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Abstract: Bicarbonate plays a fundamental role in the cell pH status in all organisms. In autotrophs,
HCOs3™ may further contribute to carbon concentration mechanisms (CCM). This is especially relevant
in the CO,-poor habitats of cyanobacteria, aquatic microalgae, and macrophytes. Photosynthesis of
terrestrial plants can also benefit from CCM as evidenced by the evolution of C4 and Crassulacean
Acid Metabolism (CAM). The presence of HCO3™ in all organisms leads to more questions regarding
the mechanisms of uptake and membrane transport in these different biological systems. This review
aims to provide an overview of the transport and metabolic processes related to HCO3 ™ in microalgae,
macroalgae, seagrasses, and terrestrial plants. HCO;™ transport in cyanobacteria and human cells
is much better documented and is included for comparison. We further comment on the metabolic
roles of HCO3™ in plants by focusing on the diversity and functions of carbonic anhydrases and
PEP carboxylases as well as on the signaling role of CO,/HCO;3;™~ in stomatal guard cells. Plant
responses to excess soil HCO3 ™ is briefly addressed. In conclusion, there are still considerable gaps in
our knowledge of HCO3; ™~ uptake and transport in plants that hamper the development of breeding
strategies for both more efficient CCM and better HCO3 ™~ tolerance in crop plants.

Keywords: bicarbonate; transporter; metabolism; carbonic anhydrase; carboxylases; carbon
concentration mechanisms; algae; seagrass; higher land plants; limestone soil

1. Introduction

Life on Earth is based on the photosynthetic transformation of inorganic carbon (Cinorg) and water
into energy-rich organic carbon (Corg) compounds. In turn, these are oxidized by heterotrophs to
obtain cellular energy, releasing again Cinorg in the form of CO; into the atmosphere. Atmospheric CO;
is the main form of Cj,org assimilated by the terrestrial photosynthetic organisms. Dissolution of CO;
in water provides carbonic acid, which dissociates into bicarbonate (HCO3 ™) and carbonate (CO5%7).
Ocean water contains about 90% of Cinorg in the form of HCO; ™. It is calculated that, at preindustrial
concentrations of atmospheric CO;, the seawater concentration of HCO3;~ was 1757 umol/kg.
Even higher HCO3™ concentrations are currently observed due to increasing atmospheric CO,,
which leads to acidification of the ocean and higher solubility of carbonate under these lower pH
conditions. Photosynthetic marine organisms as well as submerged freshwater plants can use this
abundant HCO3 ™ as a source for the biosynthesis of Corg [1-3].

Due to the weathering of limestone and dolomite, bicarbonate enters into the soil solution.
The HCO3™ concentration in a solution phase should be controlled by the solubility of CaCOs.
Calcite is the main carbonate mineral with an ion concentration product (Ksp) at 25 °C of 10835 [4].
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However, considerably higher HCO;™ levels than those predicted based on carbonate solubility
constants may occur in soil solutions [5]. Biological activity contributes to HCO3;~ build-up in soil
solutions by hydrating CO, from the atmosphere and from the respiratory activity of plant roots,
microorganisms, and soil fauna. The CO, hydration process catalyzed by soil carbonic anhydrase
activity provided mostly by soil cyanobacteria and microalgae [6] can be considerably higher than the
un-catalyzed process [7].

Terrestrial cyanobacteria can use the HCO3™ dissolved in the surrounding aqueous film for
photosynthesis [8]. In contrast, high soil HCO3™ concentrations can injure the performance of higher
land plants especially of the carbonate sensitive calcifuge species. In these calcareous soils with
high pH, the availability of Fe and other essential micronutrients like Zn, Mn, and Cu is usually low
due to precipitation as oxides or carbonates. This leads to the so-called lime-induced chlorosis and low
yield in sensitive varieties of crops. Dicots such as citrus, deciduous fruit trees, vineyard, and legumes
are the most sensitive mainly because of the interference of bicarbonate with their Fe acquisition
mechanisms (strategy I). Grasses are less affected. Their Fe acquisition is based on phytosiderophore
production (strategy II) [9]. Nonetheless, monocots like rice, maize barley, or wheat can be affected by
severe Zn deficiency on carbonate-rich soils [10]. To what extent terrestrial higher plants are able to
assimilate HCO3; ~—either soil-derived or of respiratory origin produced by soil microorganism and
plant roots—is still under debate [11] and will be discussed below.

Heterotrophs, which are animals and humans, are net producers of CO, by respiration.
Bicarbonate is the main transport form of Ciporg from cells to the lungs where it is exhaled in the form
of CO;,. The carbonic acid /bicarbonate buffer is considered the most important system for cell pH
homeostasis. Kidneys filter and reabsorb HCO3;~. These processes are essential for the acid-base
balance of the body [12]. Furthermore, HCO3™ transport plays an essential role in pH regulation
during amelogenesis, which is the formation of enamel during tooth development [13], and in other
biological calcification processes such as the development of reef cnidarians [14].

The presence of HCO3™ in all organisms opens the question of how this molecule is taken up,
membrane-transported, and compartmentalized in these different biological systems. This review
aims to give a comprehensive overview of the transport and metabolic processes related to HCO3 ™ in
plants. Bicarbonate transport in cyanobacteria and human cells is much better documented and will
be briefly presented for comparison.

2. Bicarbonate Transport

As an anion, HCO3™ is not freely permeable to the lipid bilayer of biological membranes.
The presence of HCO3;™ inside cells is either due to HCO;3;™~ transport mediated by membrane
transporter proteins or transmembrane diffusion of CO; followed by fast transformation into HCO3~
using carbonic anhydrase (CA).

CO; crosses biological membranes by diffusion either through the lipid bilayer or through pores.
A subset of aquaporins and related proteins [15,16] can behave as CO, channels [17]. Models based
on artificial lipid bilayers indicated that the resistance for CO; diffusion is small and mostly limited
by unstirred layers. According to the authors, an estimated permeability of 3.6 cm s~! makes it
unlikely that CO; is transported through aquaporins or other transporter proteins [18]. Contrastingly,
studies on real bio-membranes provided clear evidence that membranes can offer resistance to CO,
diffusion and that this resistance depends on the membrane’s protein composition [19]. There is now
functional evidence that some, but not all, plant aquaporins can enhance CO, diffusion into both
stomatal guard cells and mesophyll cells [20,21]. However, the relative contribution of both CO,
diffusion pathways to the downhill, non-energized movement of CO, through the membranes of
cyanobacteria, eukaryotic algae, and embryophytes has to be further clarified [22]. Transport of HCO3~
through aquaporins has not been shown. As a charged chemical species, the HCO3 ™~ ion is submitted
to electrochemical gradients that govern plasma membrane ion transport. Since cyanobacteria, algae,
and plant cells have an inside negative membrane potential (Ep,), the uphill HCO3™ uptake must
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be energized. It takes place through transporters in cyanobacteria [23], microalgae [24,25], macro
algae [26], and seagrasses [27]. The plasma membrane downhill HCO3 ™~ efflux takes place through
anion channels. The only available evidence for an HCO3;~ permeable anion channel is the R-type,
which has been found in the hypocotyls of Arabidopsis thaliana with a selectivity sequence for anions.
NO;~ (2.6) > SO4% (2.0) > C1~ (1.0) > HCO;~ (0.8) >> malate?~ (0.03) [28,29]. In addition, the inner
chloroplast envelope protein LCIA of Chlamydomonas reinhardtii has been proposed to be an HCO3~
permeable channel [30-32]. Furthermore, Raven et al. [33] have proposed the existence of HCO3;~
permeable anion channels in the thylakoid membrane as an element of the carbon concentration
mechanisms (CCM) in microalgae.

2.1. Bicarbonate Transport by Solute Carriers (SLC) in Humans and Mammals

Most bicarbonate transporters belong to the solute carriers (SLC), which is a large group of
secondary active membrane transporters for relatively small molecules. The best studied bicarbonate
transporters are SLC in humans due to severe diseases related to the malfunctioning of these
transporters [34,35]. In humans, 430 members organized in 52 families have been identified [36].
Proteins transporting HCO3;~ belong to the families SLC26 (Sulfate permease SulP) and SLC4.
The phylogenetically ancient gene family SLC26 encodes for multiple anion exchangers and channels.
Some are relatively ion specific, but others have a broad substrate range. Besides transporting inorganic
anions like HCO;~, C1~, SO42~, and I, oxalate and formate may be transported. Structural models
indicate that these polypeptides have 10 to 14 membrane-spanning domains flanked by a cytoplasmic
N-terminal and a cytoplasmic C-terminal bound to a STAS (sulphate transporter anti sigma factor-like)
domain [37]. The gene family SLC4 contains genes that code for proteins transporting HCO3™ or the
closely related CO3%~ along with a monovalent anion (C1™) or cation (Na*) [38]. These proteins have
14 transmembrane spanning domains grouped into a 7 + 7 inverted repeat topology.

Different ways for HCO3; ™~ transport through the membranes in mammalian and human cells
can be distinguished (see Figure 1). The first includes electroneutral, Na*- independent anion
exchange between HCO; ™~ and Cl™ using anion exchange transporters (AE) encoded by genes of the
SLC4A family. The second includes sodium-driven Cl~/HCO;~ exchanger (NDCBE) encoded by
SLC4AS8. This transporter is thought to exchange 1 CI~ for 2 HCO3 ™ and 1 Na*. The next transport
mechanism comprises electrogenic Na* /HCO3 ™ -cotransport performed by NCBT transporter proteins
NBCel and NBCe2 encoded by SLC4A4 and SLC4A5. The fourth way is the electroneutral Na*-
HCO; ™~ cotransport or Na*-driven C1~ /HCO;~ exchange through the transporter protein encoded
by SLC4A10 [39-41]. The fifth mechanisms involves electroneutral C1~ /HCO3 ™~ exchangers that also
can exchange either I=, NO3~, SCN~, or formate encoded by SLC26A (Pendrin) or NO;~, OH™,
S042~, oxalate, and formate (SLC26A6). (Electrogenic C1~ /HCO3~ exchange, with channel activity
for C1—, SO42’, and oxalate (SLC26A7) and Electrogenic C1~ /HCO3~ exchange with Cl- channel
activity, NaCl cotransport or CI~ -independent HCO3 ™ transport (SLC26A9) are also HCO3 ™~ transport
mechanisms [35] (see Figure 1).
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Figure 1. Mechanisms of HCO3; ™ transport by solute carriers (SLC) in humans and mammals drawn
with information from [37,40].

2.2. Ciyorg Transporters in Cyanobacteria

Five modes of Cinorg transport have been described in cyanobacteria. (i) BCT1 is an inducible
high affinity (K5 for HCO3™ ~ 15 uM) transporter located in the plasma membrane that belongs
to the ATP binding cassette (ABC) transporter family [42] although transport energization by ATP
consumption has not been proven [43]. BCT1 is a multi-meric complex composed by four subunits.
CmpaA is located in the periplasmic space and binds HCO3; ™~ with a very low Ky 5 of 5 uM [44] and also
binds Ca?* as a cofactor [45]. CmpB is a dimer within the plasma membrane and CmpC and CmpD are
extrinsic proteins that share binding sites for ATP. CmpC has an extra domain involved in the allosteric
regulation of BCT1 similar to the NrtC protein of NRT1 transporter. In this later case, the domain of
the NrtC protein is involved in the inhibition of transport in the presence of NH4 " [46]. BCT1 is found
in $i-cyanobacteria but absent in marine cyanobacteria. However, it is present in the «-cyanobacteria
Synechococcus WH5701, which can live in a wide range of Cinorg concentrations and salinities [43].

(ii) SbtA is a low Cinorg-inducible, high affinity (Ko5 2-5 uM), plasma membrane HCO3™~
transporter that uses Na* as a driving ion with a half saturation constant around 1 mM for this
ion [47]. Although initially considered a single unit-type transporter, it has a bigger complex size,
which suggests that, in its functional form in the plasma membrane, this transporter is a tetramer [48].
It has been suggested that SbtA is activated by a serine-threonine protein kinase [49] that also depends
on Na* [50]. SbtA homologs seem to be present in many B-cyanobacteria although this has only been
confirmed in Synechocystis PCC6803 [47] and Synechococcus PCC7002 [50].

(iii) BicA HCO3~ transporters are also dependent on Na*. Their affinity for HCO3™ transport
with a Ky, ranging from 74 uM to 353 pM (1.7 mM for Na*) is lower than that of SbtA. Nonetheless,
BicA is able to maintain a high flow of Cinorg for photosynthesis. BicA transporters are expressed at
low levels under conditions of high CO, but they are highly inducible under low CO,. They have been
discovered in the coastal marine cyanobacterium Synechococcus PCC7002 [51] and they are present in
both x-cyanobacteria and 3-cyanobacteria. BicA transporters belong to the large family of prokaryotic
and eukaryotic transporters often described as sulphate, SulP family transporters. The C-terminus
includes a hydrophilic STAS domain (see also Section 2.1) involved in the allosteric regulation that has
also been found in A. thaliana sulfate transporters [52].
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(iv) NDH-I4 is a constitutive protein complex located in the plasma membrane that accelerates CO,
uptake. The passive entry of CO; is followed by the conversion (NDH-I mediated) to HCO3 ™ [53,54].

(v) NDH-I3 is a second, complex, low CO; -inducible system involved in CO, uptake located in
the thylakoid membrane. It works in a similar manner to NDH-14 [53,54].

2.3. Cinorg Transport in Microalgae

C. reindhardtii uptake of Cinorg has been associated with the activity of an ATP-binding cassette
transporter, HLA3, and the homolog of a formate-nitrite transporter LCIA that is also called
NAR1.2 [30]. HLAS3 is located in the plasma membrane and LCIA in the chloroplast envelope.
The absence of LCIA decreases the amount of HLA3 mRNA, which indicates a regulation by the
chloroplast-encoded LCIA of the expression of HL3 encoded in the nuclear genome [31]. While the
HCO;™ transport mechanism of HL3 seems to be clear, LCIA has been proposed to be an HCO3~
channel [22,30,31]. If so, HCO3 ™~ ions would be transported through such a channel downhill and could
not accumulate HCO3 ™ over the equilibrium prediction. However, the addition of mM concentrations
of HCO;3;™ to Xenopus laevis oocytes expressing NAR1.2 evokes a membrane depolarization as does
the addition of mM concentrations of NO, ~, which suggests an HCO3; ™~ transport into the chloroplast
by H* symport instead of the transport through a channel. This mechanism would also be consistent
with the need to overcome the electrochemical gradient for HCO3™ in the stroma relative to the
cytosol [55]. The ycf10 is also related to Cinorg transport. Disruption of the plastid ycf10 inhibits
the Cinorg accumulation in the chloroplast. Its gene product known as the protein CemA was
originally proposed as a Cinorg transporter, but its similarities with the cyanobacterial PxcA involved
in Na*-dependent H* extrusion suggest that CemA may play a similar role in the energization of
the chloroplast envelope [55]. The HCO3™ uphill transport through the plasma membrane and the
chloroplast envelope agrees with the early observation of a vanadate sensitive Cinorg transport at
both levels. A second Cinorg transporter proposed for the plasma membrane in C. reindhardtii is
LCI1 [56,57]. The overexpression of this protein increases the affinity for Cinorg and enhances HCO; ™~
uptake. The protein is encoded by an orphan gene [55] and does not have any known functional motif.
The proteins CCP1/2 have also been proposed to take part in Ciorg uptake by the chloroplasts. They
show similarities with the mitochondrial carrier proteins superfamily, but knock-outs of CCP1/2 do
not show defects in photosynthesis [58]. Thus the specific role of CCP1/2 proteins in Cinorg transport
has yet to be clarified.

The active uptake of HCO3;~ was described for natural populations of marine phytoplankton
dominated by large diatoms [59]. However, the HCO3™~ transport mechanisms at the molecular
level have been studied in the model diatom species Phaeodactylum tricornutum and Thalassiosira
pseudonana [60,61]. In P. tricornutum, ten putative HCO3;~ transporters have been identified. They are
similar to the unrelated SLC4 and SLC26 mammalian protein families (see Section 2.1). SLC4 has
been characterized as a HCO3 ™ transporter in the plasma membrane of P. tricornutum and SLC4
homologs have also been found in T. pseudonana [25]. Photosynthesis in the diatom species is
sensitive to 4,4’-diisothiocyanatostilbene-2, 2’-disulfonic acid (DIDS), which is an inhibitor of anion
exchange, and depends on the presence of Na* in the medium (Kg5 28 mM, saturation at 100 mM
Na*). This suggests the existence of an HCO3;~ uptake mechanism based on Na* symport or on a
Na* dependent C1~ /HCO;3 ™~ anti-port [25]. A different group of SLC4 transporters located in the
chloroplast envelope have been proposed for transporting HCO3 ™ to the chloroplast stroma [25,60,61].
The active transport rate of dissolved inorganic carbon through the chloroplast envelope is ten-fold
that of HCO3 ™~ transport across the plasmalemma [54]. However, further investigations are required
to elucidate the molecular identity of the protein and the transport mechanism in the context of the
complex four-layer chloroplast envelope of diatoms [62].

In micro-algal species, genetic tools are still not available and HCO3;~ uptake has been revealed
by physiological methods that include the photosynthetic sensitivity to inhibitors of external CA,
pH bulffers to dissipate electrochemical H* gradients, and inhibitors of anion exchangers. Therefore,
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a direct entry of HCO3;~ has been proposed for the marine eustigmatophycean Nannochloropsis
gaditana [63-65]. The absence of external CA and the sensitivity to DIDS suggest an anion exchange
mechanism for HCO;~ transport. A DIDS and 4-acetamido-4'-isothiocyanato-stilbene-2, 2'-disulfonic
acid (SITS) sensitive photosynthesis has been described in Eminliania huxleyi [66]. SITS is the putative
inhibitor of the anion exchanger 1 (AE1), which works as a C1~ /HCO;3;™ antiporter in red blood
cells [67] (see Figure 1). In contrast, a DIDS/SITS insensitive HCO3 ™~ transport has been described for
Dunaliella tertiolecta [68].

2.4. Ciyorg Transport in Macroalgae

One of the first examples for the use of HCO3™ in macro-algae was described in the giant
inter-nodal cells of Characeae living in alkaline media [69]. The active efflux of H" through the putative
H*-ATPase causes a local acidification of the apoplast in about two pH units [69]. The presence of
CA activity in the acidic zones accelerates the conversion of HCO3~ to CO, that diffuses across the
plasmalemma [70]. The cytosolic pH homeostasis requires the presence of alkaline areas between the
acid zones, which produces the spectacular banding observed in these organisms under the light [71].
An alternative mechanism for HCO3™ use and hence for banding was given by Lucas et al. [72].
These authors, by using quasi apoplastic pH measurements in flow- through experiments, provide
evidence for an H* /HCO;~ symport in the acid bands in which the electrochemical proton gradient
generated by the H*-ATPases is secondarily used for HCO3 ™~ transport. According to the model by
Walker et al. [69], the alkaline zones are needed for compensating cytosolic pH through OH™ efflux,
which originated via the catalyzed cytosolic dehydration of HCO3;~. A similar model to the one
proposed by Walker et al. [69] has been described for freshwater flowering plants where the acid zone
is the abaxial (lower) leaf surface and the alkaline zone is the adaxial (upper) leaf surface [22,73].

The use of HCO3™ as a source of inorganic carbon for photosynthesis has been described for the
majority of marine macro-algae and seagrasses [74-76]. The most common mechanism of HCO3; ™~ use
is the apoplastic conversion to CO,, which is shown in Condrus chrispus [77], Porphyra leucosticta [78],
a series of red macroalgae [79], and Phyllariopsis puspurascens [80]. More information is available
in References [33,75,81,82]. Alternatively, other algal species have been described as direct HCO3~
users. Most of the evidence for a direct uptake of HCO3™ ions comes from experiments in which
the inhibitors of anion exchanger, mainly DIDS and SITS, are used to inhibit HCO3™ transport and,
therefore, photosynthesis [82]. Larsson and Axelson [83] examined 11 green, 5 red, and 11 brown
macro algae. Photosynthesis was DIDS-sensitive only in Chaetomorpha, Monostroma, and ulvaceans
(Ulva and Enteromorpha), but not in the rest of green, red, or brown algae tested. More information is
available in Reference [84]. Fernandez et al. [26] show a DIDS-sensitive anion exchanger as the main
mechanism for HCO3 ™ uptake in the giant kelp Macrocystis pyrifera. DIDS-sensitivity has also been
reported in the red algae Eucheuma denticulatum [85] while a residual DIDS-sensitive photosynthetic
activity was found in Gracilaria gaditana [86]. Calculations made from photosynthetic conductance
were used to suggest direct HCO3 ™ uptake in Laurencia pinnatifida [87].

2.5. Cinorg Transport in Seagrasses

Seagrasses have been described as HCO3 ™ users [82,88-91]. Based on the lack of photosynthesis
inhibition in seagrasses by DIDS and SITS, Larkum et al. [91] hold that HCO3 ™~ influx through anion
exchangers does not take place in the leaves of seagrasses. These substances inhibit AE1 that are present
in algae but in angiosperms (including marine) DIDS and SITS have been described as inhibitors
of anion channels [29,92] that may have a distinct role in plasma membrane anion transport [87].
As an alternative, Larkum et al. [91] suggest a proton symport as the mechanism for direct uptake
of HCO3™. Such a mechanism has been proposed for Zostera marina [88,93,94], Zostera noltii [95],
Posidonia oceanica and Cymodocea nodosa [96], Halophila stipulacea and Ruppia maritima [96], Ruppia
cirrhosa [97], and Halophila ovalis [98]. Based on the response of seagrasses to acetazolamide (AZ) and
TRIS buffers, Beer et al. [88] suggest three mechanisms for carbon acquisition. First, an apoplastic
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dehydration of HCO3; ™ catalyzed by CA and the subsequent diffusion of CO; across the plasmalemma.
This mechanism is proposed for plants that show AZ-sensitive TRIS-insensitive photosynthesis,
but the ubiquitous presence of plasmalemma H*-ATPase cannot be ignored [99]. Second, the catalyzed
apoplastic dehydration of HCO3~ to CO; in acid regions generated by the activity of the H"-ATPases.
This mechanism would be sensitive to AZ and TRIS. Third, the direct uptake of HCO3; ™ ions by symport
with H*. In this case, the electrochemical gradient for H* generated by the activity of the plasmalemma
H*-ATPases drives the direct HCO3~ transport. This mechanism would be AZ-insensitive and
TRIS-sensitive. The two first mechanisms involve apoplastic accumulation of OH™ and CO, diffusion
across the plasmalemma and the third one implies accumulation of HCO3™ and likely OH™ in the
cytosol (see Table 1). In contrast to humans (see Figure 1) and cyanobacteria (Section 2.2), no Na*
-dependent HCO3 ™~ uptake system has been reported in plants. The only example for a Na*-driven ion
transport system is the high affinity transporter for NO3 ™ and P; in the seagrass Zostera marina [100].
In that case the electrochemical gradient for Na* is maintained because of very low membrane
permeability for Na* and the action of a Na*/H* antiporter, which is similar to the SOS1 present in
terrestrial vascular plants [101].

Table 1. Cinorg uptake mechanisms proposed for several seagrass species based on their photosynthetic
sensitivity to TRIS and AZ. Question mark (?) denotes that the mechanism is partially supported by
available evidences.

Cinorg Uptake Mechanism AZ TRIS Seagrass Species References
Zostera marina [93]
Cymodocea nodosa [96]
Halophyla ovalis [98]

Apoplastic dehydration of N B Cymodocea serrulata [98]

HCO;3;™ catalysed by CA Cymodocea
[98]

rotundata
Synringodium
isoetifolium 8]
Halodule wrightii [98]
Thalassia hemprichii [98]
Thglussod@ndmn [98]
ciliatum
Enhalus acoroides [98]
Posidonia australis [102]
Halophila stipulacea [88]
Rupia maritima [88]
Cymod, d

Apoplastic dehydration of + N (gmo ocea nodosa [96]

HCO3~ in acid regions i

Cymodocea
rotundata (98]
Synringodium
isoetifolium 8]
Halodule wrightii [98]
Thalassia hemprichii [98]
fhglassodendron [98]
ciliatum

Enhalus acoroides [98]
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Table 1. Cont.

Posidonia oceanica 2711
Plasma membrane Zostera marina [94]
HCO;  /H* symport B * Halophyla stipulacea [88]
Rupia maritima [88]
Cymodocea nodosa [96]

?)
Halophila ovalis [98]

+ sensitive; — insensitive; ! Direct evidences for a plasma membrane HCO3; ~ /H* symport mechanism.

The availability of the genome of Zostera marina [103] allows the in silico search for genes potentially
involved in Ciporg transport. Using the web application Phytozome (http://www.phytozome.net),
which is a comparative platform for green plant genomics [104], we searched for genes with homologies
with the HLA3 transporter of C. reinhardtii and SLC4 transporter of P. tricornutum. The search for
homologies in the genome of Z. marina with ChHLA3 sequence results in six genes with high homology,
all of them listed as ABC transporters. In contrast, the search for homologies with PhSLC4 results
in five sequences of medium-to-low homologies with genes encoding boron transporters and anion
exchangers. The public availability of the genome of seagrasses will be a valuable tool for the future
investigation of the exact molecular identities of Cinorg transporters, cellular location, mechanism,
kinetic properties, and regulation.

2.6. Ciyorg Transport in Higher Land Plants

While HCO;3;™~ transporters are already quite well-characterized in cyanobacteria, algae,
and mammals, the information on higher vascular land plants is scarce. Seven loci of genes coding for
transporters of the HCO3 ™ family are listed in the gene databases of the genetically well-characterized
A. thaliana. The best studied protein is BOR1. This protein belongs to the solute carrier family type SLC4
and presents homology to SLC4A1, which is the band 3 transporter highly abundant in erythrocytes.
As SLC4A1, BOR1 has a gate and a core domain and acts with an elevator mechanism. However,
BOR1 has an inward rotated core domain providing an occluded state, which suggests that it may
undergo structural transitions allowing access from either side of the membrane [105]. Bicarbonate
transport by Band 3 is a unidirectional pathway out of the erythrocyte. A further substantial difference
is that BOR1 is an efflux-type borate transporter responsible for root-to-shoot transport of this essential
plant nutrient. BOR1 is located in the xylem parenchyma cells and loads borate into the xylem,
which is then transported to shoots by the transpiration stream [106]. The other six genes code for
BOR2 to BOR7 [107]. All seem to be involved in the transport of borate or boric acid rather than in
HCO;™ transport.

Although no selective HCO3 ™ transporters or channels have so far been characterized in higher
land plants, the possibility of membrane transport by specific or unspecific anion transporting
proteins cannot be excluded. Several studies provide indirect support for HCO3; ™ uptake by plant
roots. Under exposure to high HCO3~ (5 mM to 20 mM), a strong inhibition of nitrate, sulphate,
and phosphate uptake by roots has been observed [108]. Such inhibition could be caused, at least
in part, by competition between HCO3 ™~ and other anions for transport mechanisms with low anion
specificity. An electrophysiological approach to ion selectivity of a voltage-dependent anion channel
in A. thaliana hypocotyls revealed low but reproducible HCO3; ™ currents. A permeability ranking of
NO;~ > SO,* > Cl~ > HCO3;~ >> mal?>~ could be established [28]. More recently, such a channel
with permeability for several anions has been identified as QUAC1/ALMT12, which is a channel that
releases anions from guard cells [109]. In fact, anion channel currents in plants have mainly been
studied in guard cells where they contribute to the mechanisms for controlling stomatal resistance
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(see Section 3.3). Slow Anion Channels (SLACs) and Quick Anion Channels (QUAC) are involved
in the transport of NO3~ and Cl~ (SLAC1), NO3~ (SLAHS3), or malate (QUAC1/ALMT1) [110].
QUAC1/ALMT12 is activated by xylem derived extracellular SO4% [111].

Anion channels in roots are less characterized. In A. thaliana roots, a slah3-1 mediated Cl~ and
possibly NO3; ™ efflux in response to ABA has been shown [112]. Recently, Canales et al. [113] reported
comparative root expression profiles at a cell resolution level for anion channels in A. thaliana. Nitrate
channel SLAH3 was strongly expressed in the mature root zone while the Voltage Dependent Anion
Channel (VDAC1) was localized to the meristem zone. VDACs 2 and 4 have been reported expressed
in all plant organs [114]. At the subcellular level, VDACs are localized at the outer mitochondrial
membrane and in small vesicles located in the cell periphery [115]. The ion selectivity of VDACs
depends on ionic strength. Higher selectivity for C1~ is achieved with lower ionic strength [116].

It has been stated that, on limestone soils, HCO3™ can passively enter into plant roots. Then it is
long-distant transported via xylem vessels to the leaves where, after transformation by CA anhydrase,
the resulting CO, can be assimilated along with the atmospheric CO; [11]. The apoplastic, passive
radial transport pathway in the roots is disrupted at the endodermal level due to the hydrophobic
Casparian strip. Therefore, to reach the vascular cylinder, a substance has to first pass through the
plasma membrane into the symplasm. This implies either a still unidentified HCO3~™ membrane
transport system or the conversion of HCO; ™ into CO,, which may easily diffuse into the stele.
Apoplastic by flow, either through the young root tips where the Casparian strip has still not fully
developed or at sites where lateral root emergence from the pericycle disrupts this hydrophobic barrier,
may be another way HCO3 ™ enters the stele. Contribution of this apoplastic bypass is relatively small
in the case of NaCl [117] or Cd [118]. We could not find specific data for HCO5; ™.

Early investigations using !'C or C isotopes as markers for HCO;~ provided evidence for
uptake of HCO3 ™ by roots and transport to the shoots [119-122]. However, the contribution of Cinorg
taken up by roots may be less than 1% taken up by leaves [123]. The *C from labelled H*CO3~
supplied through the roots was found to be incorporated into sugar, starch, and proteins of leaves [124].
As plants can acquire Cinorg from different sources including atmospheric CO; and respiratory CO;,
the experimental design is critical. Solution pH used for supplying labelled HCO3~ to the plants
deserves special attention. At pH 8, most of the labelled Ciyorg is in the form of HCO;™ but a small
percentage of labelled CO, can be present and CO, diffusion into the root cells may occur, which will
be followed by transformation of this CO, into labelled HCO3;~ by CA. This transformation can be
even more relevant considering that the pH of cell walls and xylem sap are usually in the acid range.
The pH of the leaf apoplast of sunflowers remained stable around 6.4 to 6.5 even if roots were exposed
to 10 mM HCO;3 ™ [125]. However, it has to be taken into account that apoplast alkalinization is a
general response to stress in plants [126]. Enhanced CI~ supply under stress causes alkalization of
the root apoplast due to the symport of 2 H" per 1 CI~ [127]. Increasing the external pH of the root
bathing solution also increases pH of both A. thaliana root cell walls [128] and xylem sap [129]. This
favors HCO3 ™~ over CO; formation. Nonetheless, even under severe stress conditions, such as drought
or fungal infection with a strong alkalinization effect in the apoplast, the increased pH values remain
nearly neutral [130]. Therefore, in plants with their roots exposed to HCO3;~, the proportion of HCO3~
over CO; during radial transport of Cinorg from soil to the stele and within the xylem sap up to the
leaves may be considerably lower than in the soil solution surrounding the plant roots. The direct use
of root-derived HCO3;~ by CA in chloroplasts to supply CO, for Rubisco is unlikely when taking into
account the low chloroplast permeability of HCO3~ (1 x 1078 m s~!) in comparison to CO, (range
from 2.3 x 107* to 8 x 107* m s~ 1), which was recently shown by mass inlet mass spectrometry
(MIMS) using 180 labelled Cinorg [131].

3. Formation and Use of Bicarbonate in Plants

As seen in higher plants, no selective HCO3 ™ transporter or channel has been characterized at
the molecular level. Membrane transport of HCO3; ™ in these organisms is still unclear. Contrastingly,
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the contribution of HCO3™ to essential metabolic pathways and the total assimilation of Cinorg in
plants is reliably documented.

The CA-generated HCO3™ serves as a substrate for different carboxylases among others
acetyl-CoA carboxylase (ACCase, EC.6.4.1.2) and phosphoenolpyruvate carboxylase (PEPC,
EC 4.1.1.31). ACCase contains a biotin carboxylase, a biotin carboxyl carrier protein, and a carboxyl
transferase. It catalyzes the carboxylation of acetyl-CoA to malonyl-CoA in the chloroplast and the
cytosol [132]. Malonyl-CoA is the precursor for fatty acid formation and elongation. Moreover,
it participates in the biosynthesis of ring A of flavonoids through the polycetic pathway and in the
biosynthesis of malonylated aminocyclopropane-1-carboxylic acid (MACC), which is involved in the
down-regulation of ethylene production in plants (see Figure 2). Other biotin-containing carboxylases
operating with HCO3 ™ are 3-methylcrotonyl-CoA carboxylase, which is involved in the mitochondrial
pathway of leucine catabolism. Geranyl-CoA carboxylase likely works in the metabolism of cyclic
terpenes [133,134].

Regulation HCO; - ‘ W\

" Oxalacetate ‘

+Pi Aotk Fatty Acids  RingA of MACC
1 asimilation Flavonmds J_
Malate \

[ Ethylene

||
Cycle  ‘ @j

Figure 2. Metabolic pathways related to three major plant carboxylases using HCO3™ as substrate.
CA, carbonic anhydrase; PEPC, phosphoenolpyruvate carboxylase; ACC, acetyl-CoA carboxylase;
MCC, malonyl-1-aminocyclopropane-1-carboxylic acid.

PEPC plays a major role in the carbon assimilation processes in plants. This enzyme in the
presence of Mg?* or Mn?* ions catalyzes the B-carboxylation of phosphoenolpyruvate (PEP) yielding
oxalacetate (OAA) and inorganic phosphate (P;) in an irreversible reaction (see Figure 2).

The relative importance of the contribution of HCO3™ to the total plant COrg as well as the
assimilation mechanisms and their consequences for plant adaptation to different environmental
conditions depend on the plant species and the characteristics of the habitat (see Sections 3.2 and 4).
In all cases, the cooperation of the two enzymes, CA and, in higher plants, PEPC, is essential.

3.1. Plant Carbonic Anhydrase and Phosphoenolpyruvate Carboxylase

Carbonic anhydrases (CAs, EC 4.2.1.1) are metallo-enzymes that catalyze the reversible hydration
of CO; forming HCO3 ™. Zinc is the required metal at the catalytic site for CA activity. Some exceptions
are several coastal diatoms with cadmium-containing CA (CDCA). The Cd?* at the catalytic site is
fully exchangeable for Zn?* [135]. The natural use of Cd?* in this (-CA class enzyme is considered an
evolutionary adaptation to low Zn?* availability in marine habitats [136].

CA enzymes are ubiquitous in nature (animals, plants, archaebacteria, and eubacteria) and are
an example of convergent evolution. Based on sequence comparison, CA proteins are grouped into
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seven distinct classes: «, 3, v, b, ¢, 1, and 6-CAs [137-140]. In higher land plants, only «, 3,y
CAs are found. The 6 and ( classes are restricted to marine diatoms and n-CA so far has only
been reported in Plasmodium falsiparum [141]. 6-CA seems more widely distributed in algae and
cyanobacteria [142] and it has been reported critical for photosynthesis in the diatom Phaedactylum
tricornutum [143]. The ubiquity of the distribution of CAs implies that they play diverse and essential
roles in many biological processes. They have been related to respiration and transport of CO,/HCO3z~
between tissues, pH and CO, homeostasis, electrolyte secretion in a variety of tissues/organs, various
biosynthetic reactions, and CO, fixation [142,144]. In addition, CA is a plausible source of hydrogen
sulphide (H,S) within plant leaves by catalyzing the conversion of carbonyl sulphide (COS) to CO,
and H,S [145].

Higher plants contain three evolutionarily distinct CA families including «CAs, BCAs, and y CAs
where each family is represented by multiple isoforms in all species [142,146,147]. Alternative splicing
of CA transcripts is common. Consequently, the number of functional CA isoforms in a species may
exceed the number of genes [147]. CAs are expressed in numerous plant tissues and in different cellular
locations. The most prevalent CAs are those in the chloroplast, cytosol, and mitochondria. CAs have
been found in the thylakoid lumen of Chlamydomonas and Phaeodactylum. They are an important
component of the CCM in these species and, therefore, essential for photosynthesis and growth [143,
148]. This diversity in location is paralleled in the many physiological and biochemical roles that
CAs play in plants [142,147,149,150]. As in humans and animals, many of these roles are related to
the CA-driven regulation of cell pH, which, in turn, can participate in multiple regulatory processes
through electrical signals, changes in cytosolic Ca?* concentrations, and plant hormones [150~152]
among others.

3.1.1. Plant a-Carbonic Anhydrases («CA)

Arabidopsis thaliana contain eight «CA (AtaxCA1-8) [153]. Genes for «Cal, «CA2, and «CA3
are expressed in green and reproductive tissue (stems, rosette leaves, caulinar leaves, and flowers).
Only aCA2 presents root expression. While expression of «CA1 is independent of the level of CO;,,
the expressions of ®CA2 and «CA3 are induced under conditions of low CO, concentrations [149].
aCal is expressed in chloroplasts and «CA2 is expressed in the plasma membrane. o-CA4 is implicated
in the processes leading to energy dissipation in the PSII antenna [154]. Arabidopsis aCA8 is
clearly a pseudogene since it encodes in-frame stop codons [147]. Tissue-specific expression has
also been reported for other species. In sorghum, the «CA Sb5G039000 is expressed specifically
in anthers while, in the legume species Medicago truncatula «CAs Mt1g059900 and Mt1g059940,
are expressed in root nodules [147]. There is increasing evidence that xCAs can play an important
role in photosynthesis [150]. Under conditions of increasing light intensity, the expression of xCA2
decreases while the expression of «CA4 increases. Knock-out mutants of these chloroplast-located
«CAs exhibit contrasting responses in comparison of the wild type. Both the quantum yield at
photosystem 2 (PS2) and the electron transfer to O, decreased while non-photochemical quenching
(NPQ) and CO; assimilation were enhanced in plants lacking «CA2. The opposite was observed in
xCA4 knock-outs [155]. The authors hypothesize that these xCAs may participate in the regulation of
H* flux into the PS2 protein PsbS, which regulates qE-type NPQ.

3.1.2. Plant 3-Carbonic Anhydrases

BCAs are most abundant in land plants where they participate in photosynthesis [147]. Arabidopsis
thaliana has six CAs [147]. BCAs genes are highly expressed in leaf tissue. Expressed sequence tag
experiments revealed that BCAI to BCA6 are expressed in rosette leaves, caulinar leaves, and flowers.
BCA3 is also strongly expressed in reproductive tissue while BCA4, BCA5, and BCA6 are expressed
in all tissues including roots. BCAs have been found in chloroplasts, mitochondria, the cytosol,
and the plasma membrane [144,149]. Targeting analysis using green fluorescent protein fusion proteins
confirmed the subcellular localization of plant fCAs: BCAI and BCA)S are expressed in chloroplasts
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while BCA2 and BCA3 are cytosolic. Isoforms CA4, BCA4.1, are localized in the plasma membrane
while the short form, BCA4.2, is cytosolic. BCAS5 and BCA6 are localized in the chloroplast and
mitochondria, respectively [149].

The role of BCAs in photosynthesis of land plants seems especially relevant in grasses with
Cy-type photosynthesis [156] or for plants under limited Cinorg supply (see Section 3.2). Carbonic
anhydrases could be versatile. They may be involved not only in photosynthesis and responses to CO,
and light but also in seed germination, morphogenesis, nodule development, and responses to abiotic
stress [157,158]. The tobacco salicylic acid-binding protein 3 (SABP3) is a chloroplast CA that exhibits
antioxidant activity and plays a role in the hypersensitive defense response [159]. Furthermore, BCA1 is
related to ethylene signaling responses, photosynthetic performance of cotyledons, and Arabidopsis
seedling survival [160].

3.1.3. Plant y-Carbonic Anhydrases

Plant yCAs are codified in the nucleus but localized in mitochondria [139]. So far, no higher plant
YCA with CA activity has been identified. Nonetheless, plant proteins with the active-site residues
found in yCAs from archaebacteria and cyanobacteria have been found. In A. thaliana, five yCA-
related genes have been reported including three yCA genes and two genes encoding yCA-like proteins.
In contrast to YCA proteins, the YCA-like proteins do not have the required Zn-coordinating amino
acid residues. Plant yCA genes encode for a part of the mitochondrial Complex I (NADH-ubiquinone
oxidoreductase). Complex I knock-out lines present adverse effects: non-viable seeds, high levels of
mitochondrial Complexes II and IV, and the alternative oxidase. However, this is in contrast with
reduced levels of photosynthetic proteins [161]. A proteomic approach has recently found enhanced
YCA root levels during the induction phase of Al-tolerance in the hyper-resistant grass Urochloa
decumbens. This increase occurred along with higher adenylate kinase activity and supports a role for
YCA in the maintenance of ATP-production during the Al tolerance response [162].

3.1.4. Plant PEP Carboxylases

Phosphoenolpyruvate carboxylases (PEPC) are located in the cytosol and catalyze the
-carboxylation of PEP to oxaloacetate using HCO3™ in an irreversible process. The OAA can then
be reduced through NADH or NADPH-dependent malate dehydrogenase to malate in a reversible
process. PEPCs are present in bacteria, algae, and plants. The typical plant PEPC (class 1 PEPC)
has four identical subunits of 107 kDa. Multiple isoforms have been identified in leaves of C3, Cy4,
and CAM plants [163-165]. In Sorghum bicolor, which is a plant with C4-type photosynthesis, five PEPC
genes (PEPCI1-5) have been identified. The plant PEPC is highly regulated. Phosphorylation through
PEP carboxykinase (PEPCK) at the N-terminal phosphorylation domain [166] and allosteric regulation
by glycine and glucose-6-P enhances the activity. Inhibition is achieved by both allosteric regulation
especially by malate and by ubiquitination [167]. In addition to the typical plant-type PEPC, plants
also contain a bacterial-type PEPC (BPEPC) of 118 kDa [153]. The BPEPC is highly expressed in floral
tissues as well as in seeds and fruits. It has recently been shown that high BPEPC occurs in tissues that
accumulate high malate concentrations [168]. There is a tight interaction between PTPC and BTPC,
which forms the class 2 PEP. This is an enzyme complex that, in contrast to class 1 PEPC, is mostly
insensitive to allosteric inhibition by high malate concentrations [169,170]. While class 1 PEPCs are
constitutively expressed in the cytosol, the BPEPC is associated with the outer mitochondrial surface.
This location is in line with a central role of this enzyme in collaboration with CA in the efficient
fixation of respiratory CO, and the anaplerotic supply of organic acids to the Krebs cycle [171]. This is
especially relevant in developing seeds that store fatty acids such as castor bean seeds [172]. PEPC
activity also plays a central role in symbiotic N, fixation in root nodules (see Figure 2) where it provides
OAA for nitrogen assimilation and malate for the bacteroids [173].
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3.2. Carbon Concentration Mechanisms (CCM) in Terrestrial Plants

Under certain environmental conditions, CO; may become a limiting factor for photosynthesis
not only in cyanobacteria, algae, and aquatic macrophytes where CCMs have been intensively studied
but also in terrestrial higher plants. High-temperature favoring photorespiration and drought imposes
an increase of stomatal resistance. These are the main factors limiting CO, availability for RuBisCo in
land plants [174].

Long distance transport of HCO3 ™~ from roots to leaves usually makes only a small contribution
to Cinorg for photosynthesis (see Section 2.6). Exceptions are aquatic plants in the Lycophyta genus
Isoetes and the non-stomatous land plant Stylites. They acquire all Cinorg for photosynthesis from
the soil through the roots and recycle carbon by CAM [175]. Other terrestrial plants take up
most of the Ciorg in the form of CO, through stomata of the leaves. This CO, diffuses into the
chloroplast where it is assimilated by RuBisCO, which forms phopshoglycerate (PGA) as the first
stable product of Cinorg assimilation. After activation with ATP and reduction by NADPH provided by
the light—driven chloroplastic electron transport, PGA forms phosphoglyceraldehyde, which is the first
sugar molecule of the photosynthetic carbon metabolism. Most terrestrial plants fix CO, directly onto
ribuslose-bis-phosphate. In contrast to plants with this so-called C3-type photosynthesis, plants with
Cy-type photosynthesis convert CO; entering through the stomata into the mesophyll cells to HCO3~
using a cytosolic BCA. This Cinorg in the form of HCO3™ is initially fixed by PEP carboxylase in the
cytosol of the outer mesophyll cells of the leaves. In this case, OAA is a first stable organic compound.
Oxalacetate is either reduced to malate or transformed by transamination to aspartate. Malate or
aspartate are the molecules that transfer the newly fixed carbon to the inner bundle sheet cells of
the leaves where decarboxylation provides CO,, which is the substrate for Rubisco [176]. While CA
activity is high in C3 chloroplasts where it facilitates the availability of CO; for RuBisCo, the absence
of CA activity from bundle sheet cells seems essential for the C4 mechanism [177].

This CCM around RuBisCo in Cy4 plants is considered an evolutionary adaptation to reduce the
oxygenase activity of RuBisCo, which inhibits photorespiration and is especially enhanced under
high temperature in tropical or subtropical areas [178]. However, C4-type photosynthesis can also be
induced in certain amphibious plant species such as Eleocharius vivipara [179] under conditions of leaf
emergence under dry conditions. Extreme adaptation to drought is observed in many CAM plants,
which capture CO, during the night when a lower temperature and a higher relative humidity in the
atmosphere reduces transpiratory water loss. During the dark period, this Cinorg is fixed in the form
of HCO3~ by PEP carboxylase and stored in large vacuoles mostly in the form of malate. The CO,
for fixation with RuBisCo is obtained by decarboxylation of malate during the following day-light
period [180].

Limitations of CCMs in higher plants, especially of the Cs- type of photosynthesis, and advances in
our understanding of CCMs in cyanobacteria and microalgae like C. rheinhardii have promoted genetic
engineering approaches to introduce efficient CCM into crop plants for increasing yield. Different
approaches include manipulation of photorespiration, C3 to C4 engineering, and introduction of CCMs
of cyanobacteria of C. rheinharddii into C3 crops. This well-known topic has recently been reviewed in
detail by Mackinder [181] who identified gaps in our knowledge on bicarbonate transporter structure,
functioning, and localization as important constraints that need priority attention for successful
development of CCM engineered plants.

3.3. CO,/Bicarbonate Signalling in Stomatal Guard Cells

Regardless the type of photosynthesis, C3, C4, or CAM, the CO; flux from the atmosphere into the
plants is regulated by the stomatal opening and closure due to turgor changes in the stomatal guard
cells. These changes are strictly controlled by multiple external and internal factors. Among those,
the binomial CO,/HCO;~ plays a central role (see Figure 3). High CO, promotes stomatal closure,
which is brought about by the activation of efflux anion channels: SLAC1 (S-type) facilitating C1~
or NO3 ™ efflux and R-type (AtALMT12/QUAC1 in A. thaliana) for malate efflux (see Section 2.6).
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The signal for stomatal closing in response to high CO, seems to be a combination of alkaline pH,
high Ca?*, and high HCO3 ™ in the cytosol [182]. The carbonic anhydrase double mutant calca4 does
not show any effect on stomatal conductance when CO, concentration is changed from 100 ppm
to 80 ppm [183]. This points to HCO3;~ being the key signal. Abscisic acid (ABA) dependent and
ABA-independent mechanisms seem to operate in stomatal closure under a high amount of CO,
(see Figure 3). OST1 (Open Stomata 1) is a positive regulator of the anion efflux channels. In the
ABA-independent signaling pathway, a high amount of HCO3 ™~ activates a MATE-like transporter
protein (RHC1, Resistance to High CO,), which acts as a positive regulator of OST 1 by inhibiting HT1
(High Leaf Temperature) known as a protein kinase that inactivates OST1 [183,184].

/ co, |
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l HCO,/RHC1
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ABI1/PP2C2 —| OST1 I—’H]
|
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QUAC1 SLAC1
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Figure 3. Mechanisms of stomatal closure induced by high CO, or HCO3;~ concentrations according
to [183,184]. CA, carbonic anhydrase; ABA, abscisic acid; ABA receptor, PYR/RCAR, Pyrabactin
Resistance (PYR) Regulator Component of ABA Receptor (RCAR); ABI1/PP2C2, Abscisic acid
Insensitive Protein Phosphates C2; RHC1 Resistant to High CO2, MATE-type transporter specific
activated by HCO3~; HT1, High Leaf Temperature kinase; OST1, Open Stomatal protein kinase;
SLACI1, Slow Anion Channell; QUACI, Quick Anion Channell.

4. Plant Response to Bicarbonate-Rich Soils

It is common knowledge that limestone soils containing high carbonate/bicarbonate
concentrations restrict the performance of calcifuge plant species and limit yield especially in
iron-inefficient crops such as certain varieties of citrus, peach, pear, or soybeans suffering from
lime-induced chlorosis [185,186]. Low pH leads to low availability of essential nutrients (especially Fe,
Zn, and P) and high Ca soil concentrations are considered the main constraining factors. However,
HCO;™ at concentrations occurring in the solution of limestone soils can inhibit root growth in
sensitive plant species like the calcifuge grass Deschampsia caespitosa [187]. However, dicots like peas,
beans, or sunflowers suffer more intense root growth inhibition due to CO; and/or HCO3™ than the
monocots barley and oats [123]. Recently soil carbonate has been identified as a main selection factor
that drives local adaptation in natural populations of A. thaliana, which is a calcifuge species able to
colonize soils with moderate carbonate contents [188].

Currently, no HCO3~ transporter has been characterized in higher plants (see Section 2.6).
Nonetheless, HCO3; ~-induced root growth inhibition is paralleled by enhanced root production
of organic acids especially malate, succinate, and citrate [189]. This suggests that excess HCO3 ™ enters
the root and is metabolized by CA and PEP, which yields enhanced organic acid levels. However, CO,
diffusing from the soil’s atmosphere into the root can also be transformed inside the root into HCO3~
by CA. Bicarbonate can be released again into the soil rhizosphere, which contributes to the plant’s
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cation-anion balance. Especially under conditions of high nitrate uptake, enhanced HCO; ™ efflux from
the roots has been claimed to contribute to the characteristic alkalinization of the rhizosphere when
nitrate is the main N source for the plants [190,191]. In fact, in maize and a tomato, the sum of K* and
NO;~ uptake and the HCO3 ™ efflux have been reported to be in electrical equilibrium [192]. However,
no selective bicarbonate efflux transporters in plant roots have been reported and alkalinization can
also be a consequence of either or both OH™ release or H* uptake in cotransport with nitrate [193].
Actually, root supply of low HCO3™ concentrations tended to increase rather than decrease root
nitrate uptake in Populus canescens. Exposure to 1 mM external NaHCOj; enhanced both nitrate
reduction and assimilation as well as exported nitrogen to the shoots of poplar plants [194]. Higher
HCO;3;~ concentrations cause net K* and NO3 ™~ efflux as well as accumulation of organic acids, mainly
malate, in the roots [195]. To what extent dark fixation of Cinorg entering the roots plays a role in the
carbon budget of terrestrial plants has been considered mainly in relation to lime-induced chlorosis in
calcifuge plants. This type of chlorosis affects sensitive plant species when growing on carbonate-rich
soil and may reflect an interference of HCO3 ™~ in the mechanisms of Fe acquisition and transport [196].
Key processes potentially impaired by HCO3 ™ include the dicots’ strategy 1 such as the acidification
of the rhizosphere due to the strong buffer ability of HCO3; ™~ and the reduction of Felll to Fell by ferric
reductase, which operates optimally at acid pH [197]. The induction of root exudation of phenolic
substances is not affected and is even stimulated by HCO3~. Induction of root accumulation and
exudation of coumarin-type phenolics with high affinity for Fe has been reported as a response
to Fe-deficiency under high pH conditions in A. thaliana [198]. An A. thaliana population which is
naturally adapted to moderate soil carbonate had higher rates of coumarin root exudation than a
sensitive population [188]. Furthermore, prevention of the imbalance of organic acid concentrations
caused by dark fixation of HCO3 ™~ and shifting of Corg into the shikimate pathway for the production of
phenolic compounds has been reported as a mechanism of the extreme HCO3™ tolerance in Parietaria
difusa [199]. In the view of the multiple implications of HCO3;~ in plants’ metabolism, breeding
programs for better crop yield on carbonate-rich soil would greatly benefit from the characterization
at the genetic and molecular level of the of bicarbonate uptake and efflux mechanisms in higher
land plants.

5. Conclusions

During the last decade, there has been significant progress of our knowledge on the mechanisms
of HCO;™ transport and CCM in cyanobacteria, algae, and seagrass species due to improved genetic
and molecular tools and electrophysiological approaches. In contrast, in higher land plants, no HCO3~
transporter has been characterized so far. Advanced knowledge of the metabolic use of HCO3; ™ in
terrestrial plants has mainly been made in relation to C4 and CAM metabolism including the genetic
and molecular characterization of CAs and PEPC involved. However, there are still important gaps
in our knowledge about the mechanisms of compartmentation and regulation especially regarding
the complex interactions between light and dark fixation of Cinorg, the recycling of respiratory and
photorespiratory CO,, and the importance of anaplerotic supply of organic acids to the Krebs cycle.
Filling these gaps is essential for progress in both genetic engineering approaches for transferring
CCMs from cyanobacteria or microalgae to higher plants and breeding for bicarbonate tolerance in
crops sensitive to lime-induced chlorosis.
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Abbreviations

ABA Abscisic acid

CCM Carbon concentration mechanism
CA Carbonic anhydrase

PEPC Phosphoenolpyruvate carboxylase
SLAC Slow anion channel

SLC Solute carriers

QAC Quick anion channel
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