditions,

since all new Lipschitz conditions are specializations of the old condition. Then, in practice the
computation of p0 requires that of of the other “p” as special cases. Some more advantages are reported
after Proposition 1. It is also worth noticing that (c3) and (c4) help define Ω0 through which p̄0, ¯̄p0 and
p are defined too. With the old approach p depends only on Ω, which contains Ω0. In our approach
the iterates xn remain in Ω0 (not Ω used in [1]). That is why our new p constants are at least as tight as
p0. There is where the novelty of our paper lies and the new idea helps us extend the applicability
of these methods. It is also worth noticing that the new constants are specializations of the old ones.
Hence, no additional conditions are added to obtain these extensions.

It is worth noting from the proof of Theorem 1 that Ω0 can be defined as Ω0 = Ω ∩U
(
x0,

1− b
p̃0

)
or Ω0 = Ω ∩U

(
x0,

1− b
˜̃p0

)
.

Theorem 1. Suppose that the conditions (C) hold. Then, the iterative procedure (2) is well defined and the
sequence generated by it converges to a root x∗ of the equation F(x) = 0. Moreover, the following error
estimate holds:

‖xn − x∗‖ ≤ tn, n = −1, 0, 1, . . . , (13)

where
t−1 = r̄0 + a, t0 = r̄0, (14)

tn+1 = tn
ptn−1

1− pa− 2pr̄0 + p(tn + tn−1)
, n = 0, 1, . . . (15)
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The semilocal convergence of the discussed methods was based on the verification of the
criterion (11). If this criterion is not satisfied there is no guarantee that the methods converge. We have
now replaced (11) by (10) which is weaker (see (12)).

Proof. Notice that the sequence {tn}n≥0 is generated by applying the iterative method (2) to a
real polynomial

f (t) = pt2 + (1− pa + 2pr̄0)t.

It is easy to see that the sequence monotonically converges to zero. In addition, we have

tn+1 − tn+2 =
( f (tn+1)− f (tn)

tn+1 − tn

)−1
f (tn+1)

=
p(tn−1 − tn+1)

1− pa− p(2t0 − tn − tn+1)
(tn − tn+1). (16)

We prove by using of induction that the iterative method is well defined and that

‖xn − xn+1‖ ≤ tn − tn+1. (17)

Using (c2), (c5) , (13), (14) and

t0 − t1 =
t−1 − t0

f (t−1)− f (t0)
f (t0)

=
t−1 − t0

p(t2
−1 − t2

0) + (1− pa− 2pr̄0)(t−1 − t0)
f (t0) = f (r̄0) = h̄(r̄0) = c, (18)

it follows that (17) holds for n = −1, 0. Let k be a nonnegative integer and for all the n ≤ k fulfills (17).
If Ak+1 = [xk+1, xk; F], then by (c3), we have

‖I − A−1
0 Ak+1‖ = ‖A−1

0 (A0 − Ak+1)‖

= ‖A−1
0 ([x0, x−1; F]− [x0, x0; F] + [x0, x0; F]− [x0, xk; F] + [x0, xk; F]− [xk+1, xk; F])‖

≤ b + p̃0‖x0 − xk‖+ ˜̃p0‖x0 − xk+1‖

≤ b + p̃0(t0 − tk) + ˜̃p0(t0 − tk+1) < b + ( p̃0 + ˜̃p0)t0 ≤ b + ( p̃0 + ˜̃p0)r̄

≤ b + ( p̃0 + ˜̃p0)
1− b

p̃0 + ˜̃p0
= 1. (19)

In view of the Banach lemma [7] Ak+1 is invertible, and

‖A−1
k+1 A0‖ ≤ (1− pa− p(‖x0 − xk+1‖+ ‖x0 − xk‖))−1. (20)

Next, we prove that the iterative method exist forn = k + 1. We get

‖xk+1 − xk+2‖ = ‖A−1
k+1F(xk+1)‖

= ‖A−1
k+1(F(xk+1)− F(xk)− Ak(xk+1 − xk))‖

≤ ‖A−1
k+1 A0‖‖A−1

0 ([xk+1, xk; F]− Ak)‖‖xk − xk+1‖. (21)

By condition (c4), we have

‖A−1
0 ([xk+1, xk; F]− Ak)‖ = ‖A−1

0 ([xk+1, xk; F]− [xk, xk; F] + [xk, xk; F]− [xk, xk−1; F])‖
≤ p(‖xk − xk+1‖+ ‖xk−1 − xk‖). (22)
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Then, it follows from (20)–(22)

‖xk+1 − xk+2‖ ≤
p(‖xk − xk+1‖+ ‖xk−1 − xk‖)‖xk − xk+1‖

1− pa− p(‖x0 − xk+1‖+ ‖x0 − xk‖)
.

In view of (16) and (17), we obtain

‖xk+1 − xk+2‖ ≤ tk+1 − tk+2.

Hence, the iterative method is well defined for each n. Hence, it follows that

‖xn − xk‖ ≤ tn − tk, −1 ≤ n ≤ k. (23)

Estimate (23) shows that {xn}n≥0 is a Cauchy sequence in space B1 so, it is converging. Let k tend
to infinity in formula (23), then we get (13). It is easy to see that x∗ is the root of equation F(x) = 0,
because accordingly to (22), we can write

‖A−1
0 F(xk+1)‖ = ‖A−1

0 ([xk+1, xk; F]− Ak)(xk+1 − xk)‖
≤ p(‖xk − xk+1‖+ ‖xk − xk−1‖)‖xk − xk+1‖. (24)

Corollary 1. The convergence order of iterative Secant method (2) is equal to 1+
√

5
2 .

Proof. From equality (15) it follows that the order of convergence of the real sequence {tn}n≥0 is the
only positive root of the equation s2 − s− 1 = 0, i.e., s∗ = 1+

√
5

2 = 1.618 . . .. Given inequality (13),
according to Kantorovich’s majorant principle, we obtain that the sequence {xn}n≥0 also has an order
of convergence 1+

√
5

2 .

Concerning the uniqueness of the solution, we have the result.

Proposition 1. Under the conditions (C) further suppose that for d > 0

‖A−1
0 (A0 − [x∗, v; F])‖ ≤ d(‖x0 − x∗‖+ ‖x−1 − v‖)

holds for all u, v ∈ Ω1, where Ω1 = Ω ∩U(x0, R̄), R̄ =
1− d(a + r̄0)

d
and provided d(a + r̄0) < 1, where x∗

is a solution of equation F(x) = 0. Then, x∗ is the only solution of equation F(x) = 0 in the set Ω1.

Proof. Let M = [x∗, y∗; F], where y∗ ∈ Ω1 and F(y∗) = 0. Then, we get

‖A−1
0 (A0 − [x∗, y∗; F])‖ ≤ d(‖x0 − x∗‖+ ‖x−1 − y∗‖) < d(r̄0 + a + R̄) = 1,

so x∗ = y∗ follows from 0 = F(x∗)− F(y∗) = [x∗, y∗; F](x∗ − y∗).

Remark 2. The result in Proposition 1 improves the corresponding one in the literature using the old condition,

since R =
1− p0

2p0
≤ R̄. Hence, we present a larger ball inside which we guarantee the uniqueness of the

solution x∗.

If, additionally, the second divided difference of function F exists and satisfies the Lipschitz
condition with constant q, then the majorizing function for F(x) is a cubical polynomial. Then,
the following theorem holds.

Theorem 2. Under the (C) conditions (except (c5)) further suppose



Symmetry 2020, 12, 1093 7 of 15

(h1) Let us presume that pa + qa2 ≤ 1 and denote

s =
{
(p + qa)2 + 3q(1− pa− qa2)

}1/2, r̄ =
1− pa− qa2

p + qa + s
.

Let h be a real polynomial

h̄(t) = −qt3 − (p + qa)t2 + [1− pa− qa2]t.

It the following inequality is satisfied

c ≤ h̄(r̄) =
1
3
· p + qa + 2s

1− qa2

(1− pa− qa2

p + qa + s

)2
(25)

and the closed ball U0 = U(x0, r̄0) ⊂ Ω, where r̄0 ∈ (0, r̄] is the root of equation h̄(t) = c(1− qa2).
(h2)

‖A−1
0 ([x, y, z; F]− [u, y, z; F])‖ ≤ q‖x− u‖. (26)

(h3) Conditions of Propositions 1 hold on Ω0.
Then, the iterative method (2) is well defined and the generated by it sequence converges to the solution x∗

of the equation F(x) = 0. Moreover, the following estimate is satisfied

‖xn − x∗‖ ≤ tn, n = −1, 0, 1, 2, . . . , (27)

where
t0 = r̄0, t−1 = r̄0 + a, (28)

a0 = p + 3qr̄0 + qa, b0 = 3qr̄2
0 − 2a0r̄0 − qa2 − pa + 1, (29)

tn+1 = tntn−1 ·
a0 − q(tn + tn−1)

b0 + a0(tn + tn−1)− q(t2
n + tn−1tn + t2

n−1)
,

n = 0,1,2, . . . .
(30)

This proof is analogous to the proof of Theorem 1.

Remark 3. (a) The majorizing sequences {tn} are more precise than the one in [1] (using (p0, q0) instead of
(p, q), respectively).

(b) Similar advantages we report in the case of Theorem 2, see e.g., [1] where instead of (h2) the following
condition is used on Ω

‖A−1
0 ([x, y, z; F]− [u, y, z; F])‖ ≤ q0‖x− u|).

We have
q ≤ q0

(since Ω0 ⊆ Ω).

3. A Posteriori Estimation of Error of the Secant Method

If the constants a, c, p, q are known, then we can compute the sequence {xn}n≥0 before generating
the sequence {xn}n≥0 by the iterative Secant algorithm. With help of inequalities (13) and (27), the a
priori estimation of error of the Secant method is given. We obtain an a posteriori estimation of the
method’s error, which is sharper than the a priori one.

Theorem 3. Let the conditions of the Theorem 2 hold. Denote

en = p(‖xn − xn−1‖+ ‖xn−1 − xn−2‖)‖xn − xn−1‖,
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gn = 1− pa− 2p‖xn − x0‖.

Then, the estimate holds for n = 1, 2, 3, . . .

‖xn − x∗‖ ≤
2en

gn + (g2
n − 4pen)

1
2
≤ tn.

Proof. By condition (c4), we have

‖I − A−1
0 [xn, x∗; F]‖ = ‖A−1

0 ([x0, x−1; F]− [x0, x0; F] + [x0, x0; F]

−[xn, x0; F] + [xn, x0; F]− [xn, x∗; F])‖
≤ p(‖x0 − x−1‖+ ‖xn − x0‖+ ‖x0 − x∗‖)
≤ pa + p(2‖xn − x0‖+ ‖xn − x∗‖)
≤ pa + p(2t0 − 2tn + tn) = pa + 2pt0 − ptn < pa + 2pt0.

It is easy to see that pa + 2pt0 ≤ 1. Then, according to the Banach lemma [xn, x∗; F] is
invertible, and

‖[xn, x∗; F]−1 A0‖ ≤
1

1− p(‖x0 − x−1‖+ ‖xn − x0‖+ ‖x0 − x∗‖)
≤ (gn − p‖xn − x∗‖)−1. (31)

From (4) we can write

xn − x∗ = [xn, x∗; F]−1(F(xn)− F(x∗)) = ([xn, x∗; F]−1 A0)A−1
0 F(xn).

Using (24) and (31), we obtain an inequality

‖xn − x∗‖ ≤ (gn − p‖xn − x∗‖)−1en,

from which follows that

‖xn − x∗‖ ≤ 2{gn + (g2
n − 4pen)

1
2 }−1en,

tn =
pt2

n + (1− pa− 2pr0)tn

ptn + (1− pa− 2pr0)

=
p(tn−2 − tn)

1− pa− 2p(t0 − tn)− ptn
(tn−1 − tn)

≥ en

gn − p‖xn − x∗‖
≥ ‖xn − x∗‖. (32)

If the second divided difference of function F exists and satisfies the Lipschitz condition with
constant q, then the following theorem holds.

Theorem 4. Let the conditions of the Theorem 2 hold. Denote

en = p(‖xn − xn−1‖+ ‖xn−2 − xn−1‖) + q‖xn−1 − xn−2‖2,

gn = 1− pa− qa2 − 2p‖xn − x0‖.
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Then the following estimate holds for n = 1, 2, 3, ...

‖xn − x∗‖ ≤
2en

gn + (g2
n − 4pen)

1
2
≤ tn.

Proof. The proof of this theorem is similar to the previous theorem, but instead of inequalities (32),
the following majorizing inequalities are used

tn =
−qt3

n + a0t2
n + b0tn

−qt2
n + a0tn + b0

=
p(tn−2 − tn) + q(tn−2 − tn−1)

2 + q[2t0 + t−1 + tn−1 + tn−2 + tn)]

1− pa− qa2 − 2p(t0 − tn)− ptn − (3qr0 + qa)(t0 − tn)2 − qt2
n − qat0

≥ p(tn−2 − tn) + q(tn−2 − tn−1)
2

1− pa− qa2 − 2p(t0 − tn)− ptn
≥ en

gn − p‖xn − x∗‖
≥ ‖xn − x∗‖.

4. Semilocal Convergence of the Kurchatov’s Method

Sufficient conditions of semilocal convergence and the speed of convergence of the Kurchatov’s
method (3) are determined by the following theorem.

Theorem 5. Suppose: Conditions (c1)− (c4), (h2) and (h3) hold, but with A0 = [2x0 − x−1, x−1; F] and

Ω0 = Ω ∩U(x0, r̃), where r̃ =
1− q̃a2

3p̃0 + ˜̃p0
, provided q̃a2 < 1 and

‖A−1
0 ([2x0 − x−1, x−1, x0; F]− [x0, x−1, x0; F])‖ ≤ q̃‖x0 − x−1‖.

Let us assume that 2qa2 ≤ 1 and denote

s =
{
(p + qa)2 + 3q(1− qa2)

}1/2, r̄ =
1− qa2

p + qa + s
.

Let h̄ be a real polynomial

h̄(t) = −qt3 − (p + qa)t2 + (1− qa2)t.

Assume

c(1− 2qa2) ≤ h̄(r̄) =
1
3
· (p + qa + 2s)

( 1− qa2

p + qa + s

)2
,

x0, x−1 ∈ U0 ⊆ V0 = U(x0, 3r̄0) ⊂ Ω, and r̄0 ∈ (0, r̄] is the unique root of equation h̄(t)− c(1− 2qa2) = 0,
then the iterative Kurchatov’s method (3) is well defined and the sequence generated by it converges to the
solution x∗ of the equation (1). Moreover, the following inequality is being satisfied

‖xn − x∗‖ ≤ tn, n = −1, 0,1,2, · · · , (33)

where
t0 = r̄0, t−1 = r̄0 + a,

a0 = p + 3qr̄0 + qa, b0 = 3qr̄2
0 − 2a0r̄0 − qa2 + 1,

tn+1 = tn ·
a0tn − q(tn − tn−1)

2 − 2qt2
n

b0 + 2a0tn − q(tn − tn−1)2 − 3qt2
n

, n = 0,1,2, . . . (34)
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Proof. The proof of the theorem is realized with help of the majorants of Kantorovich. As in Theorem 1
but we also use the crucial estimate

‖I − A−1
0 Ak+1‖ = ‖A−1

0 (A0 − Ak+1)‖
= ‖A−1

0 ([2x0 − x−1, x−1; F]− [x0, x−1; F] + [x0, x−1; F]− [x0, x0; F] + [x0, x0; F]

−[xk+1, x0; F] + [xk+1, x0; F]− [xk+1, xk; F] + [xk+1, xk; F]− [2xk+1 − xk, xk; F])‖
= ‖A−1

0
(
([2x0 − x−1, x−1, x0; F]− [x0, x−1, x0; F])(x0 − x−1)

+[x0, x0; F]− [xk+1, x0; F]

+[xk+1, x0; F]− [xk+1, xk; F] + [xk+1, xk; F]− [2xk+1 − xk, xk; F]
)
‖

≤ q̃a2 + ( p̃0 + ˜̃p0)‖x0 − xk+1‖+ 2p̃0‖x0 − xk‖.

Corollary 2. The convergence order of iterative Kurchatov’s procedure (3) is quadratic.

Proof. As a result that according to (34) the convergence of the sequence {tn}n≥0 to zero not higher
than quadratic, then there are C ≥ 0 and N > 0, that for all n ≥ N the inequality holds

(tn − tn−1)
2 ≤ t2

n−1 ≤ Ctn.

Given this inequality, a quadratic order convergence of the sequence {tn}n≥0 follows from (34),
and according to (33) follows a quadratic convergence order of the sequence {xn}n≥0 of the Kurchatov’s
method (3).

Thus, Kurchatov’s method has a quadratic convergence order as Newton’s method but does not
require the calculation of derivatives.

Remark 4. We obtain similar advantages as the ones reported earlier for Theorem 2.

5. A Posteriori Estimation of Error of the Kurchatov’s Method

If the constants a, c, p, q, are known, then we can compute the sequence {tn}n≥0 before receiving
the sequence {xn}n≥0 by the iterative algorithm (3). With help of inequality (33) the a priori estimation
of error of the Kurchatov’s method is given. We will receive a posteriori estimation of the method’s
error, which is coarser than the a priori one.

Theorem 6. Let the conditions of the Theorem 5 be fulfilled. Denote

en = p‖xn − xn−1‖2 + q‖xn−1 − xn−2‖2‖xn−1 − xn‖,
gn = 1− 2p‖xn − x0‖ − qa2.

Then for n = 1, 2, 3, ... the following estimation holds

‖xn − x∗‖ ≤
2en

gn + (g2
n − 4pen)

1
2
≤ tn.

Proof. The proof of the theorem is similar [8]. From the conditions (7) and (9), we get

‖I − A−1
0 [xn, x∗; F]‖ = ‖A−1

0 (A0 − [x0, x0; F] + [x0, x0; F]− [xn, x∗; F])‖
≤ qa2 + p(‖x0 − xn‖+ ‖x0 − x∗‖)
≤ qa2 + p(t0 − tn + t0) < qa2 + 2pt0. (35)
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It is easy to see that qa2 + 2pt0 ≤ 1. Then by Banach lemma [xn, x∗; F] has inverse and

‖[xn, x∗; F]−1 A0‖ ≤ (gn − p‖xn − x∗‖)−1. (36)

From (4) we can write

xn − x∗ = [xn, x∗; F]−1(F(xn)− F(x∗)) = ([xn, x∗; F]−1 A0)A−1
0 F(xn).

Using (35) and (36) we get inequality

‖xn − x∗‖ ≤ (gn − p‖xn − x∗‖)−1en.

So, it follows

‖xn − x∗‖ ≤ 2{gn + (g2
n − 4pen)

1
2 }−1en,

and

tn =
−qt3

n + a0t2
n + b0

−qt2
n + a0tn + b0

=
{[a0 − q(2tn−1 + tn)](tn−1 − tn) + q(tn−2 − tn−1)

2}(tn−1 − tn)

1− qa2 − 2p(t0 − tn)− ptn − (3qr0 + qa)(t0 − tn)− qt2
n − qat0

≥ p(tn−1 − tn)2 + q(tn−1 − tn)(tn−1 − tn−2)
2

1− qa2 − 2p(t0 − tn)− ptn
≥ en

gn − p‖xn − x∗‖
≥ ‖xn − x∗‖.

Proposition 2. Under the conditions of Theorem 6 further suppose that for µ > 0

‖A−1
0 (A0 − [x∗, v; F])‖ ≤ µ(‖2x0 − x−1‖+ ‖x−1 − v‖)

holds for all v ∈ Ω2, where Ω2 = Ω ∩U(x0, R1), R1 =
1− µ(a + r̄0)

µ
provided µ(a + r̄0) < 1.

Proof. This time, we have

‖A−1
0 (A0 − [x∗, y∗; F])‖ ≤ µ(‖2x0 − x−1 − x∗‖+ ‖x−1 − y∗‖) < µ(r̄0 + 2a + R1) = 1.

The rest follows as in Proposition 1.

Remark 5. The results reported here can immediately be extended further, if we work in Ω̄0 instead of the set
Ω0, where Ω̄0 = Ω ∩U(x1, r̃ − a), i f a < r̃. The new p constants will be at least as tight as the ones
presented previously in our paper, since Ω̄0 ⊆ Ω0.

6. Numerical Experiments

In this Section, we verify the conditions of the theorems on convergence of the considered methods
for some nonlinear operators, and also compare the old and new radii of the convergence domains and
error estimates. We first consider the representation of the first-order divided differences for specific
nonlinear operators [5,6].

Let B1 = B2 = IRm. We have a nonlinear system of m algebraic and transcendental equations with
m variables

Fi(x1, x2, . . . , xm) = 0, i = 1, . . . m.
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In this case [x, y; F] is the matrix with entries

[x, y; F]i,j =
Fi(x1, . . . , xj, yj+1, . . . , ym)− Fi(x1, . . . , xj−1, yj, . . . , ym)

xj − yj
, i, j = 1, . . . , m.

If xj = yj, then [x, y; F]i,j =
∂Fi
∂xj

(x1, . . . , xj, yj+1, . . . , ym).

Let us consider a nonlinear integral equation

F(x) = x(s)−
1∫

0

K(s, t, x(t))dt = 0,

where K(s, t, x) is a continuous function of its arguments and continuously differentiable by x. In this
case [x, y; F] is defined by formula

[x, y; F]h = h(s)−
1∫

0

K(s, t, x(t))− K(s, t, y(t))
x(t)− y(t)

h(t)dt.

If x(t)− y(t) = 0 holds for some t = tj, then lim
t→tj

K(s, t, x(t))− K(s, t, y(t))
x(t)− y(t)

= K
′
x(s, tj, x(tj)).

Example 1. Let B1 = B2 = IR, Ω = (−0.5, 2) and F(x) = x3 − 9x + 3. The solution of equation F(x) = 0
is x∗ ≈ 0.33761.

In view of F, we can write F′(x) = 3x2 − 9, [x, y; F] = x2 + xy + y2 − 9, [x, y, z; F] = x + y + z.

Let us choose x0 = 0.5 and x−1 = 0.5001. Then we get p̃ =
∣∣∣ 2x0+x−1

A0

∣∣∣, b0 =
∣∣∣ (2x0+x−1)(x−1−x0)

A0

∣∣∣
for Secant method and p̃ =

∣∣∣ x0−x−1
A0

∣∣∣, b0 =
∣∣∣ (x0−x−1)

2

A0

∣∣∣ for Kurchatov’s method, p̃0 = max
v∈Ω

∣∣∣ 2x0+v
A0

∣∣∣,
˜̃p0 = max

u,z∈Ω

∣∣∣ x0+u+z
A0

∣∣∣, p = p̄0 = ¯̄p0 = max
u,v,z∈Ω0

∣∣∣ u+v+z
A0

∣∣∣, q =
∣∣∣ 1

A0

∣∣∣. For the corresponding theorems in [1]

p0 = max
u,v,z∈Ω

∣∣∣ u+v+z
A0

∣∣∣, q0 =
∣∣∣ 1

A0

∣∣∣.
In Table 1, there are radii and convergence domains of considered methods. They are solutions of

corresponding equations and satisfy the condition r̄0 ≤ r̄. We see that U(x0, r̄0) ⊂ Ω hold. Moreover,
for Kurchatov’s method U(x0, 3r̄0) ≈ (−0.04166, 1.04166) and V0 ⊂ Ω. So, the assumptions of the
theorems are fulfilled. Next, we show that error estimates hold, i.e., ‖xn − x∗‖ ≤ tn, and compare
them with corresponding ones in [1]. Tables 2 and 3 give results for Secant method (2), and Table 4 for
Kurchatov’s method (3).

Tables 2–4 show the superiority of our results over the earlier ones, i.e., obtained error estimates
are tighter in all cases. That means fewer iterates than before are needed to reach a predetermined
error tolerance.

Table 1. Radii and convergence domains.

Secant method (Theorem 1) Secant Method (Theorem 2) Kurchatov’s Method (Theorem 5)

r̄ 0.85933 0.70430 0.88501
r̄0 0.18703 0.18807 0.18055

U(x0, r̄0) (0.31297, 0.68703) (0.31193, 0.68807) (0.31945, 0.68055)



Symmetry 2020, 12, 1093 13 of 15

Table 2. New and old error estimates (13).

n ‖xn− x∗‖ tNEW
n tOLD

n

0 1.62391 × 10−1 1.87033 × 10−1 1.94079 × 10−1

1 4.27865 × 10−3 2.03636 × 10−2 2.74082 × 10−2

2 9.60298 × 10−5 2.45405 × 10−3 4.40268 × 10−3

3 4.78431 × 10−8 3.65459 × 10−5 1.18474 × 10−4

4 5.37514 × 10−13 6.65774 × 10−8 5.26214 × 10−7

5 0 1.80951 × 10−12 6.31743 × 10−11

Table 3. New and old error estimates (27).

n ‖xn− x∗‖ tNEW
n tOLD

n

0 1.62391 × 10−1 1.88065 × 10−1 1.95339 × 10−1

1 4.27865 × 10−3 2.13956e × 10−2 2.86694 × 10−2

2 9.60298 × 10−5 2.79473 × 10−3 4.93386 × 10−3

3 4.78431 × 10−8 4.93737 × 10−5 1.54194 × 10−4

4 5.37514 × 10−13 1.16446 × 10−7 8.59640 × 10−7

5 0 4.86585 × 10−12 1.50730 × 10−10

Table 4. New and old error estimates (33).

n ‖xn− x∗‖ tNEW
n tOLD

n

0 1.62391 × 10−1 1.80552 × 10−1 1.95314 × 10−1

1 4.27562 × 10−3 1.38863 × 10−2 2.86498 × 10−2

2 1.16228 × 10−5 3.06832 × 10−4 1.30247 × 10−3

3 4.04780 × 10−11 6.34947 × 10−7 7.68893 × 10−6

4 0 2.81890 × 10−11 1.78179 × 10−9

Example 2. Let B1 = B2 = IR3, Ω = (−0.1, 0.5)× (−0.1, 0.5)× (−0.1, 0.5) and

F(x) =
(
ex1 − 1, x3

2 + x2, x3
)T .

The solution of equation F(x) = 0 is x∗ = (0, 0, 0)T .
For x and y ∈ IR3, we have

F′(x) = diag(ex1 , 3x2
2 + 1, 1) and [x, y; F] = diag

( ex1 − ey1

x1 − y1
, x2

2 + x2y2 + y2
2 + 1, 1

)
.

For this problem we verify conditions (C) and corresponding ones from [1]. Let us choose x0 = 0.1 and
x−1 = 0.1001. Having made calculations, we get α = 0.0001, c ≈ 0.1, b0 ≈ 4.99992e− 05, p0 = p̃ = p̃0 =
˜̃p0 ≈ 1.45627, b ≈ 4.99992e− 05 < 1 and r̃ ≈ 0.34332. Then Ω0 ≈ (−0.1, 0.44333)× (−0.1, 0.44333)×
(−0.1, 0.44333). Next p = p̄0 = ¯̄p0 ≈ 1.22974, pα ≈ 1.22974e− 04 < 1 and r̄ ≈ 0.40654. The equation
h̄(t) = c has two solutions τ̄1 ≈ 0.69630 and τ̄2 ≈ 0.11679. Only τ̄2 ∈ (0, r̄]. Therefore, r̄0 ≈ 0.11679,
U(x0, r̄0) ≈ (−0.01679, 0.21679)× (−0.01679, 0.21679)× (−0.01679, 0.21679) and U0 ⊂ Ω.

Analogy, an equation h(t) = c has two solutions τ1 ≈ 0.56506 and τ2 ≈ 0.12152. r ≈ 0.34329.
Therefore, r0 ≈ 0.12152, U(x0, r0) ≈ (−0.02152, 0.22152)× (−0.02152, 0.22152)× (−0.02152, 0.22152)
and U(x0, r0) ⊂ Ω.

In view of (14) and (15), r̄0 < r0 and Remark 1, we get

tNEW
n ≤ tOLD

n .

So, estimates (13) are tighter than the corresponding ones in [1].
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Secant and Kurchatov’s methods solve this system under 5 iterations for ε = 10−10 and the specified
initial approximations.

Example 3. Let B1 = B2 = C[a,b] and

F(x) = x(s)−
1∫

0

[3 + 0.6625s + 0.05stx2(t)]dt = 0.

The solution of this equation is x∗(s) = s + 3. In view of F, we can write

[x, y; F]h = h(s)−
1∫

0

0.05st[x(t) + y(t)]h(t)dt.

Let us choose x0(s) = 5 and x−1(s) = 6. Both methods give approximate solution of the integral equation
under 13 iterations for ε = 10−10. To solve a linear integral equation at each iteration was applied Nystrom
method. We use a trapezoidal quadrature formula with 101 nodes. On the graphs Pn denotes ‖xn − xn−1‖ and
En denotes ‖xn − x∗‖ (see Figure 1). We can see that En = O(h2), where h = 0.01. This corresponds to the
error estimation of the trapezoidal quadrature formula.

(a) (b)

Figure 1. Values of (a) ‖xn − xn−1‖ and (b) ‖xn − x∗‖ at each iteration.

7. Conclusions

The investigations conducted showed the effectiveness of applying the Kantorovich majorant
principle for determining the convergence and the order of convergence of iterative difference methods.

The convergence of the Secant method (2) with the order
1 +
√

5
2

and the quadratic convergence order
of the Kurchatov’s method (3) are established. According to this technique, nonlinear majorants for a
nonlinear operator are constructed, taking into account the conditions imposed on it. By using our
idea of restricted convergence regions, we find tighter Lipschitz constants leading to a finer local
convergence analysis of these methods than in [1]. Our new technique can be used to extend the
applicability of other methods along the same lines. More details on the extensions were given in
Remark 1.
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