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Abstract: Class imbalance is a common issue while developing classification models. In order
to tackle this problem, synthetic data have recently been developed to enhance the minority class.
These artificially generated samples aim to bolster the representation of the minority class. However,
evaluating the suitability of such generated data is crucial to ensure their alignment with the original
data distribution. Utility measures come into play here to quantify how similar the distribution of
the generated data is to the original one. For tabular data, there are various evaluation methods that
assess different characteristics of the generated data. In this study, we collected utility measures and
categorized them based on the type of analysis they performed. We then applied these measures to
synthetic data generated from two well-known datasets, Adults Income, and Liar+. We also used
five well-known generative models, Borderline SMOTE, DataSynthesizer, CTGAN, CopulaGAN, and
REaLTabFormer, to generate the synthetic data and evaluated its quality using the utility measures.
The measurements have proven to be informative, indicating that if one synthetic dataset is superior
to another in terms of utility measures, it will be more effective as an augmentation for the minority
class when performing classification tasks.
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1. Introduction

Predictions made through classification models are nowadays used in many fields, but
a common challenge that arises is class imbalance. This is a well-known problem in machine
learning: it occurs when one or more classes in a dataset are significantly underrepresented
compared to other classes. There are several problems associated with a class imbalance in
machine learning as discussed in [1,2]. The algorithms trained on imbalanced data tend
to be biased towards the majority class, which leads to poor performance in predicting
the minority class. For example, in the field of medicine, rare diseases often lack sufficient
data for analysis causing problems in decision-making [3], as well as identifying security
bugs from a bug repository [4] or traffic accidents [5]. Fraud detection is also hindered by
imbalanced datasets [6,7]. Additionally, fake news detection represents a common scenario
of class imbalance, necessitating addressing this issue prior to algorithms development [8,9].
In recent years, to address this issue, synthetic data augmentation has been developed to
increase the representation of the minority class. Some examples of this approach include
the generation of synthetic images [10,11], time series [12], and tabular data [13,14]. The aim
is to increase the amount of data available for the underrepresented class, thereby enhancing
the performance of machine learning models in accurately predicting this class [15–17].
One way to upsample the minority class is through the generation of synthetic data, that is,
data not from actual sampling, but created by generative models that attempt to emulate
the same distribution as real data.
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There are several ways to generate synthetic data. One common method to generate
new samples is the SMOTE algorithm [18] (and variations of it), which generates new data
by interpolating the original available ones. Other very common generative models are
generative adversarial networks (GANs) [19], and variational autoencoders (VAEs) [20].
However, to ensure that these synthetic data are useful and do not only add noise to our
real dataset, it is important to verify and evaluate whether they are representative of the
real sample. Therefore, we need objective tools to compare the synthetic data to the real
data and then evaluate the differences.

In this paper, we aim to explore the utility measures for assessing the quality of
synthetic data generated from real datasets, particularly in the context of tabular data. Our
research aims to investigate and analyze the utility measures that can effectively quantify
the difference between real and synthetic tabular data. By examining the applicability of
these measures in the context of real-world datasets, we aim to provide valuable insights
into the assessment of synthetic tabular data quality. Finally, a crucial aspect of our research
is to evaluate the effectiveness of data augmentation using synthetic data specifically in
the context of tabular data classification tasks. By incorporating synthetic data into the
training process, we aim to examine its impact on improving classification performance.
Through this evaluation, we not only assess the performance of the classification models but
also gain insights into the generative methods employed. The ability of these methods to
accurately learn and capture the underlying distribution of the data is therefore intrinsically
evaluated. We consider that this evaluation provides valuable information regarding the
suitability and effectiveness of the generative methods in generating synthetic data that
closely aligns with the characteristics and patterns of the original dataset. By thoroughly
assessing the classification performance and considering the impact of data augmentation,
we can shed light on the potential of synthetic data for improving classification accuracy
and expanding the capabilities of machine learning models in handling tabular data.
Moreover, the evaluation of different generative methods contributes to advancing the
field of generative modeling, providing insights into the strengths and limitations of these
methods in learning complex data distributions.

In Section 2, we present the statistical utility measures categorized based on their
ability to capture different types of information. Section 3 examines how we can determine
the usefulness of the generated data for our classification task. The datasets used in this
study are described in Section 4. Section 5 provides a list and description of the generative
methods employed to create the synthetic data used for augmentation. Lastly, Section 6
presents the results obtained in our analysis.

2. Statistical Utility Measures

To ensure that synthetic data accurately represents the characteristics of the real data,
it is essential to evaluate the similarity between their distributions. Utility measures, also
known as evaluation metrics, are used to assess the performance or effectiveness of a
system, model, algorithm, or any other process. This type of evaluation comes in handy
for our purpose: in order to assess the goodness or truthfulness of synthetic data we
want to measure their similarity to real data in terms of distribution. Utility measures are
divided into three categories based on how thoroughly they investigate the distributions.
In univariate measures, the focus is on preserving the individual distributions of each
column in the original data. This is achieved by comparing the similarity between the
synthetic data and the original data column-by-column. The second category, known as
bivariate extends the measure to consider the correlation between the columns being studied.
Hence, it is a pairwise study. Finally, the third category, multivariate, examines the joint
distribution of all the columns together, translating into a comparison made between two
complete datasets.

In the following sections, we revisit some of these techniques. We use the following
notation to refer to both the real and synthetic datasets: let X = (X1, . . . , Xd) be a multivari-
ate random variable with distribution F, where each component Xi=1,...,d represents one of
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the d columns of the real dataset. Similarly, let Y = (Y1, . . . , Yd) be a random variable with
distribution G, representing the synthetic dataset. We denote the l-th row of the real dataset
as xl , which represents a realization of the random variable X. The entire real dataset can be
viewed as a collection of such realizations and is denoted as X = {xl}l . The same applies to
the synthetic dataset, which is indicated as Y = {ym}m.

2.1. Univariate Measures

To assess the similarity between the distributions of the synthetic and real data, it
is necessary to examine their univariate distributions. Specifically, we need to measure
the deviation in distribution between each pair of corresponding variables Xi and Yi for
i = 1, . . . , N. This distance reflects the differences in distribution between the same columns
of the two datasets. These measures are the easiest to measure and interpret, but nonetheless
fundamental in the analysis of synthetic data because if there is already a large difference
between the actual and synthetic data at this level, the similarity is unlikely to increase by
considering more variables at a time. Univariate measures yield a distinct value for each
variable, which can be further analyzed through visualization techniques such as boxplots.

One of the most widely used measures for assessing the univariate distance between
two distributions is the Hellinger distance [21]. It is defined as follows: let P and Q denote
two probability measures on a measure space X , the Hellinger distance between P and
Q is

H(P, Q) =
1√
2

√∫
X

(√
P(dx)−

√
Q(dx)

)2
. (1)

Since we have only the realizations of the probability measures F and G, for each variable i
we will adapt the distance to the discrete case: Fi = ( f1, . . . , fk) and Gi = (g1, . . . , gk),

H(Fi, Gi) =
1√
2

√√√√ k

∑
j=1

(√
f j −

√
gj

)2
, (2)

where Fi and Gi are the marginal distribution of the i-th component of X and Y, respectively,
and f j and gj are the proportion of counts of instances for the j-th bin of the interval of
values for each variable i.

Another widely used measure is the Kullback–Lieber divergence [22]. Specifically, the
Kullback–Leibler divergence of Q from P denoted DKL(P‖Q), is the measure of information
lost when Q is used to approximate P. In our discrete case, it is defined as:

DKL(Fi‖Gi) =
k

∑
j=1

f j log
f j

gj
. (3)

When comparing two probability distributions using the Kullback–Liebler divergence,
it is important to note that the supports of the distributions must match, otherwise the
divergence may be infinite due to the presence of zero probabilities in the Gi distribution.
When the supports do not match, it means that there are some values that have non-zero
probability in one distribution but zero probability in the other.

To address this issue, the Jensen–Shannon divergence [23] was proposed, which is
a symmetrized version of the Kullback–Liebler divergence that avoids this problem by
smoothing out the differences between the supports of the two distributions:

DJS(Fi||Gi) =

√
1
2

[
DKL

(
Fi||Mi

)
+ DKL

(
Gi||Mi

)]
(4)

with
Mi =

Fi + Gi
2

.
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Specifically, it is calculated as the square root of the average of the Kullback–Liebler
divergence between each distribution and their average. This makes it a useful measure for
comparing probability distributions, even when their supports do not match. It is always
non-negative and ranges from 0 (when the distributions are identical) to 1 (when they have
no common support).

2.2. Bivariate Measures

To ensure that the synthetic data accurately represent the relationships among the
variables in the original dataset, we need to use bivariate utility measures. While univariate
measures can be useful for evaluating the overall distribution of each variable separately,
they do not capture the complex relationships that may exist between multiple variables.
By using bivariate measures, we can verify that the same underlying relationships between
variables are maintained in the synthetic data as well. To assess this, the pairwise correlation
difference (PCD) [24] measures how much the correlation between real and synthetic data
differs. The PCD is defined as:

PCD(X,Y) = ‖Corr(X)− Corr(Y)‖F, (5)

where X, Y are the real and synthetic datasets, respectively. ‖ · ‖F is the Frobenius norm [25],
which for an m× n matrix A is defined as:

‖A‖F =

√√√√ m

∑
i=1

n

∑
j=1
|aij|2,

where aij denotes the (i, j)-th entry of the matrix A. The choice of this norm as a measure
for the PCD is motivated by its intuitive interpretation as a matrix size measure and its
similarity to the L2 norm for vectors, as it shares similar properties with the latter.

2.3. Multivariate Measures

While univariate and bivariate measures can provide valuable insights into individual
variables and their pairwise relationships, they fail to fully capture the intricate multivariate
relationships that exist within both the original and synthetic datasets. To ensure that the
synthetic data accurately represents the higher-order dependencies and interactions among
variables in the original dataset, we need to use multivariate measures. Multivariate
measures are designed to assess the joint distribution of three or more variables, providing
a deeper understanding of the underlying patterns and structures that may be present in
the data. In particular, they can be used to quantify the difference between the multivariate
distributions of two datasets, which in our case is |F− G|.

One way to do this is through the Kolmogorov–Smirnov test statistics that compare
the empirical cumulative distribution functions of the real and synthetic cases:

Dm = max
n
|FX(zn)−FY(zn)| (6)

Ds =
1
N ∑

n
[FX(zn)−FY(zn)]

2 (7)

where FX and FY are, respectively, the empirical cumulative density functions for X and Y,
zn is a d dimensional vector representing a possible instance for the two random variables,
and N is their total number. The deviation of Dm and Ds from zero represents the distance
between the two distributions, the former in terms of the maximum absolute difference
capturing the largest deviation, the latter in terms of mean squared difference which
quantifies the overall distance between the distributions. Unfortunately, this measure
encounters two primary challenges. Firstly, the curse of the dimensionality problem
undermines its accuracy when applied to high-dimensional data, as estimating multivariate
distributions becomes increasingly complex. Secondly, the test’s sensitivity to changes in
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the tail of the cumulative distribution may hinder its ability to detect significant differences
in other regions of the distribution [26].

The propensity score [27] evaluates the distance between the two datasets through
a classification model. The original and synthetic datasets are assigned distinct labels to
enable differentiation, subsequently combined, and provided as input to a classifier. The
propensity score measures how well the classifier is able to distinguish the two types of
data and it is defined as follows:

pMSE =
1
N ∑

n
( p̂n − 0.5)2 (8)

where pn is the probability of belonging to the synthetic class assigned by the classifier
to each instance. The less the classifier is able to distinguish between the two classes
(thus returning pn values of roughly 0.5) the closer the propensity score is to zero. In
their study, Snoke et al. [27] proposed the standardized pMSE (St pMSE), which quantifies
the difference between the expected and observed values in terms of the estimated null
standard deviation. Higher values of this measure indicate a poorer fit between the data
and the underlying synthesis, while values closer to zero indicate a better fit. Rescaling by
the null statistic provides a more intuitive measure of its utility, particularly when applied
to synthetic data. Notably, this rescaling renders the measure independent of sample size,
allowing for easier comparisons across datasets.

Another useful criterion for evaluating the quality of synthetic data is the order of
variable relevance, which can be assessed by constructing decision trees on both real and
synthetic datasets and comparing the resulting variable orders. Different methods can be
employed to measure the distance between the two sequences, such as focusing on the first
three variables or considering the majority of the order.

3. Application-Specific Measures: Classification

When generating synthetic data to perform specific tasks, it is recommended to evalu-
ate their quality by comparing the performance of real and synthetic data to complete these
jobs. In this study, our objective is to examine the utility of synthetic data in enhancing
the performance of a classification model when dealing with class imbalance. To achieve
this, we augment the minority class by introducing synthetic data into the training set.
Subsequently, we compare the model’s performance on the test set with the performance
of a model trained exclusively on the original data. The higher the classifier’s perfor-
mance, the more the generated data are similar to the minor class and hence more useful to
the classifier.

4. The Datasets

In order to assess the effectiveness of generative models in creating realistic synthetic
samples, we evaluate the performance of different utility measures on two real-world ap-
plication datasets: the Adults Income dataset (http://archive.ics.uci.edu/dataset/2/adult,
accessed on 17 March 2023) [28] and the Liar+ dataset (https://www.cs.ucsb.edu/~william
/data/liar_dataset.zip, accessed on 17 March 2023) [29]. The Adults Income dataset was
chosen for its widespread use in the literature [30–32] and its relevance to socioeconomic
factors that influence income. The Liar+ dataset is a well-established dataset that finds
extensive usage in the domains of natural language processing and machine learning [33–35].
We selected it due to its different nature with respect to the Adults dataset and because it
represents a typical example of class imbalance in the real world. Moreover, following the
preprocessing steps outlined in the forthcoming sections, the dataset will feature a substantial
number of covariates, presenting a challenge in generating synthetic data.

The Adult Income dataset, also known as the Census Income dataset, is a widely used
dataset in machine learning and data analysis. It contains demographic and employment-
related information on 48,842 individuals from the 1994 US Census database. The dataset
consists of 13 attributes (six continuous and seven categorical) including the individual’s

http://archive.ics.uci.edu/dataset/2/adult
https://www.cs.ucsb.edu/~william/data/liar_dataset.zip
https://www.cs.ucsb.edu/~william/data/liar_dataset.zip
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age, education level, occupation, marital status, relationship, race, gender, and native
country. The target variable of the dataset is the income bracket, divided into two classes:
“≤50 K” with 41,001 samples, and “>50 K” with 7841 cases, indicating whether an indi-
vidual’s income is below or above 50,000 USD per year. To reduce the complexity of the
categorical variables and ensure the feasibility of the analysis, we transformed them into
binary variables using the following criteria:

• For variables “race” and “native country” there was one class representing more than
85% of the cases, therefore we selected label 1 for the predominant class and 0 for all
the others.

• We transformed the other categorical variables into binary variables by grouping cases
that shared similar conceptual characteristics.

For example, if the original variable was “native country” and the most common
category was “USA”, then the new binary variable would have a value of 1 for “USA”
and 0 for all other categories. The dataset was partitioned into training and test sets to
enable the evaluation of classifiers based on application-specific measures. The data were
randomly partitioned in a manner that allocated 80% of the samples to the training set
and 20% to the test set while ensuring that the original balance between the classes was
maintained. The training set consisted of 32,801 samples in Class 0 and 6273 samples in
Class 1, while the test set comprised 8200 samples in Class 0 and 1568 samples in Class 1.

The Liar+ dataset is a dataset of statements made by politicians that have been labeled
as “true”, “mostly true”, “half true”, “barely true”, “false”, and “pants on fire”. The dataset
utilized in this study underwent the following preprocessing steps: only samples belonging
to the “pants-fire”, “false”, “mostly true”, and “true” classes were retained, with the first
two classes merged and labeled as 1, and the latter two labeled as 0. To address the class
imbalance observed in the real world, the class labeled as 1 was downsampled to a third of
the size of the class labeled as 0, resulting in 4087 instances in class 0 and 1362 instances in
Class 1. The remaining data processing followed the methodology outlined by Bruno Vaz in
his thesis [36] which is the following: categorical variables such as “speaker”, “job”, “state”,
“party”, and “subjecti” were subjected to target encoding, while the variables “statement”,
“context”, and “justification”, which contained essential information for predicting the
target variable, underwent processing using the Doc2Vec algorithm. After preprocessing,
the dataset consisted of 50 features and one target variable. Finally, the dataset was split
into training and test sets with an 80/20% ratio, maintaining the proportional distribution
of classes in each set. The resulting training set was composed of 3615 samples in Class 0
and 1216 samples in Class 1, while the test set consisted of 904 samples in Class 0 and 304
samples in Class 1.

5. Synthetic Data Generative Methods

We utilized several techniques for data synthesis, each serving a specific purpose.
These included Borderline SMOTE [37], which is an important variation of the widely
used upsampling technique SMOTE. We also employed DataSynthesizer [38] as one of
the simplest of the models that attempt to sample from the distribution of real data. Ad-
ditionally, CTGAN [39], a leading GAN model for tabular data, was utilized. We also
explored CopulaGAN [40], as an improvement upon the CTGAN approach. Finally, we
incorporated REaLTabFormer [41], which introduces a novel approach to tabular data
synthesis by leveraging large language models and transformer architectures.

5.1. Description of the Generative Methods

Borderline SMOTE is a variant of the more traditional SMOTE (synthetic minority
over-sampling technique) [18] algorithm that generates new data through the interpolation
of existing data. It is characterized by interpolating only the minority class data that are
close to the decision boundaries, allowing the algorithm to focus on examples that are more
difficult to correctly classify. The approach is as follows: the nearest neighbors algorithm
first identifies instances close to the decision boundaries, called borderline instances, and
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then the synthetic samples are generated by randomly selecting a borderline instance
and interpolating between it and one or more of its k-nearest neighbors, which are also
minority class instances. The main advantage of Borderline SMOTE over the original
SMOTE algorithm is that it can help to reduce the problem of overfitting, which can occur
when synthetic samples are generated from all minority class instances, including those
that are easy to classify.

DataSynthesizer is a system that generates synthetic datasets based on private input
datasets. It consists of two main modules such as DataDescriber, and DataGenerator.
DataDescriber infers attribute types and domains, supporting numeric, categorical, and
datetime data. It calculates value frequency distributions for categorical attributes and equi-
width histograms for numeric and datetime attributes. The module handles missing values
and incorporates differential privacy by adding Laplace noise. DataGenerator takes the
dataset description generated by DataDescriber and generates synthetic data by sampling
from the specified distributions. It offers three modes: random mode, independent attribute
mode, and correlated attribute mode. In the random mode, values are generated randomly
based on attribute types. In the independent attribute mode, sampling is performed
from bar charts or histograms using uniform sampling. Finally, in the correlated attribute
mode, values are sampled in the appropriate order from a Bayesian network. In our
study, we utilize the correlated attribute mode to incorporate intra-feature relationships
into consideration. This probabilistic model is constructed using a Bayesian network
that captures the correlation structure between attributes. Once the Bayesian network is
obtained, it determines the order in which attribute values are sampled, resulting in the
generation of synthetic data.

The CTGAN (conditional tabular generative adversarial network) model is a GAN-
based approach designed to model the distribution of tabular data and generate synthetic
rows that follow the same distribution. The popularity of this model in the world of
synthetic tabular data stems from its ability to tackle issues related to non-Gaussian and
multimodal distributions, as well as imbalanced discrete columns. Each continuous variable
is remodeled using a variational Gaussian mixture (VGM) model, where the number of
modes in the distribution is estimated. For each instance, the nearest mode is indicated
using a one-hot vector, and a scale parameter is determined. This allows for flexible
representation of continuous values within their respective modes. The CTGAN model
incorporates a conditional generator and training-by-sampling to address imbalanced
discrete columns. The conditional generator enables the generation of synthetic rows
conditioned on a specific discrete column value. The generator is penalized during training
to produce an exact copy of the given condition, ensuring that the generated rows preserve
the specified condition. Training-by-sampling ensures that all categories from discrete
attributes are sampled evenly (but not necessarily uniformly) during the training process,
facilitating the exploration of all possible discrete values. The network structure of CTGAN
consists of fully connected layers in both the generator and discriminator. Overall, CTGAN
provides a solution for modeling tabular data distributions, handling complex distributions,
imbalanced discrete columns, and generating synthetic rows that resemble the original
data distribution.

The synthetic data vault CopulaGAN model can be seen as an elaboration of the CT-
GAN model. It employs a two-stage approach to generate synthetic data while preserving
the statistical properties of the original dataset. In the first stage, known as statistical learn-
ing, the synthesizer focuses on learning the marginal distributions of the columns in the
real dataset. This involves understanding the shape and characteristics of each individual
column’s distribution. For instance, it might identify a column as having a Beta distribution
with parameters α = 2 and β = 5. The synthesizer normalizes the values to a Gaussian
distribution using the learned distributions. In the second stage, the synthesizer employs
CTGAN to train the normalized data. By combining statistical learning with GAN-based
modeling, the SDV CopulaGAN synthesizer generates synthetic data that not only captures
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the individual column characteristics but also maintains the complex dependencies and
structure present in the original dataset.

In conclusion, REaLTabFormer introduces an innovative approach to generating re-
alistic tabular data as it is a transformer-based framework designed for generating non-
relational and relational tabular data. In this study, we focus only on the generation of
non-relational data. Therefore, it treats each observation as a sequence and learns the
conditional distribution of columnar values in each row. This allows it to generate the next
values in the sequence, effectively creating realistic non-relational data. The underlying
architecture used for this purpose is GPT-2, a transformer-based autoregressive model.
GPT-2 is known for its ability to capture the conditional distribution of sequential data
effectively. To encode the tabular data efficiently, a fixed-set vocabulary is adopted for each
column. This means that a predetermined set of possible values is defined for each column,
and the model uses these values during the generation process. To address overfitting and
improve the quality of the generated samples, REaLTabFormer incorporates target masking
during training. Target masking involves replacing the target or label tokens with a special
mask token. Hence, it forces the model to learn the masks instead of the actual values,
encouraging it to generalize and generate more diverse samples. During the generation
process, the model fills the masked values with probabilistically valid tokens. By lever-
aging the learned distribution, the model selects appropriate values from the predefined
vocabulary.

This approach ensures that the generated non-relational data adhere to the patterns and
distributions observed in the training data. In summary, the REaLTabFormer model uses
an autoregressive approach and the GPT-2 architecture to generate realistic non-relational
tabular data. By treating each observation as a sequence and learning the conditional
distribution of columnar values, the model can accurately generate the next values in
the sequence. The use of a fixed-set vocabulary, target masking during training, and
probabilistic sampling further enhance the quality and diversity of the generated non-
relational data.

5.2. Experiments on the Generative Methods

We recall that the goal of this process is to create new data using these models so that
it is possible to add synthetic data to the minority class and improve the performance of
the classifiers. To avoid overfitting and better evaluate the performance of our classification
models, we trained the oversampling algorithms only on samples belonging the Class 1 of
the training set. This allowed us to more accurately assess the generalization performance
of our models and determine their ability to handle imbalanced data.

The Borderline SMOTE algorithm automatically recognizes the class with fewer sam-
ples and generates a total of synthetic samples so that the cardinality in both classes is the
same. The first target class in the Adults Income dataset has 32,800 samples, while the
minor class has 6273 samples; thus, the method generated 26,527 synthetic data. Instead,
the difference between the two classes in the Liar+ dataset was 2399; therefore, these many
samples were generated. The other models generated a different amount of samples each
time, resulting in distinct samples in each run. We created a series of 1000, 5000, 10,000,
and 20,000 samples for the Adults Income dataset and 500, 1000, 1500, and 2000 samples
for the Liar+ dataset. The intrinsic motivation is to assess the effect of sample size on utility
measures while ensuring that the sample size does exceed the number of samples in the
majority class.

6. Results and Discussion

The analysis is categorized based on the used dataset. Initially, we examined the
Adults Income dataset, followed by the Liar+ dataset. We assess the synthetic data using
utility measures and subsequently evaluate its classification performance.

The synthesis algorithms are outlined in the following study on the Adults Income
dataset: from this point forward when we write SMOTE, we mean Borderline SMOTE and
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DS1k, DS5k, DS10k, DS20k stand for, respectively, the datasets made by 1000, 5000, 10,000,
and 20,000 samples from the DataSynthesizer model. The same follows for the datasets
generated by CTGAN, CopulaGAN, and REaLTabFormer, the last labeled as RTF. We begin
by analyzing the quality of the generated data with the univariate measures, that is, we
want to verify the similarity, column by column, of the generated dataset compared to the
real dataset. Because univariate measures return a value for each component of the random
variable that represents our dataset, i.e., our columns, we opted to represent them using
boxplots. The more the values are grouped to values close to zero, the better the similarity
between the real dataset and the generated one. The boxplots of the Jensen–Shannon
Measures for the Adults Income dataset are shown in Figure 1.

Figure 1. Boxplots of the Jensen–Shannon measures grouped by each synthesis method for the Adults
Income dataset. On the y-axis there are the values of the distance measured on each column of the
data frame.

The scores show little sensitivity to the sample size, suggesting that a relatively small
sample of 5000 points already provides a robust representation of the variable distribution
for generative models. Notably, among the models examined, REaLTabFormer shows a
marginal improvement in performance. Among the methods compared, DataSynthesizer
had higher median and variability scores, demonstrating a limited ability to capture the
variables’ distribution. REaLTabFormer and Borderline SMOTE achieved better results
as the former had lower variability and the latter had lower median scores. CopulaGAN
had lower median scores compared to the CTGAN but showed greater variability in
scores. Table 1 presents the pairwise correlation difference (PCD) values in bivariate analy-
sis, which evaluates the generative methods’ capability to preserve the same interaction
between the components as observed in the real dataset.
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Table 1. Pairwise correlation difference in the Adults Income dataset for each synthesis method used.

PCD PCD

SMOTE 0.3387

DS1k 1.2528 CopulaGAN1k 1.2812
DS5k 1.1521 CopulaGAN5k 1.1126
DS10k 1.1113 CopulaGAN10k 1.1325
DS20k 1.1407 CopulaGAN20k 1.1472

CTGAN1k 1.3441 RTF1k 0.3787
CTGAN5k 1.3120 RTF5k 0.2894
CTGAN10k 1.3447 RTF10k 0.2404
CTGAN20k 1.3340 RTF20k 0.2584

The value for the synthetic data reduces slightly as the sample size increases. This
may be due to the fact that as datasets increase in size, the relationships among variables
are more represented. Yet, in terms of maintaining interactions between variables, the
Borderline SMOTE and REaLTabFormer methods appear to perform better.

To proceed to multivariate analysis, the propensity score was computed using a
CART (otherwise known as decision tree) model in order to calculate the distinguishability
between the original and synthetic datasets.

Table 2 shows the obtained values.

Table 2. Propensity score and standardized propensity score for the synthetic data generated from
the Adults Income dataset.

pMSE St pMSE pMSE St pMSE

SMOTE 0.0433 Inf

DS1k 0.1186 351.4 CopulaGAN1k 0.1102 597.1
DS5k 0.2468 122.2 CopulaGAN5k 0.2287 88.91
DS10k 0.2369 3087.0 CopulaGAN10k 0.2232 3524.1
DS20k 0.1818 Inf CopulaGAN20k 0.1724 Inf

CTGAN1k 0.2311 94.6 RTF1k 0.0988 742.3
CTGAN5k 0.2468 108.8 RTF5k 0.2127 137.5
CTGAN10k 0.2252 2203.0 RTF10k 0.2080 5946.3
CTGAN20k 0.1735 Inf RTF20k 0.1588 10,281.6

The closer the pMSE and Standardized pMSE are to 0, the better the indistinguishabil-
ity between the two datasets under consideration. Because the null distribution of the pMSE
is not theoretically derivable in this manner, it is estimated through resampling (details
in [27]). After examining the scores of the models that were sampled with varying numbers
of samples, it appears that pMSE follows a particular trend. In most cases, its value is the
smallest when the sample size is low, increases to the maximum at 5000 samples, and then
decreases again with 20,000 samples. In contrast, St pMSE exhibits an opposite trend to
that of pMSE and even reaches infinite values with the largest sample size. In [27], the
authors describe this indicator as unstable in the case of high sample sizes. Alternatively,
this trend may be interpreted as follows: since pMSE employs a classifier to evaluate the
quality of synthetic data, it is affected by class imbalance. With 6273 real samples, the
point where the number of real and synthetic samples is most similar is when 5000 are
generated by the models. Therefore, pMSE may be more significant in this case, as it scores
lower for every model. A comparison of the performance of the 26,527 data generated by
Borderline SMOTE with the other cases that generated 5000 samples is not meaningful in
this context. Therefore, among the remaining models, the most suitable one for replicating
the distribution of the real dataset is REaLTabFormer. And, since St pMSE is not affected by
sample size, it can determine the optimal value in this case.



Mathematics 2023, 11, 3278 11 of 18

Finally, considering the application of the dataset for binary classification modeling,
we evaluated and compared the performance of various algorithms—decision trees, logistic
regression, random forest, and XGBoost. This comparison was made between the results
from the datasets augmented with synthetic data and the baseline performances to observe
any potential improvements or differences. The more the performances improve, the more
the generated data help the minority class by increasing its representation. This means
that the generated data comes from the same distribution as the minority class. Table 3
displays the F1 scores for Class 1 across all classifiers and synthesis methods computed
on the test set. The classification models have been fitted on all the samples from Class 0
and on the real samples of Class 1, augmented with 20,000 synthetic instances to mitigate
class imbalance.

Decision trees are found to be quite insensitive to the addition of new samples for
Class 1, regardless of how they were generated as the F1 score improves only slightly
with the augmentation. Logistic regression, on the other hand, which is a model that is
very sensitive to class imbalance, shows significant performance improvement with class
augmenting, especially if the data were generated using Borderline SMOTE, as the F1
score from a baseline value of 18.24 reached a value of 76.02. Figure 2 illustrates how the
performance of the classifiers changes with varying numbers of added synthetic samples.

Table 3. F1 score in percentage on Class 1 for the classification on the Adults Income dataset on the
test set in the case of Class 1 augmentation with 20,000 synthetic data.

Decision Tree Logistic Regression Random Forest XGBoost

Baseline 40.14 18.24 35.29 34.57
Borderline SMOTE 41.31 76.02 50.36 49.55
DataSyntesizer 41.11 35.59 34.67 34.50
CTGAN 41.05 61.47 37.50 34.24
CopulaGAN 41.79 67.47 38.24 33.86
REaLTabFormer 40.56 66.20 42.69 39.16

As previously seen, the decision tree model does not appear to be sensitive to data
augmentation while the other classification models show an increase in accuracy, precision,
and F1 score as the number of samples increases. There is also a decrease in the recall,
potentially indicating a reduction in model bias. Also here, logistic regression is shown to
be very sensitive to data augmentation, and the performances increase as the number of
samples added increases.

We computed the same measures for the Liar+ dataset. Nevertheless, in this situation,
DS0.5k, DS1k, DS1.5k, and DS2k correspond to samples with a cardinality of 500, 1000, 1500,
and 2000, respectively, and the same goes with the other generative models. Figure 3 depicts
the boxplots of the univariate Jensen–Shannon measures. In this scenario, the Borderline
SMOTE algorithm and the REaLTabFormer outperform the other models showing a median
that is almost half of all the other cases and very low variability. Again, the DataSynthetsizer
model turns out to have poor emulation capabilities of univariate distributions.
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Figure 2. Comparison of the four classification model performance metrics on Class 1 on the test set
for each synthesis method used for data augmentation for Adults Income dataset. On the y-axis there
is the value of each score which can go from 0 to a maximum of 1.
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Figure 3. Boxplots of the Jensen–Shannon measures for each synthesis method for the Liar+ dataset.
On the y-axis we have the measure computed on each variable of the dataframe.

The PCD follows the same pattern as the Adults Income dataset (Table 4). As the num-
ber of samples increases, the relationships among variables are better captured. Borderline
SMOTE and REaLTabFormer produce the best-performing synthetic data by demonstrating
the ability to capture and then represent relationships component by component. Propen-
sity scores are collected in Table 5. Similar to the Adult Income dataset, the pMSE is highest
when the generated sample size is similar to the original sample size (1216), which in this
case is 1000. The values exhibit minimal fluctuations based on the generation model used,
with the exception of Borderline SMOTE, which outperforms the others. In this scenario,
St pMSE values remain consistent within a narrow range regardless of the volume of the
synthetic data, unlike the previous case with the Adult Income dataset. This highlights
the score’s independence from the sample size. Furthermore, since Borderline SMOTE
generated 2399 samples, we compare its score with that of the other datasets generated with
2000 samples. It emerges as the model that yields superior values. In terms of classification
models, we focused on analyzing the classification models’ ability to identify Class 1 data,
which is more of our interest as it is the minority class. The F1 scores for Class 1 are
presented in Table 6.

Table 4. Pairwise correlation difference in the Liar+ dataset for each synthesis method used.

PCD PCD

SMOTE 1.6030

DS0.5k 4.3507 CopulaGAN0.5k 5.4978
DS1k 4.0252 CopulaGAN1k 5.3046

DS1.5k 3.8881 CopulaGAN1.5k 5.0944
DS2k 3.8144 CopulaGAN2k 5.0632

CTGAN0.5k 5.5091 RTF0.5k 2.9800
CTGAN1k 5.1432 RTF1k 2.6132

CTGAN1.5k 5.0166 RTF1.5k 2.3818
CTGAN2k 5.0557 RTF2k 2.3149
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Table 5. Propensity score and standardized propensity score for the synthetic data generated from
the Liar+ dataset.

pMSE St pMSE pMSE St pMSE

SMOTE 0.1654 3.2076
DS0.5k 0.1992 3.5757 CopulaGAN0.5k 0.2041 3.6839
DS1k 0.2404 3.5669 CopulaGAN1k 0.2458 3.6514

DS1.5k 0.2391 3.5069 CopulaGAN1.5k 0.2462 3.6545
DS2k 0.2294 3.6406 CopulaGAN2k 0.2346 3.7681

CTGAN0.5k 0.2034 3.6841 RTF0.5k 0.2041 3.7280
CTGAN1k 0.2434 3.6127 RTF1k 0.2456 3.6599

CTGAN1.5k 0.2439 3.6097 RTF1.5k 0.2452 3.6772
CTGAN2k 0.2315 3.7486 RTF2k 0.2348 3.8048

Table 6. F1 scores in percentage of the classification on the Liar+ dataset computed on Class 1 of the
test set for every classification model trained on Class 1 augmented with 2000 synthetic samples.

Decision Tree Logistic Regression Random Forest XGBoost

Baseline 54.28 25.32 49.23 53.94
Borderline SMOTE 52.85 72.04 62.94 61.51
DataSyntesizer 51.31 40.46 51.42 55.92
CTGAN 53.17 31.58 52.74 56.91
CopulaGAN 53.84 44.41 53.51 53.94
REaLTabFormer 55.04 67.11 50.55 54.61

The decision tree (Figure 4, row 1), random forest, and XGBoost exhibit superior per-
formance only when the augmented data are derived from Borderline SMOTE. Conversely,
when using data generated by other generative models, these three classifiers do not display
any improvement, as we can see in the first, third, and fourth rows of Figure 4, which are the
scores corresponding to the decision trees, random forest, and XGBoost models. These rows
present the accuracy, precision, recall, and F1 scores from left to right, respectively. Notably,
these scores remain unchanged from the baseline (gray line) and show no variation with the
number of samples added. This phenomenon can be attributed to the Liar+ dataset’s high
dimensionality (50 features), making it more challenging to classify accurately. However,
logistic regression stands out as the only model consistently showing improvements across
all performance scores when class augmentation is applied, as evident from the second line
in the figure. Due to its simplicity and heightened sensitivity to class imbalance, logistic
regression displays a robust reliance on the number of added samples, leading to enhanced
performance across all generative models.
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Figure 4. Performance scores on Class 1 of the classifier models on the test set of the Liar+ dataset
with varying numbers of synthetic samples from different generation models. On the y-axis, there is
the value of each score which can go from 0 to a maximum of 1.

In summary, for both datasets, Borderline SMOTE and REaLTabFormer stand out
as generative models that exhibit superior performance across various utility measures.
Notably, Borderline SMOTE consistently outperforms other models across all evaluated
measures, in particular, in terms of PCD (Tables 1 and 4) and pMSE (Tables 2 and 5). The
superiority of these models is also evident in the classification results, as all classification
models perform better when trained on data generated by Borderline SMOTE and RE-
aLTabFormer (Table 6). Based on the obtained results, it can be concluded that the utility
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measures demonstrate a general consistency among themselves. If a generative model
excels in one measure, it is likely to excel in other measures as well. Analyzing the data
generated by DataSynthesizer, we find that the Jensen–Shannon measure (Figures 1 and 3)
indicates a poor univariate match between the synthetic data and the real data as the scores
are very high compared to other models. However, the pairwise correlation difference
(Tables 1 and 4) and pMSE (Tables 2 and 5) suggest that the bivariate and multivariate
distributions are as good as the ones generated by the other generative models. Notably,
when it comes to classification tasks, augmenting the data with DataSynthesizer-generated
samples leads to relatively less pronounced performance improvement compared to other
augmentation techniques, as evident from Figures 2 and 4. The blue line representing
DataSynthesizer is consistently positioned below all the other lines in these figures. This
indicates that if the univariate distribution of synthetic data diverges significantly from
the real data, the other measures related to bivariate and multivariate distributions may
have limited relevance in evaluating the quality of the synthetic data. CTGAN and Copu-
laGAN, with the latter being an improvement over the former, demonstrate comparable
performance across most measures, except for a slight advantage of the latter in the classifi-
cation task. In Figures 2 and 4, the two models correspond to the yellow and green lines,
respectively. It can be seen that the green line stands above the yellow line for accuracy,
precision, and F1, while below it for recall, which in this case means less bias in the model.
REaLTabFormer and Borderline SMOTE emerge as the top-performing generative models
across all evaluation criteria, notably surpassing other models in terms of pairwise corre-
lation difference. Overall, the high quality of the generated data translates into superior
classification performance.

7. Conclusions

In this study, we have examined various utility measures for synthetic tabular data,
exploring their properties and the aspects they can evaluate. Furthermore, we assessed
their applicability in the context of classification tasks with imbalanced classes.

To investigate these measures, we employed five generative algorithms: Borderline
SMOTE, DataSynthesizer, CTGAN, CopulaGAN, and ReaLTabFormer. These algorithms
were evaluated on two distinct datasets: Adults Income and Liar+. Our study reveals
that Borderline SMOTE and REaLTabFormer exhibit superior performance among the
generative models investigated. Borderline SMOTE adopts a modified approach to SMOTE,
generating samples by interpolating borderline data points from the opposing class, while
REaLTabFormer utilizes the GPT-2 generative model. The utility measures demonstrate
consistency as the dimensionality of the compared distributions increases. Indices that
perform well for univariate measures also tend to excel in bivariate and multivariate
measures. However, it should be noted that good performance in bivariate and multivariate
cases does not necessarily guarantee the same for univariate distributions. Importantly,
these measures align with the classification results obtained after augmenting the minority
class samples.

In conclusion, the utility measures analyzed in this study provide valuable insights
into the quality of generated synthetic data and can serve as informative tools for data
analysis. Future research directions may involve extending our findings by incorporating
these measures, for example, in the training process of generative models such as CTGAN,
with the aim of enhancing their performance.
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