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Abstract: This study investigates the scheduling of mechanical repairs performed at a Portuguese
firm in the automobile sector. The aim is to reduce the amount of time that vehicles spend inactive
between interventions by developing a mathematical model that takes into account the available
resources and mechanics, the necessary interventions, and the time required for each repair. To
accomplish this, a mixed-integer linear programming (MILP) model was employed, incorporating
various variables to schedule interventions, allocate resources, and determine start times for each
vehicle. The problem was formulated using the AMPL modeling language, and real-world instances
of the problem, derived from data provided by the company, were solved using the Gurobi solver.
Results show that the developed model significantly improves the scheduling of the vehicles’ repairs
at the firm, leading to a reduction of 67% on average in the downtime of the vehicles and allowing
an automatic correct schedule of the mechanical interventions. Moreover, the comparison of the
scheduling obtained from the developed model and the firm’s procedure shows that interventions
on vehicles arriving at the repair shop are mostly repaired on the day of entry, allowing for quicker
delivery to the customer.

Keywords: scheduling; mixed integer linear programming; automobile sector; real application

MSC: 90C05; 90C08

1. Introduction

In the automobile sector, the downtime of vehicles between interventions can lead to
significant economic losses for firms. To tackle this issue, scheduling repairs in an efficient
and timely manner is crucial. The scheduling of repairs is a complex problem that requires
taking into account multiple factors, such as available resources, mechanics, necessary
interventions, and the time required for each repair.

Scheduling holds significance across various disciplines as it involves decision-making
processes and represents a classic combinatorial problem much studied by researchers
in operational research (OR) [1,2]. Since the early 1950s, this subject has received much
attention from OR practitioners, management scientists, production and operations re-
search workers, as well as mathematicians [3]. It represents a very important activity of
many firms and can be defined as the allocation of resources to perform a set of tasks
over a period of time, to optimize some or several performance measures [1,4]. These
resources and tasks differ, depending on the type of organization in question: resources
may be, for example, machines in a repair shop, runways at an airport, while tasks may
be, for example, operations in a production process, airport takeoffs and landings [5]. A
general problem, often used in the literature, to describe scheduling problems is the Job
Shop Problem (JSP), which can be described as a set of jobs to be processed in a set of
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machines, and each job can consist of a set of operations and its processing order. An
extension of this problem, which fits the environment of the problem addressed in this
project is the Flexible job shop problem (FJSP), where an operation can be processed on any
machine, in a set of available machines [4].

To solve the scheduling problems, several types of models were developed to describe
the systems in which they are uncertain. Lin et al. [6] clarifies that most scheduling models
are developed using mathematical methods.

Baker and Trietsch ([7], pp. 3, 4) state that scheduling theory mainly deals with
creating mathematical models that relate to scheduling processes. The development of
effective models is an ongoing interaction between theory and practice, leading to practical
insights and solution techniques. The authors also highlighted that this theoretical perspec-
tive involves a quantitative approach, which aims to represent the problem structure in
mathematical form. This approach starts by describing resources, tasks, and translating
decision-making goals into an objective function.

The empirical work addressed in this study focuses on a challenge presented by a
Portuguese company operating in the automobile sector, engaging in vehicle sales and
maintenance. Of the various branches that it owns, scattered throughout the country,
the one that is portrayed in this project is the branch located in Porto, particularly in its
repair shop. There are different areas in the repair shop, namely repair, administration, and
quality control. These areas also have specific subareas, through which the workers of the
firm are distributed, and depending on the area, the workers will have different functions to
perform. The area that will be analyzed in this project will be the mechanical area. The firm
provided data on eight mechanics and on the mechanical repairs carried out over a time
horizon period of one year—August 2016–July 2017.

The main objective of the firm is that the vehicles that arrive at the repair shop stay the
least possible amount of time without any intervention being performed until all repairs
have been completed. To achieve this objective, a mathematical model was created to
efficiently schedule the necessary interventions for a specific group of vehicles, ensuring
they are prepared for delivery to customers with minimal downtime. The model takes
inspiration from previous works such as [8,9].

This study serves as an expansion of the research conducted in [10]. It introduces a
mixed-integer linear programming (MILP) model that incorporates linear ordering vari-
ables to sequence interventions for individual vehicles. Additionally, assignment variables
and linear variables for the start time are integrated into the model’s framework.

Numerous studies in the literature, as highlighted by Melo et al. [11], often lack the
utilization of real data. This can be attributed to various factors, including obstacles im-
posed by companies regarding data sharing, the challenge of data collection, or the absence
of readily available data that necessitate time-consuming preparation and aggregation.
Sarker et al. [12] proposed that, due to the inherent complexity of real-world problems,
researchers and practitioners frequently resort to simplifications or assumptions when
employing mathematical approaches to address the problem’s intricacy.

Hence, the significance of this study lies in the opportunity to tackle a genuine problem
using actual data provided by the company. Working with such authentic data enhances
the value and credibility of this research.

In a study by [13], it was found that only 9% of the works surveyed addressed issues
specific to the automotive industry, while only 2% were related to the transportation
industry. Similarly, Chaudhry and Khan [14] noted that a mere 7% of the studies related
to FJSP used mathematical programming, such as integer/linear programming (IP/LP).
These findings suggest that there is a lack of literature on FJSP problems in the context of
the automotive industry, making it an area of great interest.

Decision makers have recognized the potential benefits of applying OR approaches
to problem-solving, such as cost savings. In the context of this project, optimizing the
scheduling of repairs can lead to decreased unproductive time in the repair shop, which
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can ultimately maximize the firm’s costs and customer satisfaction. Satisfied customers are
likely to return, making customer satisfaction a crucial factor [12].

In this manuscript, we present a comprehensive analysis of the scheduling problem
faced by the company. We start by providing a concise overview of the relevant literature
on scheduling, quantitative models, and their applications (Section 2). This literature
review establishes the theoretical foundation and highlights the gaps that our research aims
to address.

Section 3 provides an in-depth description of the company and the specific problem
we are addressing. By understanding the company’s operations, constraints, and objectives,
we can develop a tailored solution that aligns with their requirements.

Next, in Section 4, we explain the methodology and model that we developed to solve
the scheduling problem. This model takes into account various factors such as resource
availability, task dependencies, and operational constraints to generate efficient schedules.

The results obtained from real instances provided by the company are presented
in Section 5. These results demonstrate the effectiveness of our approach and provide
insights into the challenges faced in scheduling tasks within the repair shop environment.

Finally, in Section 6, we summarize the findings of our study and discuss their impli-
cations. We also identify potential areas for future research and improvement to further
enhance the scheduling process and optimize repair shop operations.

2. Literature Review

Scheduling is a classic combinatorial problem which has been extensively studied by
researchers in OR [2]. Scheduling problems occur in all economic domains, from computer
engineering to manufacturing [15]. The field of scheduling is driven by the challenges
encountered in diverse domains such as production planning, telecommunications, logis-
tics, and computer control, as noted by Unlu et al. [16]. The significance of scheduling has
been recognized by OR practitioners, management scientists, production and operations
researchers, and mathematicians since the early 1950s [3]. It has garnered substantial
attention and interest from these professionals, reflecting its importance and relevance in
various disciplines. A significant variety of works have been published since then (see for,
e.g., [17–26]).

However, despite being an area that has been widely studied, and after several decades
of work, only a limited set of scheduling problems ensure optimization [27]. This is also
due to the fact that most scheduling problems are complex combinatorial optimization
problems, and are therefore difficult to solve [15]. The first developments in scheduling were
motivated by problems in manufacturing. For this reason, the manufacturing vocabulary
has been employed when specifying scheduling problems, and although it currently has
considerable significance in many non-manufacturing areas, the terminology associated
with manufacturing is still widely used [7].

The literature encompasses various classifications of scheduling. These classifications
consider factors such as the number of machines, jobs, and operations involved, as well as
the rules dictating the scheduling of operations, scheduling can be classified as [28]:

• Single-machine shop (SMS): there is only a single machine in the shop, and each job
has a single operation to be performed on that machine. Therefore, the scheduling
task is to find the ideal sequence for all jobs to be processed;

• Parallel machine shop (PMS): there are m machines that work in parallel, and each job
has a single operation to be processed, where one job can be processed on several or
any of the machines;

• Flow-shop (FSP): there are m machines, and each job consists of a strictly ordered
sequence of operations, where the order of the machines for all jobs is identical;

• Job shop (JSP): there are m machines and n jobs, where each job has its own processing
order through the machines, and may have no resemblance to that of any other job;

• Open shop (OSP): an extension of the JSP, and here there is no restriction of order
within each job.
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A basic example that has been extensively studied is the that of the JSP [28], where
resources are usually called machines and tasks are called jobs. Furthermore, sometimes jobs
can contain several elementary tasks called operations [7]. This problem is very important
in the field of production scheduling [29] and is acknowledged to be one of the hardest
combinatorial optimization problems [12]. Furthermore, its wide applicability in real-
world manufacturing systems makes it one of the most popular scheduling problems [30].
The general JSP is strongly NP-hard [31], since no efficient polynomial algorithms are
known for its resolution [32].

An extension of the classic JSP is the flexible job shop problem (FJSP), where an
operation is allowed to be processed by any machine from a given set of available alternative
machines [14]. The FJSP comprises two main sub-problems. Firstly, the routing sub-
problem involves the assignment of each operation to a suitable machine from a given set
of capable machines. Secondly, the scheduling sub-problem focuses on sequencing the
assigned operations on all the machines to generate an optimal schedule that minimizes a
specified objective function [29]. The pioneering work by Brucker et al. [33] introduced the
resolution of such problems by developing a polynomial algorithm specifically designed
for solving the FJSP with two jobs. This breakthrough was further supported by the works
of Shen et al. [30] and Xia et al. [29].

As defined by Ozguven et al. [19], the FJSP can be described as follows: Given a set of
n independent jobs denoted as j, each with its own unique processing order across a set of
available k machines, a series of lj ordered operations (Oj1, · · · , Ojl(j)

) must be executed to
complete job j. Each operation Oji of job j can be processed by any machine belonging to a
given set Mi ∈ M, with a corresponding processing time of pik.

The difference to the FJSP is that instead of having to be processed in a predefined
machine mg ∈ M as in the JSP, each operation can be processed by any machine on a set
Mg ∈ M. [19] pointed out that FJSP can be considered to consist of many unique JSPs
due to the flexibility of routing. While the JSP is only a sequencing problem because the
assignment of operations to the machines is given in advance, the FJSP becomes a routing
and sequencing problem. Having already observed that the JSP is NP-hard and given
that FJSP adds the need to determine the assignment of operations to machines, it can be
concluded that FJSP is also a strongly NP-hard [15].

In terms of scheduling environment, when making assumptions about the availability
of information on future requirements, it is necessary to make a distinction between static
and dynamic environments [26]. In a static environment, the scheduling problem is defined
in relation to a finite set of fully specified requirements, where no additional requirements
will be added to this set, and none of the specifications made will be changed. In contrast,
if the scheduling problem is defined not only for known requirements but also for additional
requirements and specifications, the environment is dynamic [26]. For example, if the set
of jobs available for scheduling does not change over time, the system is called static,
otherwise, if new jobs appear over time, it is called dynamic [7]. As stated by Baker and
Triersch ([7], p. 4), static models have been more extensively studied and are easier to
handle compared to dynamic models because all the model parameters are predetermined.
Nonetheless, Baker acknowledges that dynamic models are more relevant in real-world
applications since unforeseen events may occur. Despite this, static models can still provide
insights into dynamic systems, and analyzing static problems can reveal useful principles
and insights for dynamic situations.

As noted earlier, the efficient utilization of resources, rapid responses to demands,
and close conformance to prescribed deadlines are decision-making goals that must prevail
in scheduling [34]. Scheduling objectives, also known as performance measures, are criteria
by which the performance of a particular solution method can be measured [35].

After the parameters (such as processing time, tasks to be made or set of
available machines) and the variables of the model are set, the objective function to be
minimized or maximized is defined, according to the objectives that are intended to be
achieved. According to [34], there are numerous criteria that have been used in theoretical
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scheduling studies, and, in varied circumstances, these criteria assume different degrees of
relevance. In [22], the author claims that it is not easy to state the objectives in scheduling
because these are numerous, complex, and often conflicting. Hence, the author defines
performance measures grouped into three different categories: (a) criteria based upon com-
plete times: Maximum flowtime (Fmax = max Fj), maximum complete time or makespan
(Cmax = max Cj), mean flowtime (F̄ = 1

n ∑n
j=1 Fj) and mean complete time (C̄ = 1

n ∑n
j=1 Cj).

(b) Criteria based upon due dates: Maximum lateness (Lmax = max Lj), maximum tardiness
(Tmax = max Tj), mean lateness (L̄ = 1

n ∑n
j=1 Lj), and mean tardiness (T̄ = 1

n ∑n
j=1 Tj). (c)

Criteria based upon the inventory and utilization cost: Mean number of jobs waiting for
machines (N̄w), mean number of unfinished jobs (N̄u), mean number of complete jobs (N̄c),
mean number of jobs actually being processed at any time (N̄p), mean machine idle time
( Ī), and maximum machine idle time (Imax).

According to the explanation in [36], OR analysis involves the use of quantitative
techniques such as applied statistics to develop mathematical and statistical models that
represent real-life scenarios. These models are then utilized to find solutions and interpret
the outcomes.

In [37], the authors reviewed the literature on various methods for solving scheduling
problems in a hybrid flow shop (HFS), which involves scheduling flow shops with multiple
parallel machines. Different variants of the problem are discussed, each with distinct
constraints, assumptions, and objective functions.

Meanwhile, [16] evaluated four different formulations of MIP models for parallel
machine scheduling problems, each based on different types of decision variables.

For the specific case of a Canadian transportation firm and their truck schedul-
ing, ref. [38] proposed an MIP formulation that considers both customer visits and required
rest periods for truck drivers in compliance with Canadian commercial vehicle drivers’
hours of service regulations. Additionally, an iterative dynamic scheduling approach is
suggested to minimize the duration of the truck schedules that follow the regulations.

In [39], a decomposition heuristic is proposed for various job shop scheduling prob-
lems that have LP formulations. The objective functions in these problems are based on
both the job completion time and the intermediate operation completion times.

In response to the analysis conducted in two previously published articles on schedul-
ing problems involving setup times/costs, namely the first review covering approximately
200 articles published from 1960 to 1988 [40] and the second survey encompassing around
300 articles published between 1998 and 2006 [41], Allahverdi et al. [42] presented a third
survey on scheduling issues. This third survey encompassed approximately 500 articles
published from 2006 to 2014, which explore scheduling problems in various environments,
including static, dynamic, deterministic, and stochastic contexts.

The article by [42] introduced a classification framework for scheduling problems
based on the shop environments. These environments included single- machine shop,
parallel-machine shop, flow shop, job shop, and open shop settings. Furthermore, this arti-
cle categorizes the problems based on the presence of family or non-family setups, as well
as sequence-dependent or sequence-independent setup times/costs. This comprehensive
survey provides valuable insights into the diverse aspects of scheduling problems, consid-
ering installation times/costs, and consolidating the research contributions made in the
field during the specified time frame.

The article in [43] described the application of an MILP model to an ice-cream process-
ing facility in a multi-week context, with the goal of minimizing the makespan. Similarly,
the article [44] presented an MILP model to address a problem in the petroleum industry,
with the objective of minimizing the total investment and satisfying the constraints of the
submarine terrain and production process.

In [19], the authors discussed two types of FJSP problems, namely FJSP covering
sub-problems of routing and sequencing, and FJSP with the process plan flexibility which
includes the process plan selection sub-problem. This article presents an MILP model
for each context and compares them with alternative models in the literature, assessing
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computational efficiency. In [45], the relevance of modeling workshop scheduling problems
in the context of FJSP is investigated, using the discrete event system (DES) approach
based on timed automata (TA). The authors compared this approach with the classic MILP
approach, taking into account the generation and measurement systems based on three
criteria and associated metrics.

The article [30] tackles a scheduling problem in the context of FJSP with sequence-
dependent setup times, with the objective of minimizing the makespan. The authors
presented an MILP model to solve small instances optimally and also develop a tabu
search algorithm with novel neighborhood functions and a specific diversification structure.
Computational experiments compare the MILP model and the tabu search algorithm with
other approaches found in the literature.

Furthermore, ref. [46] addresses a scheduling problem in the context of military aircraft
maintenance, aiming to meet the aircraft’s requirements for a number of missions in the
presence of failures. The authors employ multiple approaches for resolution, including
MIP, logic-based Benders decomposition (LBBD), a dispatching heuristic, and two hybrid
approaches. In [47], the authors developed a novel integrated iterative approach using
MIP and simulation–optimization to solve an integrated demand-responsive scheduling
problem in a military supply chain.

Additionally, ref. [48] presents an MILP model for scheduling the repairment of
aircraft engines in a context of a flexible job shop problem, with the objective of minimizing
total tardiness and makespan. In [49], the authors studied the case of scheduling preventive
maintenance tasks in a large-scale Viennese electrical network within a planning horizon
of three decades. They formulate the problem as an MIP model and also develop a
metaheuristic based on a large neighborhood search.

In [50], the authors studied an aircraft maintenance company using real-life data,
focusing on line maintenance with a three-stage MIP approach to optimize the skill mix and
training schedule for aircraft maintenance workers. Finally, the article in [51] addresses a
problem of scheduling the maintenance of edges in a transport and telecommunications net-
work to minimize network outages, using exact and approximation algorithms. The authors
considered preemptive and non-preemptive maintenance jobs for MINCONNEXTIVITY
and MAXCONNECTIVITY problems.

For a recent review of FJSP scheduling, with real-world applications and detailed
future research trends and opportunities see [52].

More recently, the study in [53] presents solutions to the distributed flexible job shop
scheduling problem (DFJSP) with the objective of minimizing the maximum completion
time (makespan). The authors proposed four MILP models and a constraint programming
(CP) model. While MILP models are effective for small-scaled problems, the DFJSP is
NP-hard, so the authors also propose an efficient CP model based on interval decision
variables and domain-filtering algorithms.

3. Firm and Challenge Description

This empirical study is concerned with a Portuguese firm in the automobile sector,
and its vehicle sales and maintenance activities, that has branches scattered throughout
the country. In this analysis, the focus will be on the Filinto Mota branch located in Porto,
particularly in their repair shop.

The company has a total workforce of 28 employees who are assigned to various
departments, namely repair, administration, and quality control. The repair department
encompasses different areas, including mechanics, collision, service station, preparation
of new vehicles (PNV), diagnosis, and electronics. The mechanics area comprises eight
workers, including two senior mechanic specialists who possess expertise in various tasks,
including diagnostics. The remaining six workers in the mechanics area are senior me-
chanics who specialize in specific tasks but do not perform diagnostics. The collision area
consists of seven workers, comprising three sheet metal workers, three painters, and one
chief of collision. Additionally, the service station employs two washers, while the PNV
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area is managed by a single employee responsible for preparing new vehicles before de-
livery to customers. The administrative department comprises eight workers, including
three receptionists, one repair shop manager, one quality control officer, one guarantees
operator, and two staff members responsible for billing. The receptionists are responsible
for receiving the vehicle, filling in the opening repair order (RO) forms, indicating the
expected interventions to perform, and setting an expected delivery date with the customer.
They are also responsible for performing the visual inspection of the state of the vehicle
when entering the repair shop, such as checking for scratches or dents, fuel and kilometers,
among others. The repair shop manager is responsible for distributing the vehicles, which
have already completed the RO form and are waiting to be repaired by the available me-
chanics in the repair shop and the work they are already performing, as well as the type of
interventions that the vehicle needs to perform. As previously verified, not all mechanics
perform the same tasks.

The working hours of the repair shop are governed by Portuguese labor law, regu-
lated by number 1 of Article 203 of the Código de trabalho (Labor Code), which states that
“the normal working hours may not exceed eight hours a day and forty hours a week” [54].
As such, the repair shop works eight hours a day, during working days, and its opening
hours are from 8:30 a.m. to 12:30 a.m. and from 1:30 p.m. to 5:30 p.m. During the morning
and afternoon work periods, workers take a 10 min break.

It is possible that the vehicles are received or delivered to the customers by the security
guarding the repair shop, outside of working hours of the repair shop. In these cases,
the security guard signals the necessary repairs to be performed so that the receptionist
may fill the RO form the next working day. Thus, in the database, there are vehicles that
have an entry (or exit) hour before the opening hours (and after the closing hours) of the
repair shop. For the purposes of this analysis, it was established that, for vehicles arriving
before the opening hour of the repair shop, the registered starting hour would be the
opening hour of that day (i.e., 8:30 a.m.). For those vehicles arriving after the closing hour,
the registered starting hour would be the opening of the following working day.

The focus of this empirical work will be on the mechanical area and on the inter-
ventions performed. The firm provided a database with information regarding one year
(from August 2016 to July 2017) of the repairs that were performed at the repair shop. Ac-
cording to the firm, most repairs are pre-scheduled (75%) one or two days in advance,
and only a small percentage are scheduled on the same day (25%). The repair shop has two
time clocking stations, where the mechanics perform a time clock registration when starting
and finishing a certain mechanical intervention. This time-clocking system provides infor-
mation for a computer system, from which it is possible to project real-time information on
the state of repair of a particular vehicle. This information is projected on a screen, such
that the receptionist can control whether the vehicle will be ready on the expected delivery
date initially agreed upon the customer.

From the moment it enters the repair shop, until the moment it is delivered, the vehicles
go through different processes. The first step consists of filling the RO form with the repairs
required by the customer. After completing the RO form, the vehicle is parked, waiting
for the moment when the mechanic who will start repairing is available. The repair shop
management represents the “bridge” between reception and mechanics, since, as previously
mentioned, it is they who distribute the vehicles awaiting repair by the available mechanics.
As soon as a vehicle begins to be operated, the mechanic starts a time clock, referring to the
first intervention performed, and when this repair is finished, they perform another time
clock. This time clock process is repeated, depending on the number of interventions that
need to be performed. The same intervention may have more than one time clock if the
mechanic needs to make a stop. After all repairs are completed, the vehicle goes through
quality control to ensure that they have been performed correctly. It is the firm’s policy that
all repaired vehicles should be washed at the service station in the end. After these steps,
the vehicle moves back into the parking lot, waiting for the customer to pick it up. When
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the customer comes to pick up the vehicle, the billing of the services performed is carried
out, thus ending the vehicle’s permanence in the repair shop.

As previously mentioned, this work is focused on the mechanical area, and conse-
quently, on the eight mechanics that belong to this section, along with the interventions
that they perform.

4. Methodology

The problem in this case study consists of a FJSP, which arises due to the presence of
multiple machines working simultaneously and several mechanics capable of performing
the same mechanical tasks. FJSP can be broken down into two sub-problems: routing and
scheduling. In the routing sub-problem, each operation is assigned to a machine from
a set of available machines. In the scheduling sub-problem, operations are assigned to
all machines in a way that yields a valid schedule that optimizes a particular objective
function, as described in [29].

The firm’s specificities are the following:

• The sequence of interventions assigned to each vehicle is determined based on the
actual repair order established at the repair shop, and this sequence is assumed to be
known. Additionally, the order of interventions is fixed and cannot be altered.

• The time required by each mechanic to perform a particular intervention remains
consistent across all mechanics. These time durations are specified using standardized
barème times defined by each car brand. It should be noted that, for the purpose of
this analysis, the barème times associated with the same intervention were adjusted to
ensure consistency.

• The interventions can be interrupted and resumed at any point in time, allowing for
flexibility in the execution process.

• The interventions performed in the repair shop, are different from the interventions
considered in this analysis, since for the firm, the repairs are composed of a set of lines,
which will be considered in this analysis as the interventions actually performed, since
it is on them that the barème times are associated.

• Each vehicle can only have one mechanic working on it at any given time.
• Only one intervention can be carried out at a time on each vehicle.
• The firm employs mechanics with two levels of qualification. As a result, multiple

mechanics possess the necessary skills to perform the same interventions. However,
not all mechanics are capable of executing all interventions due to variations in their
qualifications. The qualifications are: (i) senior specialized mechanics, who can
perform any intervention, including diagnosis; and (ii) senior mechanics, who can
perform any intervention, with the exception of diagnostics;

• There are vehicles that present interventions that are not executed in the mechanical
area, but these are interventions that have to be considered in this analysis since they
are interventions that actually happened in the repair shop, and it required time for
the vehicle to be in the repair shop.

• In most cases, when the vehicle arrives at the repair shop, the delivery date is negoti-
ated between the receptionist and the customer. However, this delivery date is not
negotiated for all vehicles.

• The working day is divided into two periods: a 4 h duration in the morning and
another 4 h duration in the afternoon. There is a designated lunch break lasting for
1 h. Additionally, two flexible breaks of 10 min each are provided, with one break
scheduled in the morning and another in the afternoon. In the developed model,
time will be treated as a continuous variable, allowing for more precise analysis
and scheduling.

The mathematical model presented herein for scheduling the repairs of the vehicles
that arrive at the firm is an MILP model. This model was initially introduced in the work
presented by [10]. It draws inspiration from the model proposed in [48] and incorporates
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elements from the models presented in [4]. The combination of these references serves as
the foundation for the development and formulation of the model under consideration.

The sets and indexes of the MILP model are defined in Table 1, while the parameters
are defined in Table 2 and the decision variables are defined in Table 3.

Table 1. Sets and indexes of the MILP model.

Name Description

o ∈ O ROs (i.e., vehicles to be repaired).
m ∈ M Mechanics employed.
i ∈ Iall All possible mechanical interventions.
Io Predetermined and ordered interventions to be performed on a

specific o ∈ O vehicle.
(i, o) ∈ (Iall ×O) Specific pair of interventions that are to be performed in a prede-

termined sequence on a particular vehicle o ∈ O.
M(i,o) Mechanics that are qualified to perform the required interventions

on vehicle o, i.e., (i, o) ∈ Io.

Table 2. Parameters of the MILP model.

Name Description

t(i,o) Processing time of intervention (i, o) ∈ Io, in minutes.
Do Deadline or delivery time of vehicle o ∈ O, defined as the time from the

moment that vehicle o arrives at the repair shop until the expected delivery
date, in minutes.

Ao Release date of vehicle o ∈ O, defined as the time of arrival of vehicle o into
the repair shop, in minutes.

co Describes whether vehicle o ∈ O has an established expected delivery
date, such that co = 1 if vehicle o ∈ O has an expected delivery time Do
and 0 otherwise.

L A sufficiently large positive number.

Table 3. Decision variables of the MILP model.

Name Description

x(i,o),(j,o′) Binary variables that define the precedence relations between interventions
(i, o) and (j, o′), with M(i,o) ∩M(j,o′) 6= ∅ and i 6= j or o 6= o′. It is equal to 1
if intervention (i, o) is performed before intervention (j, o′). Otherwise, it is
equal to 0.

am
(i,o) Binary variables that define the assigning of each mechanical intervention i

on vehicle o to a mechanic m. It is equal to 1 if intervention (i, o) is assigned
to mechanic m. Otherwise, it is equal to 0.

S(i,o) Non-negative variables that define the starting time of intervention i on
vehicle o, in minutes.

To Non-negative variables that define the tardiness of vehicle o.

Parameter t(i,o) (see Table 2) represents the processing time of intervention i in vehicle
o, considering the barème time defined for each type of intervention. It is associated
with the combination of the intervention performed and the vehicle. The parameter Do
was determined by taking into account the total working minutes of the repair shop,
starting from the moment when vehicle o enters the repair shop until the expected delivery
time agreed-upon with the customer; Figure 1 presents an illustrative example of these
parameters. The parameter Ao is calculated as the duration in minutes from the reference
day and hour (specifically, 1 August 2016, 8:30 a.m.) until the arrival time of vehicle o at the
repair shop. For instance, in the case of vehicle car1 entering the repair shop at 8:30 a.m. on
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1 August 2016, the value of Acar1 is 0. Similarly, for vehicle car2 entering the repair shop at
9:25 a.m, Acar2 is calculated as 55 min. Additionally, the parameter Dcar2 denotes a repair
duration of 395 min for a vehicle car2, representing the total time from its entry into the
repair shop until completion.

Figure 1. Example of time of permanence and time clock, on 1 August 2016.

The parameter co serves as an indicator of whether an expected delivery date has been
established with the client for vehicle o. When an expected delivery date is set, co takes
the value of 1, indicating that an agreement has been made. On the other hand, when no
expected delivery date has been established, co is set to 0, indicating the absence of such an
agreement. For the example presented in Figure 1, ccar1 = 0 and ccar2 = 1.

The MILP for scheduling the mechanical interventions at the repair shop is the following:

min ∑
o∈O

To co + ∑
o∈O

∑
i∈Io

S(i,o) (1− co) (1)

s.t.

∑
m∈M(i,o)

am
(i,o) = 1, ∀(i, o) ∈ Io (2)

S(j,o) ≥ S(i,o) + t(i,o), ∀o ∈ O, ∀i, j ∈ Io : j = next(i) (3)

S(j,o′) ≥ S(i,o) + t(i,o) − L
(

1− x(i,o),(j,o′)

)
,

∀(i, o), (j, o′) ∈ Io : M(i,o) ∩M(j,o′) 6= ∅ ∧ (i, o) 6= (j, o′) (4)

To ≥ S(i,o) + t(i,o) − (Ao + Do), ∀o ∈ O, ∀i ∈ Io (5)

x(i,o),(j,o′) + x(j,o′),(i,o) ≤ 1,

∀(i, o), (j, o′) ∈ I : M(i,o) ∩M(j,o′) 6= ∅ ∧ (i, o) 6= (j, o′) (6)

x(i,o),(j,o′) + x(j,o′),(i,o) ≥ am
(i,o) + am

(j,o′) − 1,

∀(i, o), (j, o′) ∈ I, (i, o) 6= (j, o′), m ∈ M(i,o) ∩M(j,o′) (7)

x(i,o),(j,o) = 1, ∀o ∈ O, ∀i ∈ Io, i 6= last(Io), j = next(i) (8)

x(j,o),(i,o) = 0, ∀o ∈ O, ∀i ∈ Io, i 6= last(Io), j = next(i) (9)

S(i,o) ≥ Ao + 15, ∀o ∈ O, ∀i ∈ Io (10)

To ≥ 0, ∀o ∈ O (11)

S(i,o) ≥ 0, ∀o ∈ O, ∀i ∈ Io (12)

The objective function, denoted as Equation (1), aims to minimize the total tardiness
of vehicles for which an expected delivery date has been established (co = 1). Additionally,
it includes the sum of the start times of interventions for vehicles without an established
expected delivery date (co = 0). The constraint, represented by Equation (2), ensure that
each intervention (i, o) is assigned to exactly one mechanic m ∈ M(i,o). Furthermore,
constraint (3) guarantee that the start of intervention (j, o′) can only occur after the com-
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pletion of intervention (i, o) if the mechanical intervention (i, o) is performed prior to
the intervention (j, o′).

The disjunctive constraint (4) guarantee that there is no overlapping of interventions
for the same mechanic. These are only activated if intervention (i, o) precedes the interven-
tion (j, o′) whenever they are performed by the same mechanic. The lower bound for the
tardiness of each vehicle o ∈ O is defined in constraint (5). The linear ordering of the inter-
ventions is established by constraints (6) and (7). The introduced constraints, denoted by
Equation (6), serve to ensure the following possibilities: either intervention (i, o) precedes
intervention (j, o′), or intervention (j, o′) precedes intervention (i, o), or interventions (i, o)
and (j, o′) are not performed by the same mechanic. Additionally, constraint (7) is only
active when interventions (i, o) and (j, o′) are executed by the same mechanic, guaranteeing
that either (i, o) precedes (j, o′) or (j, o′) precedes (i, o).

To establish the precedence relationship between the interventions performed on the
same vehicle, constraints (8) and (9) set x(i,o),(j,o) = 1 if intervention (i, o) precedes (j, o)
and otherwise zero.

Finally, constraint (10) stipulates that each vehicle o must undergo repairs at least
15 min after its arrival at the repair shop, which corresponds to the time required for filling
out the repair order (RO) form.

5. Results

This section presents the results obtained from 12 instances derived from real data
provided by the firm, which represent vehicles that arrived at the repair shop during
a one-year period. These 12 instances are used to test the models (1)–(12) presented in
Section 4. Furthermore, the results obtained using the MILP model are compared with the
firm’s procedure. A total of 251 working days and 5848 ROs, that occurred in the repair
shop from August 2016 to July 2017, were considered. Figure 2 presents the number of
vehicles (or RO) and respective interventions carried out during this period.

Figure 2. Number of opened ROs and number of interventions from August 2016 until July 2017.

For each instance, first, its full characterization is presented and next the firm’s solution,
obtained using the information provided by the firm, more precisely, the time clocked
interventions registered by the firm, is depicted. Then, the scheduling obtained using
models (1)–(12) is presented per vehicle and per mechanic. Finally, in order to perceive
the improvements obtained with the developed model, this scheduling is compared to the
firm’s scheduling.

The MILP model was implemented using the AMPL modeling language [55,56]. This
is one of the most used [57] modeling languages for mathematical programming due to
the generality of its syntax and the similarity of its expressions with algebraic notations,
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which enables one to easily specify and understand the objective function, the constraints,
as well as the logical relations between variables [55,56]. The real instances were solved
using Gurobi with the AMPL interface [58].

All results were obtained using an Intel Core i7-4510U@2.0 GHz 4 GB RAM running
Windows 10 64-bits.

5.1. Selection of the Real Instances

The selected instances from the real data provided by the firm represent the most
challenging scenarios encountered in the daily operations of the repair shop. By evaluating
the results, we aim to determine whether the proposed model ensures minimal downtime
for vehicles in the repair shop, and whether it is at the beginning, end, or between interven-
tions. Achieving this goal will lead to a more efficient utilization of the available resources
at the repair shop.

Based on Figure 2 and Table 4, it is evident that the months with the highest number of
repair order (RO) entries, including May, July, June, March, and January, do not necessarily
align with the months having the highest number of time-clocked ROs, which are May,
March, June, July, and January. Conversely, the months with the lowest downtime are April,
December, May, June, and July, as shown in Figure 3 and Table 4.

Figure 3. Median daily downtime at the firm from August 2016 until July 2017.

Table 4. Total number of opened and time-clocked ROs, and the total downtime, that occurred at the
repair shop each month from August 2016 until July 2017.

Year Month Total # of Total # of Total Downtime
Opened ROs Time Clocked ROs (in min.)

2016

August 441 540 387,709.2
September 455 646 354,881.2

October 498 687 392,858.0
November 473 664 306,310.0
December 454 620 253,616.0

2017

January 516 707 278,735.8
February 430 592 368,473.4

March 519 748 369,077.0
April 450 596 192,531.4
May 547 754 255,557.8
June 532 737 257,939.0
July 533 713 264,060.6
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Considering these observations, the three most challenging months, namely May, June,
and July, were selected to construct the problem instances. Specifically, the days with the
highest workload, indicated by the highest number of RO entries, were chosen within each
of these months. Two distinct scenarios were tested: one with the lowest downtimes (19
and 26 May, 2 and 30 June, 14 and 27 July), and the other with the highest downtimes (9
and 16 May, 5 and 23 June, 11 and 4 July).

Additionally, it is noteworthy that the number of time-clocked ROs exceeds the number
of RO entries for all months (Table 4), suggesting the existence of ROs opened in previous
months that are only attended to at a later date.

5.2. Results of the 12 Real Instances

For all instances, the optimal solution to the optimization problems was found in
a competitive computational time. Table 5 presents the results of the MILP model for
the 12 instances. For each instance, the number of vehicles, #O; the total number of
interventions on all vehicles, #Io; the dimensions of the optimization problems (i.e., the
number of variables, # var, and the number of constraints, # constr); the value of the
objective function; the downtime of all the vehicles, in minutes; and the percentage of the
downtime obtained using the model compare to the one observed in the firm, are all shown.

The smallest optimization problem occurs for the 2 June, with 1186 decision variables
and 9056 constraints, which corresponds, as expected, to the day with the minor number of
vehicles and required mechanical interventions (i.e., 13 vehicles and 31 interventions).

Table 5. Results of the MILP models (1)–(12) for 12 instances.

Instance #O #Io #var #constr Objective Downtime %

9 May 29 71 9360 84,892 70 30,655.5 98.8%
16 May 28 95 13,410 123,592 2275.2 9877.8 46.4%
19 May 18 53 3181 27,071 26.7 271.6 8.9%
26 May 21 53 4174 36,099 0 2204.6 43.4%

2 June 13 31 1186 9056 51.9 103.9 4.9%
5 June 33 112 12,244 112,567 0 13,355.9 46.5%

23 June 27 63 4322 36,846 31.5 3301.5 12.4%
30 June 20 63 4060 34,972 167 599.4 21.0%

4 July 29 84 8821 79,648 0 10,955.6 34.2%
11 July 29 47 4391 37,734 114,174 3471.8 10.4%
14 July 19 56 3535 3286 0 1251.4 29.9%
27 July 26 45 4558 39,802 2,634,170 1656.0 39.1%

Mean 23.8 64.4 6103.5 54,380.4 252,952.2 6475.4 33.0%
StDev 6.0 23.7 3943.1 37,175.7 78,178.5 9072.7 25.8%

The largest optimization problem corresponds to the 5 June instances with 13,244 deci-
sion variables and 112,567 constraints, relative to the schedule of 112 mechanical interven-
tions on 33 vehicles. On average, the problems have approximately 6100 decision variables
and 54,000 constraints (Table 5). These are small-scale optimization problems that are
solved in a competitive computational time.

It is possible to observe in Table 5 that there is a large variability in the downtime
of the vehicles for the 12 instances. In fact, the downtime of the vehicles was on average
6475.4 min, with a standard deviation of 9072.7 min. The minimum was of 103.9 min
for 2 June, and the maximum was of 30,655.5 min for 9 May.

For all instances, the downtime of the scheduling using the (1)–(12) model resulted in
a reduction in the one obtained at the firm. On average, the downtime of the vehicles using
the optimization model was 33% of the one observed at the firm. However, a standard
deviation of 25.8% was observed, showing a large variability in the results, which occurs
due to the large variety of instances that were tested, reflecting the everyday operation of
the repair shop. Furthermore, in 11 of the 12 instances, the downtime of the vehicles is less
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than 50% of that observed on the firm. Furthermore, in six of the instances, it was less than
33%. This shows the quality of the scheduling obtained using the MILP model.

The average downtime of the firm was 16,221.3 min; while using the model, it was
6455.4 min, which corresponds to a 67% reduction. Furthermore, for 2 June, the total down-
time of the vehicles using the scheduling yield by solving the (1)–(12) model represents
only approximately 4.9% of the downtime of the firm. However, it is important to note
that, on that day, the firm also conducted mechanical repairs on other vehicles, which were
not included in this particular instance. Additionally, there were instances where vehicles
could not be repaired due to the unavailability of certain mechanical parts at the repair
shop. The second highest reduction in downtimes was of 91.1%, observed on 19 May,
for which the downtime of the vehicle using the optimization model corresponds to only
8.9% of the downtime observed at the firm that day.

The opposite situation was observed for the 9 May instance. For this day, the down-
times of the firm and model are almost the same. In fact, the downtime using the model
corresponded to 98.8% of the downtime observed at the company. The instance that pre-
sented the second lowest reduction in the downtimes of the vehicles was 5 June, with the
model yielding 46.5% of the downtime observed at the firm.

The day for which the firm presented the largest number of vehicles and corresponding
mechanical interventions was 5 June. Therefore, a more detailed analysis of the results for
this instance will be presented.

The 33 vehicles that arrived at the repair shop on 5 June were repaired by the
firm on 10 different days (see Figures 4–6). Eighteen of the vehicles (namely car4816,
car4819, car4821, car4825, car4827, car4829, car4830, car4831, car4832, car4833, car4836,
car4837, car4838, car4839, car4843, car4844, car4845, and car4846) were repaired by the
firm on the day of arrival (Figure 4) while the mechanical interventions on the remain-
ing vehicles (i.e., car4817, car4818, car4820, car4822, car4823, car4824, car4826, car4828,
car4834, car4835, car4840, car4841, car4842, car4847, and car4848) were only completed
after (see Figures 5 and 6). Large periods during which the vehicles are at the repair shop
without being repaired can be observed for several vehicles.

Figure 4. Mechanical interventions that took place at the repair shop on the 33 vehicles arrived on
5 June (part 1).
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Figure 5. Mechanical interventions that took place at the repair shop on the 33 vehicles arrived
on 5 June (part 2).

Figure 6. Mechanical interventions that took place at the repair shop on the 33 vehicles arrived on
5 June (part 3).

Using the scheduling obtained using the MILP model, the repairs on all vehicles that
arrived at the firm on 5 June would take place on only five different days (Figures 7 and 8).
Furthermore, the majority of the mechanical interventions were scheduled for 5 June.
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Figure 7. The scheduling of the mechanical interventions of all vehicles that arrived at the repair
shop on 2 June was obtained using MILP model (part 1).

Figure 8. The scheduling of the mechanical interventions of all vehicles arrived at the repair shop on
2 June was obtained using the MILP model (part 2).

In Figure 7, it can be seen that 5 of the 33 vehicles started to be intervened with
immediately after completing the RO form. Furthermore, 17 of the 33 vehicles completed
all the necessary mechanical repairs on the day of arrival (i.e., 5 June). Therefore, ap-
proximately 51.5% of the vehicles would be available to be delivered to the customers
on the same day. The exceptions were the vehicles car4817, car4818, car4820, car4822,
car4823, car4824, car4826, car4828, car4834, car4835, car4840, car4841, car4842, car4847, and
car4848 (see Figure 8), for which the repairs continue beyond 5 June.

It is possible to observe that there are periods of time for which some vehicles are
waiting to be repaired (Figures 7 and 8). However, these are considerably less than those
observed at the firm (Figures 4–6). In fact, the downtimes of the vehicles arrived on 5 June,
for the scheduling with the MILP model represents less than half (46.5%) of the downtime
observed at the firm (see Table 4).
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On 9 May as well as on 4 and 11 July, 29 vehicles arrived at the repair shop to be
repaired. On those days, 71, 84, and 47 interventions had to be performed on the vehicles.
As can be seen in Table 4 for July 11, the downtime using the schedule proposed by the
MILP model would only be 10.4% of that observed in the firm, and for July 4, it would
be 34.2%. These present a significant reduction in the downtime. However, for 9 May,
the downtime of the vehicles using the schedule proposed by the MILP model would
almost be the same as the one observed in the firm. Next, a close look at this case will
be performed.

The 29 vehicles that arrived on 9 May were repaired by the firm on nine different days
(Figures 9 and 10). Furthermore, long periods of inactivity were observed for several vehicles.

Figure 9. Mechanical interventions that took place at the repair shop on the 33 vehicles arrived on
9 May (part 1 of 2).

Figure 10. Mechanical interventions that took place at the repair shop on the 33 vehicles arrived
on 9 May (part 2 of 2).
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Using the scheduling given by the MILP model, the repairs would also be sched-
uled on nine different days; however, the majority were scheduled on 9 May (Figure 11).
Furthermore, only 8 of the 71 mechanical interventions were performed after 12 May
(corresponding to 94,080 min).

Figure 11. Scheduling of the mechanical interventions of all the vehicles arrived at the repair shop on
9 May, obtained using the MILP model.

As depicted in Figures 9 and 10, almost 38% (11 in 29) of the vehicles were repaired
on 9 May. The remaining ones (i.e., car4367, car4368, car4369, car4372, car4375, car4376,
car4377, car4382, car4383, car4384, car4386, car4387, car4388, car4389, car4391, car4393,
car4394, and car4395) were intervened with in the subsequent days.

Using the schedule obtained using the MILP model, 12 of the 29 vehicles started to be
intervened with immediately after completing the RO form (see Figure 11). Among the
29 vehicles, 11 would be ready to be delivered to the customer on the same day of arrival
(i.e., May 9). However, the remaining ones (namely the vehicles car4367, car4368, car4369,
car4372, car4375, car4376, car4377, car4382, car4383, car4384, car4386, car4387, car4388,
car4389, car4391, car4393, car4394, and car4395) would be ready for delivery after 9 May. It
is also possible to observe that the interventions on each vehicle are performed with some
breaks. In fact, the total downtime of the vehicles would be almost the same (98.8%) as the
one obtained at the firm.

However, for 19 May and 2 June, using the MILP model, the total downtime of
the vehicles would be only 4.9% and 8.9%, respectively, of those observed at the firm
(see Table 5). A detailed description of the results found for these two instances can be
found at [10].

Table 6 shows the statistics on the downtime of the vehicles for the 9 and 19 of May
and the 2 and 5 June, as observed at the firm and proposed by the MILP model.

On 9 and 19 May, the lowest downtimes registered at the firm in a vehicle were
3.0 and 2.8 min, respectively. For 2 and 5 June, there was no downtime. In contrast,
for 9 and 19 May, the highest downtime registered at the firm was 11,622.8 min and
1011 min, while for 2 and 5 June, the maximum downtime of a vehicle was 938.6 min
and 5674 min.
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Table 6. Comparison of the downtime of the vehicles that were observed at the firm with the ones
using the scheduling given by the MILP model.

Day Min Mean Median Max Total

May 9 Model 0.0 1057.1 328.7 9604.2 30,655.5
Firm 3.0 1069.7 300.6 11,622.8 31,021.0

May 19 Model 0.0 15.1 2.8 92.9 271.6
Firm 2.8 168.9 107.3 1011.0 3040.2

June 2 Model 0.0 8.0 0.0 60.0 103.9
Firm 0.0 162.4 72.4 938.6 2111.6

June 5 Model 0.0 404.7 195.7 1669.8 13,355.9
Firm 0.0 870.8 299.0 5674.0 28,735.8

Regarding the downtime of the vehicles, the schedule proposed by the MILP model
saw that vehicles started being repaired as soon as they arrived at the repair shop, for 9
and 19 May and 2 and 5 June, and their repairs were performed without any inactivity
(see Table 6). The vehicles with the highest downtime, would be of 9604.2, 92.9, 60,
and 1669.8 min, for 9 and 19 May, and 2 and 5 June, respectively. These downtimes are
considerably smaller than those observed at the firm.

For 9 and 19 May and 2 and 5 June, on average, the firm registered a downtime
per vehicle of 1069.7, 168.9, 162.4, and 870.8 min, respectively. Whereas the schedule
proposed by the MILP model would present a downtime per vehicle of only 1057.1, 15.1, 8,
and 404.7 min.

Furthermore, for half of the vehicles, the downtime was at most 107.3 min at the firm
and only 2.8 min using the MILP model for 19 May. For 2 June, half of the vehicles in the
firm presented downtimes of at most 72.4 min, while there would be no downtime if the
MILP model was used. Furthermore, for 5 June, a comparison of the downtime for half
of the vehicles observed on the firm and proposed by the model shows a large reduction
(from 299.0 min for the firm vs. 195.7 min for the model). In contrast, for 9 May, the median
downtime would be larger if the MILP model was used.

6. Conclusions and Future Work

Scheduling theory has been the subject of significant interest among OR practitioners,
management scientists, production and operations research workers, as well as mathe-
maticians since the early 1950s [3]. The allocation of resources to perform a set of tasks
during a specific time period, known as scheduling, poses varying levels of complexity
depending on the problem’s environment, process constraints, and desired performance
measures [4,5].

The empirical work, based on real data addressed in this paper, falls within the context
of the FJSP, which is an extension of the JSP. In the FJSP, operations can be processed on any
machine from a set of alternative machines, adding a routing sub-problem that involves
assigning machines to process each operation, in addition to the scheduling sub-problem
of sequencing the assigned operations [14]. This extension makes the FJSP more complex
than the JSP, requiring a comprehensive approach to tackle the routing and scheduling
aspects simultaneously.

In the present study, the results on 12 real instances are presented and discussed.
An MILP model, initially proposed in [10], is used to schedule each of the mechanical
repairs of the vehicles.

The primary objective of this study was to minimize the downtime between interven-
tions performed on vehicles and reduce the overall time that vehicles remain without any
ongoing intervention. The focus was on optimizing the scheduling process to ensure the
efficient utilization of resources and minimize idle time for vehicles, thus improving the
overall productivity of the repair shop.
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For all 12 real instances, it was possible to obtain the optimal solution to the corre-
sponding problems. The downtime of the vehicles would decrease on average by 67%
if the schedule proposed by the MILP model would be used. Furthermore, in 11 of the
12 instances, the reduction would be of more than 50% in comparison to that observed at
the firm.

The results of the case study in the Portuguese automobile sector demonstrate the
potential benefits of using MILP to optimize repair schedules. The method was able to
significantly reduce the time that vehicles spend in the shop, which can lead to the higher
satisfaction of the customers and to increased profitability for the repair shop.

One important consideration when using MILP for vehicle repair scheduling is the
need to balance conflicting objectives, such as minimizing vehicle downtime and maxi-
mizing mechanic utilization. This requires the careful consideration of factors such as the
number of available mechanics, the skill levels of each mechanic, and the availability of
repair bays.

Another important factor to consider when using MILP is the need to constantly
update the model with new data. This can include information about the number of
vehicles currently in the shop, the availability of mechanics, and the estimated repair times
for each vehicle. By keeping the model up-to-date, repair shops can ensure that they are
making the most informed decisions possible.

In future work, the developed model can be further refined to minimize the downtimes
of the mechanics and maximize their work by considering factors such as the mechanic
breaks and interventions of vehicles that arrived in the repair shop on previous days.
Additionally, exploring the integration of deep learning techniques with the optimization
model could enhance the modeling ability and improve the overall scheduling performance.

Deep learning has emerged as a highly promising method in various fields, including
data mining, computer vision, natural language processing, and demand prediction. It has
demonstrated the potential to complement optimization models and enhance their effec-
tiveness. For instance, studies such as [59,60] have showcased the successful combination
of deep learning and optimization techniques.

Therefore, future research in this area could explore the integration of deep learn-
ing methods, such as neural networks, with the developed optimization model. This
approach could potentially improve the accuracy and efficiency of scheduling decisions
by leveraging the power of deep learning in analyzing complex data patterns and making
informed predictions.

Moreover, expanding the scope of the optimization model to consider additional
factors can lead to more comprehensive and realistic scheduling solutions. Factors such
as the availability of spare parts, the scheduling of routine maintenance tasks, and the
influence of weather and traffic conditions on repair times should be incorporated into the
model. By accounting for these factors, repair shops can further enhance their efficiency
and effectiveness in managing their operations.

In summary, future research efforts should aim to refine the developed model by inte-
grating deep learning techniques and considering a broader range of factors. This approach
will contribute to the continuous improvement of repair shop scheduling, enabling better
resource allocation, reduced downtimes, and enhanced overall performance. By leveraging
the potential of advanced modeling approaches, repair shops can strive for higher levels of
efficiency, customer satisfaction, and operational excellence.
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Abbreviations
The following abbreviations are used in this manuscript:

OR Operational Research
JSP Job Shop Problem
FJSP Flexible Job Shop Problem
MILP Mixed-Integer Linear Programming
IP/LP Integer/Linear programming
SMS Single Machine Shop
PMS Parallel Machine Shop
FSP Flow-Shop
OSP Open-Shop
HFS Hybrid flow shop
DES Discrete Event System
TA timed automata
DFJSP distributed flexible job shop scheduling problem
CP constraint programming
PNV Preparation of New Vehicles
ROs Repair Orders
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