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Abstract: The history of Compton cameras began with the detection of radiation sources originally
for applications in astronomy. A Compton camera is a promising γ-ray detector that operates in the
wide energy range of a few tens of keV to MeV. The γ-ray detection method of a Compton camera
is based on Compton scattering kinematics, which is used to determine the direction and energy of
the γ-rays without using a mechanical collimator. Although the Compton camera was originally
designed for astrophysical applications, it was later applied in medical imaging as well. Moreover, its
application in environmental radiation measurements is also under study. Although a few review
papers regarding Compton cameras have been published, they either focus very specifically on the
detectors used in such cameras or the particular applications of Compton cameras. Thus, the aim of
this paper is to review the features and types of Compton cameras and introduce their applications,
associated imaging algorithms, improvement scopes, and their future aspects.
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1. Introduction

The concept of a Compton camera was initially proposed by Schonfelder in 1973 [1].
Subsequently, Compton cameras were tested for diverse applications, especially in high-
energy astrophysics (as components of telescopes and satellites) [2–7], as well as for envi-
ronmental radiation measurements, such as the detection of radioactive elements in soil and
open air [8–11]. A Compton camera is a γ-ray detector that uses the kinematics of Compton
scattering to reconstruct a γ radiation trajectory. γ-ray interactions with a material can be
explained by three main mechanisms: photoelectric absorption, Compton scattering, and
pair production. In photoelectric absorption, a photon is absorbed by an atomic electron,
leading to the ejection of electrons from the orbitals of the atom. Compton scattering is
the elastic scattering of incident photons by the electrons of a scattering medium and is
dominant, especially, in the energy range of several tens of keV to a few MeV. In pair
production, a photon is transformed into an electron–positron pair. The pair production
phenomenon is dominant at energies > 10 MeV. The Compton effect, which is dominant in
a wide energy range, as shown in Figure 1 [12], is central to one of the most promising γ-ray
detection devices—Compton cameras—that achieve a high sensitivity by suppressing the
background, as demonstrated by the imaging Compton telescope (COMPTEL) [4,13–16]
onboard the Compton γ-Ray Observatory (CGRO) satellite. In the Compton scattering
mechanism, the incident γ-ray transfers a fraction of its energy to an electron and is scat-
tered at a certain angle with respect to its initial direction. The energy transferred by the
photon during the scattering is converted to the kinetic energy of the secondary electron.
Thus, an incident γ-ray source can be identified based on the Compton scattering infor-
mation recorded in the detectors of a Compton camera. A fundamental Compton camera
consists of two types of sub-detectors: scatterers and absorbers. Figure 2 shows a schematic
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of the fundamental Compton camera. An incident γ-ray source is identified by evaluating
the successive interactions of the incident photons with the scatterer and absorber. The
γ-rays emitted by an individual source undergo Compton scattering in the scatterer and
are subsequently absorbed by the absorber. These scattering and absorption events are
together called a Compton event. The cones, formed by the Compton scattering angle and
the interaction position in the scatterer, are accumulated together to locate the γ-ray source.
If we assume that the incident γ-ray deposits an energy E1 in the Compton scatterer and
the remaining energy E2 in the absorber, then the total incident energy, represented by Ein,
is expressed by the following equations:

Ein = E1 + E2 (1)
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Figure 2. Schematic illustration of a general Compton camera (left); Compton cones of each event
are superimposed to locate the γ-ray source (right).

The scattering angle θ is calculated as follows:

cos θ = 1 − ((me c2 E1)/(E2(E1 + E2)) (2)

where me c2 is the rest-mass energy of the scattered electron. Therefore, estimating the fine
position and energy resolution are the key requirements for a Compton camera to retain a
low background with Compton kinematics.
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In the field of high-energy astrophysics, the investigation of polarized γ-rays, which are
generated by high-energy phenomena such as synchrotron radiation generation,
bremsstrahlung, and Compton scattering [17], has remained a challenging task owing
to the unavailability of suitable detectors that can efficiently detect and measure these
polarized γ-rays. Since the development of Compton cameras, they have emerged as viable
devices that can detect the polarized γ-rays originating from high-energy astrophysical phe-
nomena. The Compton cameras also provide information on the emission geometries and
magnetic field configurations. After the introduction of Compton cameras in astrophysics,
many telescopes have been proposed and tested for observing various celestial phenomena.
Another accomplishment of the Compton camera in astronomy is the detection of the
Crab Nebula in 2011 by a Ge detector-based Compton camera onboard a balloon-borne
system [18]. Further, following the Fukushima Daiichi Nuclear Plant (FDNP) disaster
in 2011, γ-emitting radioisotopes (RIs), mainly 137Cs, 134Cs, and 131I, were released into
the atmosphere and remained in the environment. Some of these released RIs, and their
emissions and half-lives are listed in Table 1 [19]. Accordingly, to date, various types of
light and portable Compton cameras with increased sensitivities have been developed to
identify such radiation hotspots for decontamination [9,20,21].

Table 1. Some RIs released into the atmosphere during the Fukushima nuclear accident in 2011.

Leakage Isotopes
from FDNP Emission Amount [PBq] Disintegration Decay Time

137Cs 6.1~35.9 β− 30 years
134Cs 11.8~18 β− 2.1 years
85Kr 44 β− 10.76 years
129I 5.5 × 10−5~5.5 × 10−6 β− 1.57 × 107 years
131I 65~380 β− 8 days

133Xe 11,400~15,000 α β− 5.245 days

The booming success of Compton cameras in astrophysical observations has propelled
their subsequent application in diverse fields, especially in medical imaging. Todd et al. [5]
proposed Compton cameras as suitable alternatives to the previously used mechanically
collimated imaging systems, such as Anger cameras [22], and inspired by this, Singh and
Doria [23,24] developed the first working prototype of a Compton camera for medical
imaging in the early 1980s. During the 1980s and 1990s, semiconductor-based Compton
cameras were introduced, based on the scheme proposed by Singh et al. Later, in 1993,
Martin et al. [25] proposed a ring Compton scatter camera composed of a high-purity Ge
(HPGe) detector and a ring array of cylindrical NaI scintillators. Later, LeBlanc et al. [26–28]
replaced the Ge detector with an arrayed Si pad detector to develop a Si pad detector-based
Compton camera, namely C-SPRINT, for nuclear medicine applications. Compared with
the mechanically collimated single-photon emission computerized tomography (SPECT)
system, the γ-ray detection efficiency of the C-SPRINT was found to be higher at lower
energies. In 1988, Kamae et al. [29] proposed the concept of a multiple scattering Compton
camera composed of layers of thin Si strip detectors surrounded by a cylindrical CsI scin-
tillator. Based on the design proposed by Kamae et al., Dogan et al. [30] proposed image
reconstruction by multiple scattering of γ-rays. In 2004, Wulf et al. [31] developed a Comp-
ton camera using three layers of double-sided Si strip detectors (DSSDs) and reconstructed
images and spectra produced by 137Cs and 57Co γ-ray sources using this multilayered
Compton camera, based on the report of Kroeger et al. [32]. In 2007, Vetter et al. [33] devel-
oped a Si/Ge Compton camera by combining the superior features of the HPGe detectors
and DSSDs.

These reported studies indicate that Compton cameras have been actively used in
medicine, especially in nuclear medicine and hadron therapy, in the past two decades. Nu-
clear medicine, which utilizes γ-ray emitting RIs to capture the physiological information
of tumors, is a vital diagnostic tool. Nuclear diagnosis is performed by administering the
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RIs into the patient through the intravenous route, and the built-in surrounding detec-
tors detect the γ-rays emitted from the tumors to reconstruct an image. Thus, to obtain
precise information on the distribution of these RI tracers, high-precision γ-ray detectors
are necessary. SPECT is one of the commonly used medical imaging techniques, in which
single-photon (γ-rays) emitters are detected, and subsequently an image is developed
based on the detected photons. The SPECT systems employed a mechanical collimator,
which determines the spatial resolution and sensitivity of this imaging system and whose
dimensions need to be changed according to the target organ, measurement time, and
data collection method [34–39]. Additionally, only low-energy (~300 keV) tracers can be
used in the mechanically collimated SPECT systems. Therefore, there is a high demand
for alternative SPECT imaging modalities. As an alternative, Carminati et al. proposed
and developed a silicon photomultiplier (SiPM)-based magnetic resonance imaging (MRI)-
compatible SPECT system that passed through preliminary clinical imaging tests [40]. The
detectors used in this system are thallium-doped cesium iodide (CsI(TI) coupled with
SiPMs. The preliminary evaluation shows that the extrinsic spatial resolution was better
than 10 mm and thus established itself as a promising alternative for the conventional
SPECT. On the other hand, in the last decade, Compton cameras, which do not require
mechanical collimators and can detect a wide range of γ-ray energies, have come under the
spotlight as feasible alternatives to the mechanically collimated SPECT in nuclear medical
imaging. Compton cameras facilitate simultaneous imaging of multiple RI tracers, yielding
detailed information on lesions as well as enabling instantaneous identification of the
elements corresponding to specific functions [38].

Recently, an interesting application of Compton cameras, i.e., online beam-range
monitoring in hadron therapy, has materialized, because the energy of the secondary
prompt γ-rays originating from the interaction of the beam with the cells in a patient’s body
ranges from a few hundred keV to a few MeV. The utilization of prompt γ-rays for range
verification was first proposed by Jongen and Stichelbaut in 2003 [41] and first realized by
Min et al. in 2006 [42]. The range information can be extracted from the spectral, temporal,
or spatial patterns of the prompt γ-rays [43–45]. A correlation exists between the emission
point of the γ-rays and the Bragg peak position [46,47]. In hadron therapy, the verification
of the stopping range of the irradiated protons or heavy ions in a patient’s body is critical
to minimize the inherent range uncertainty, which is realized by detecting the emitted
prompt γ-rays [48,49]. Although the efficiency of a Compton camera is superior to that
of the Anger cameras [50,51], challenges such as low count rates, incomplete sampling,
and unknown initial photon energies impede the effective implementation of these novel
devices in medical therapy. Therefore, various studies are being conducted worldwide to
improve the Compton camera efficiency, imaging algorithms, measurement techniques,
and detector specifications for real-time dose verification in hadron therapy.

Very few review papers on Compton cameras exist in the literature; those that have
been published only cover specific topics (e.g., the detectors used in Compton cameras or
their specific uses [52–55]). Moreover, there is a lack of current review papers on Compton
cameras and their applications. We believe that this paper will act as a source of knowledge
on Compton cameras, their development history, their major fields of application, and the
trends in imaging algorithms used in such cameras. The principle aim of this review is to
introduce and explain the different types of Compton cameras according to the types of
detectors used, measurement targets, and application fields. Further, the details of several
popular image reconstruction methods for Compton cameras, reported by different authors,
have been presented here. We also discuss the pitfalls of the Compton camera as well as
the avenues for future improvements.

2. Types of Compton Cameras
2.1. Si/CdTe Detector-Based Compton Cameras

Generally, semiconductor-based scatterer detectors are widely developed because
of their high detection efficiencies and excellent energy resolutions. Table 2 lists the
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most commonly used semiconductors in detectors and their properties [56]. Among
the different types of detectors used in Compton cameras, Si/cadmium telluride (CdTe)
detectors are considered suitable for γ-ray measurements. The Si/CdTe Compton cameras
exhibit a high energy resolution as well as a high angular resolution, especially for γ-
rays of a few hundreds of keV. Si detectors are characterized by excellent energy and
spatial resolutions because of the lower photoabsorption cross-sections of Si as well as
the smaller Doppler broadening, compared with other semiconductors [57]. In contrast,
CdTe detectors, which have a high density and a high effective atomic number, comprise
high-resolution Schottky diodes, thus their energy resolution and efficiency are better
than those of the Si detectors [58–61]. The beginning of the twenty-first century was
marked by the development of Si/CdTe Compton cameras, as successors to COMPTEL, by
Takahashi et al. [62–64]. These cameras use multiple layers of DSSDs, CdTe pixel detectors,
and a highly advanced low-noise analog application-specific integrated circuit (ASIC) [63].
Figure 3 shows actual photographs of the (a) stack of DSSDs, (b) stack of CdTe detectors,
and (c) the prototype Si/CdTe Compton camera. Figure 3a,b were reprinted from the works
of Watanabe et al. [65] and Figure 3c was reprinted from Takeda et al. [66]. In DSSDs,
highly doped p-type and n-type Si strips are implanted orthogonally to provide two-
dimensional coordinate measurements. Meanwhile, the CdTe pixel detector is composed
of indium as a common electrode side and the other platinum electrode side is pixelated,
in which a thin layer of gold is evaporated for etching. Initially, a Si/CdTe Compton
camera was developed as a soft γ-ray detector and launched into the low Earth orbit
onboard the Hitomi satellite for the ASTRO-H mission, previously known as the NeXT
mission, [67–70] in 2013 as a successor to the Suzaku X-ray mission [71–74]. The Si/CdTe
Compton telescope can be operated at a moderate temperature of 0 to−20 ◦C. Following the
Fukushima Daiichi Nuclear Power Plant disaster in 2011, because of the Great East Japan
Earthquake [75], a Si/CdTe Compton camera, ASTROCAM, was built [76] to measure the
radiation contamination (hot spots) at the accident site and in the surrounding environment,
including the soil around plants and trees [77,78]. The camera consists of eight layers of Si
detectors and four layers of CdTe detectors of (size: 5 cm × 5 cm and weights: 8–13 kg).
These Si/CdTe cameras exhibit good energy and angular (2.2% at half maximum (FWHM)
and 5◦, respectively) resolutions for photons with an energy of 662 keV, and a high-count
rate of 0.16 cps/MBq at a distance of 1 m. The medical applications of the Si/CdTe Compton
camera were introduced by Sakai et al. [79], especially in nuclear imaging of different RIs,
followed by improvements in the Compton imaging algorithms [80–82]. The in vivo [83]
and human imaging [84] applications of Si/CdTe Compton cameras are vital achievements
of these devices in the field of nuclear medical imaging.

A Si scatterer has a low sensitivity to high-energy (several MeV) γ-rays. Therefore, the
feasibility of using these detectors to detect the γ-ray emissions of energies lower than those
used in other beam-monitoring applications is currently under study. Parajuli et al. [85]
used ASTROCAM for the monitoring of the range of C-ion beams used in radiotherapy by
measuring the 511-keV annihilation γ-rays and 718-keV prompt γ-rays [86]. Shiba et al. [87]
performed an in vivo monitoring of the annihilation γ-rays released from a mouse irradi-
ated by a C-ion beam. Turecek et al. [88] reportedly developed a Si/CdTe Compton camera
based on the Timepix3 technology. The study demonstrated the benefits of using Timepix3
technology that could enhance resolution and reduces Compton camera size. The Compton
camera was revised with the application of only a single layer detector of CdTe [89] and
the combination of the Timepix3 detector with the miniaturized MiniPIX TPX3 readout
system. The performance evaluation of the camera demonstrated its feasibility to distin-
guish gamma sources located at near and further distances from the detector and could
differentiate the source type by their energy. Tomita et al. [90] proposed and developed
a vehicle-mounted 4π Compton imager based on the 3D pixel array CdTe detector. The
position and activity of a single 137Cs was estimated quantitively in 3D voxel space at
three positions. Further, some other groups have assessed the feasibility of substituting
CdTe with cadmium–zinc–telluride (CZT), which exhibits a comparatively higher resistiv-
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ity and therefore lower leakage currents, to develop Compton cameras with suppressed
background noise [91–94].

Table 2. Properties of some semiconductor detectors widely used in Compton cameras.

Semiconductor
Detector

Density
[g/cm3]

Atomic Number
[Z]

Band Gap Energy
[eV]

Ionization Potential
(∈) [eV]

Si 2.33 14 1.12 3.6
CdTe 5.58 48, 52 1.44 4.43
Ge 5.33 32 0.67 2.9
CdZnTe 5.81 48, 30, 52 1.6 1.6
HgI2 6.40 80, 53 2.13 4.2
GaAs 5.32 31, 33 1.42 4.3
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2.2. Ge Detector-Based Compton Cameras

Ge detectors are popular alternatives to Si detectors in Compton cameras because of
the advantageous characteristics of Ge over those of Si; for instance, HPGe has an excellent
energy resolution of approximately 0.2% at 662 keV [95]. However, Ge-based detectors
must be operated at very low cryogenically-regulated temperatures, owing to their small
bandgaps [96,97]. Moreover, efficiency calibration is essential to perform measurements
using HPGe detectors [98]. Ge detectors, such as Gammasphere [99], Euroballs [100], and
AGATA [101], use Compton-suppressed arrays, and as a result, exhibit excellent energy
resolutions, high efficiencies, and high peak-to-total ratios, thereby effectively mitigating the
shortcomings of the NaI detectors [102]. Singh et al. [23,24] showed that the single Compton
scatter efficiency of Ge is higher than that of Si, and thus the front-detector thickness should
be minimal (<10 mm) to achieve an acceptable spatial resolution. They replaced the
mechanical collimator with a 6 mm × 6 mm Ge detector as the front detector and measured
the γ-rays emitted by 99mTc (140 keV) and 137Cs (662 keV) RI sources. Despite the resolution
being poorer than expected, Ge-based front detectors are still preferred over Si detectors
in Compton cameras for imaging photon energies in the wide range of 140–511 keV. An
improved position-sensitive HPGe Compton camera, SmartPET (Smart Positron Emission
Tomography), was developed and evaluated by Cooper et al. [103] and Boston et al. [104]
at Liverpool University. The detector size was 60 × 60 × 20 mm3, the spatial resolutions
were 7.7 and 6.3 mm for 511 and 1408 keV, and γ-ray emitting sources placed 50 mm away
from the detector, respectively. To overcome this spatial resolution, Takeda et al. [105]
developed a Ge-based hybrid Compton camera to image multiple probes. This detector
showed a spatial resolution of 3.2 mm for an 834-keV γ-ray source placed 3.5 cm away
from the camera. However, the efficiency decreased with the thickness of the mask, and
the image reconstruction was more complex. Japan’s largest research institution, RIKEN,
reportedly developed a Ge-based Compton camera, namely γ-ray emission imaging (GREI),
for simultaneous and nondestructive imaging of radionuclides [106,107]. In this double-
sided Ge detector, the active volumes of the scatterer and absorber are 39 × 39 × 10 and
39 × 39 × 20 mm3, respectively, and the strip pitch is 3 mm for both of the detectors.
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The detection efficiency of the GREI system for 662-keV γ-rays at a distance of 15 mm
is approximately 0.01%. The GREI system was subsequently improved by narrowing
the distance between the Ge detector elements (60–40 mm) and by increasing the data
acquisition speed (GREI-II). The GREI and GREI-II systems were employed to evaluate and
compare the distribution of bio-metals, such as 64Cu and 65Zn, using mouse models [38,108].
The research groups in RIKEN have renewed their efforts to implement GREI in clinical
diagnostics for imaging multiple biological processes. Alnaaimi et al. [109] also developed
a Ge-based Compton camera (Figure 4) for medical applications and achieved an angular
resolution of 9.4◦ ± 0.4◦ for a 662-keV γ-ray emitting source.
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2.3. Scintillator-Based Compton Cameras

Scintillator-based Compton cameras possess a high detection efficiency, are less expen-
sive, and are operable at room temperature, although their angular resolution is relatively
lower than that of the semiconductor-based Compton cameras because of poor energy and
position resolution. Popular scintillators usually used in Compton cameras are thallium-
doped sodium iodide (NaI(TI)), thallium-doped cesium iodide (CsI(TI)), sodium-doped
cesium iodide (CsI(Na)), cerium-doped gadolinium aluminum gallium garnet (Ce:GAGG),
and cerium-doped lanthanum bromide (Ce:LaBr3). The properties of scintillator detectors
used in Compton cameras are listed in Table 3 [110,111]. Typically, scintillators are used
with photomultiplier (PM) tubes or Si photodiodes. With the development of multipixel
photon counters (MPPCs), which are a type of SiPMs, scintillators have become easier to use
as scatterers in Compton cameras. Generally, the scintillation process occurs via three steps:
the excitation of electrons, energy transfer of the excited or ionized electrons, and emission
of fluorescence. Hofstadter et al. [112] discovered NaI(TI) in 1948 and it was the most
widely used scintillator until the other scintillators were discovered. NaI(TI) and CsI(TI)
possess a high sensitivity but an insufficient energy resolution in the low-energy range.
Most radiopharmaceuticals used in nuclear imaging emit γ-rays with energies < 250 keV,
such as 99mTc (141 keV), 123I (159 keV), and 111In (171 and 245 keV), among which 99mTc ac-
counts for more than 50% of the RI-based medical diagnostics. Therefore, these scintillators
are not suitable for Compton cameras used in medical applications, although they are still
used in environmental radioactivity measurements [113–115]. In contrast, the properties of
Ce:GAGG scintillators are superior to those of the other scintillators because they can emit
Ce3+ photons with a 520 nm wavelength that originate from the 5d–4f transitions in Ce3+,
possess high densities, and exhibit high light outputs, fast decay times, low self-radiation,
and a good energy resolution [116,117]. Ce:GAGG exhibits a high stopping power and is
neither hygroscopic nor self-emissive. The demands for Ce:GAGG-based Compton cameras
rapidly increased after the Fukushima nuclear disaster in Japan in 2011 to measure the
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levels of different radioactive elements from a distance. Kataoka et al. [118–120] developed
a portable and handheld Compton camera based on a Ce:GAGG scintillator and MPPC
with a depth-of-interaction (DOI) capability. The prototype Compton camera is shown in
Figure 5, which has been reprinted from Kataoka et al. [118]. The left photograph shows
the compact form of the Compton camera and the right photograph shows its internal
structure. This camera, which contained 10 mm thick 50 × 50 mm2 Ce:GAGG plates
acting as both the scatterer and observer coupled with the MPPC, was initially used to
detect radioactive elements [121]. The camera had an angular resolution of less than 10◦

for the source and 10 mm for the DOI configuration. Its angular resolution, measured at
the FWHM, was approximately 8◦ at 662 keV. Since 2016, this group has been engaged
in finding suitable methods to build a Compton camera for γ-ray imaging for particle
therapy applications [122–124]. Kenichiro et al. [125] also developed a Compton camera,
namely a Compton–PET hybrid camera, based on Ce:GAGG detectors and demonstrated
simultaneous imaging with 131I and 18F RI sources. The Compton–PET hybrid camera
consisted of two Ce:GAGG Compton cameras facing each other, with the target object at
the central axis. Takahashi et al. [126] also reported on the development and performance
of the stacked GAGG scintillator-based omnidirectional Compton imager for the objective
of the rapid measurement of radioactive fallout, such as in nuclear accidents of the FDNP
disaster. The three-dimensional position resolutions were estimated using the prototype
Compton camera to evaluate the performance of several kinds of scintillators.

Table 3. Properties of some scintillator detectors used in Compton cameras.

Scintillators Detectors Density
[g/cm3]

Light Yield
[photon/MeV]

Decay Time
[ns]

Peak Emissions
[nm] Atomic Number (Z) [eV]

NaI(Tl) 3.7 45,000 230 415 51
CsI(Tl) 4.5 56,000 1000 530 54
Ce:GAGG 6.6 57,000 88 (91%) + 258 (9%) 520 54.4
CaF2(Eu) 3.18 24,000 940 435 54
BGO 7.13 8000 300 480 74
Ce:LaBr3 5.1 75,000 30 375 46.9
Ce:LSO 7.35 25,000 42 435 66Sensors 2022, 22, x FOR PEER REVIEW 9 of 34 
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2.4. Electron-Tracking Compton Cameras

A typical Compton camera can only determine the scattering angle and cannot fully
reconstruct the trajectory of the detected γ-rays. In electron-tracking Compton cameras
(ETCCs), the tracking of the recoil electron reduces the Compton circle to a point and
a significant background reduction can be achieved, compared with the conventional
Compton cameras [127]. Tanaka et al. [128] developed the first ETCC that could detect
Compton recoil electrons using a gaseous micro-time projection chamber (µ-TPC) detector
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and a position-sensitive scintillation camera enclosing the µ-TPC. Figure 6 shows the
conceptual structure (left) and an actual photograph (right) of the ETCC, reprinted from
Kabuki et al. [129]. This ETCC allowed three-dimensional (3D) position identification of
the detected electron. Compared with other detectors, gaseous detectors show a better
recoil–electron-tracking performance because of reduced multiple scatterings, although
their detection efficiency is poor [130]. Muichi et al. [130] used various types of detectors
as absorbers, one of which had a front detector sized at 10 × 10 × 8 cm3, a TPC (ethane)
as the scatterer, and a 6 × 6 × 13 cm2 gadolinium orthosilicate (GSO) scintillator array
as the absorber [129]. The angular resolution of the ETCC was 6.6◦ at 360 keV for 131I.
Subsequently, the angular resolution was improved to 4.2 ± 0.3◦ at 662 keV by replacing
the GSO scintillator by a LaBr3 scintillator [131]. Even though the efficiency and spatial
resolution of the ETCC were lower than those of the other conventional Compton cameras,
the high signal-to-noise ratio compensated for the low efficiency and resolution. They also
reported simultaneous imaging of 131I and fludeoxyglucose (FDG) injected into mice [132].
After 2010, Tanimori et al. [133] and Mizumoto et al. [134] developed improved ETCCs
and evaluated their astronomical and environmental γ-ray detection performances by
changing the TPC size and gas parameters. However, these reported studies were more
focused on the astronomical applications than on the nuclear medical imaging applications
of ETCCs. To improve the detection efficiency, research is also being conducted to visualize
the electron trails within solid-state detectors. The performance of Compton cameras would
be greatly improved if the electron tracks in semiconductor or scintillator detectors could be
visualized [135–137]. Jiaxing et al. [138] also reported the electron tracking algorithm using
the Timepix3 based Compton camera, as Timepix3 possess an advantage of measuring the
time and energy of an event simultaneously in each pixel. The demonstrative experiment
result showed the significant enhancement of the angular resolution and the feasibility
of the electron track algorithm. Yoshihara et al. [139] reported the development of a
Compton imaging system that could track recoil electrons by using a combination of a
trigger mode silicon-on-insulator (SOI) pixel detector and a gadolinium aluminum gallium
garnet (GAGG) detector. The experimental results showed that the coincidence events
were detected at a maximum rate of 1 cps for the measurement of 662 keV γ-rays of
137Cs. They remarked that their Compton camera is suitable for imaging nuclides that emit
100–300 keV γ-rays.
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2.5. Other Compton Cameras

In addition to the abovementioned Compton cameras, other Compton cameras based
on semiconductor detectors and scintillators are under development. To counter the low
sensitivities and high costs of Si-based Compton cameras, Katagiri et al. [140] developed a
europium-doped calcium fluoride (CaF2(Eu)) scintillator-based omnidirectional Compton
camera for environmental radiation monitoring in nuclear medicine facilities. This CaF2(Eu)
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scintillator-based Compton camera could detect γ-ray sources emitting energies < 250 keV.
Four CaF2(Eu) crystals, each with a diameter of 2.54 cm, were set as the vertices of a
tetrahedral-structured scatterer and absorber. These Compton cameras could reportedly
suppress ghost images and they exhibited a 12◦ angular resolution for 57Co γ-rays, as well
as better detection efficiencies.

Kasper et al. [141] developed a SiPM and a scintillation fiber-based Compton camera.
Both the scatterer and absorber consisted of a thin elongated fiber made of a high-density
inorganic scintillator (Ce:LYSO, Ce:LuAG, and Ce:GAGG) coupled with a SiPM. They
tested the feasibility of using this Compton camera for beam monitoring in proton therapy
and found that the camera with a Ce:LYSO scintillator exhibited a good proton beam
monitoring performance.

Barrientos et al. [142] is currently working on the development and updating of LaBr3-
coupled SiPM-based Compton cameras (MACACO II) for proton beam monitoring. The
MACACO II exhibits an energy resolution of 5.6% (FWHM) at 511 keV and an angular
resolution of 8◦.

Another popular Compton camera is the Polaris JTM developed by H3D. Polf et al. [143]
evaluated the detection (imaging) performance of this Compton camera, which is based
on CZT detectors because of their high γ-ray interaction cross-sections for 6 MeV γ-rays.
Polaris J consists of four stages, and each stage consists of a separate Polaris detection
system containing a 20 × 20 × 15 mm3 CZT detector. The CZT detectors are pixelated in
an 11 × 11 pattern on the x and y anode sides. The energy resolution of the Polaris J system
is 9.7 keV (FWHM) at 662 keV (emitted by 137Cs). This system is being further improved
for proton therapy applications.

The Brookhaven National Laboratory, in collaboration with the National Aeronautics
and Space Administration, is also developing a CZT-based Compton camera for astronomical
observations [144]. The detecting plane is an array of 8× 8 × 32 mm3 position-sensitive virtual
Frisch-grid CZT detectors in the shape of bars and can detect the γ-ray interaction points better
than any other CZT detector. Each module is a 4× 4 detector subarray coupled with an ASIC.
The detector exhibits a less than 1% energy resolution at 1 MeV and a submillimeter position
resolution. The feasibility of this Compton camera is under study; it is expected to be sent to
higher altitudes through balloon flights for sensitive measurements.

3. Applications of Compton Cameras
3.1. Astronomical Observations

In the recent years, most of the research on Compton cameras has been focused
on medical applications. However, Compton cameras were originally introduced and
developed for γ-ray detection in astronomy, and such Compton cameras were initially
known as Compton telescopes. In γ-ray astronomy, the detection of both low- and high-
energy γ-rays (up to 1 MeV and 1–10 MeV, respectively) is challenging owing to low
photon signals, contaminated backgrounds, and the complex Compton scattering process
that occurs in the detectors. In astrophysics, precisely locating the position of the γ-ray
source as well as measuring the emitted γ-ray energy are pivotal for exploring unobserved
celestial objects such as black holes, γ-ray bursts, supernova remnants, γ-ray pulsars,
active galactic nuclei, and numerous other known and unknown objects [145,146]. The
first Compton camera, COMPTEL, onboard the CGRO was a scintillator detector-based
Compton camera, which facilitated the first complete all-sky survey in the energy range of
0.75 to 30 MeV [147], and the highest survey sensitivity was obtained in the energy range
of 1–10 MeV. The number of most significant detections was 32 for steady sources and
31 for γ-ray burst sources. The launch of COMPTEL and its encouraging results propelled
the development of new Compton cameras based on different detectors for measuring the
γ-ray energies that are common to astronomical events.

The ASTRO-H was another Compton camera onboard the Hitomi satellite, which was
launched from Japan on 17 February, 2016 [7] with the primary mission of detecting soft γ-rays
using a Si/CdTe Compton camera. The Compton camera was composed of 32 layers of 0.625
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mm thick Si pad detectors and eight layers of 0.75 mm thick CdTe pad detectors [7]. According
to the preliminary information, it measured the soft γ-ray through reconstruction of Compton
scattering covering an energy range of 60 to 600 keV with high sensitivity (10 times better than
Suzaku) [7]. Unfortunately, the Hitomi satellite lost contact with the ground on 26 March 2016;
thus, the sufficient planned measurements were unsuccessful.

As another approach to MeV γ-ray measurement, the sub-MeV γ-ray imaging loadedon-
balance experiment (SMILE) project based on the use of an ETCC developed by Tanimori
et al. was implemented to measure diffused γ-rays. SMILE-1, launched in 2006 with a
detector size of 10 × 10 × 15 mm3, successfully detected diffused cosmic and atmospheric
γ-rays and performed powerful background rejection [148,149]. The recent model, SMILE-
2+, had a successful balloon flight in April 2018 in Australia [150]. The effective area
of the ETCC was 1.1 cm2 for 0.356 MeV, and the point spread function (PSF) had a 30◦

half-power radius (HPR) of 0.662 MeV. It had a sensitive detector volume of 30 × 30 ×
30 mm3 and was filled with argon mixed gas (Ar: CF4: iso C4H10; pressure ratio = 95:3:2)
at a pressure of 2 atm. GSO pixel scintillator arrays, each containing 8 × 8 pixels with a
size of 6 × 6 mm2, were adopted as γ-ray absorbers. SMILE-2+ ETCC recorded 4.9 × 107

events after it was switched on. The detection sensitivity of ETCC was found to be the
same as that at the ground level. Thus, there is a possibility that ETCC could become a
sophisticated astronomical Compton camera for deeper all-sky surveys.

Another project is underway for a detector that can measure higher energies using the
principle of the Compton camera and pair production. The project is named e-ASTROGAM
(enhanced ASTROGAM), which is considered to be a breakthrough observational space
mission led by joint research teams of more than 100 institutes worldwide [151]. The mission
is expected to provide important information, such as LIGO-Virgo-GE0600-KAGRA, SKA,
AMLA, E-ELT, LSST, JWST, ATHENA, CTA, and LISA. For instance, part of the 1–30
MeV region obtained in the 1990s (Figure 7; upper left), as illustrated by the simulated
Cygnus region (Figure 7; lower right), is expected to be obtained from the e-ASTROGAM
mission. The main constituents of e-ASTROGAM are trackers made of 56 planes of double-
sided Si strip detectors of a 1 m2 area, a calorimeter made of an array of CsI(Tl) bars of
5 × 5 × 80 mm3 each having a relative energy resolution of 4.5% at 662 keV, and an anti-
coincidence system composed of a plastic scintillator. The space information was gathered
and analyzed.
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3.2. Nuclear Medical Imaging

The use of a Compton camera for nuclear medical imaging has been of great interest
in recent decades because of its higher sensitivity than collimated cameras and its ability
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to simultaneously image γ-rays of different energies over a wide energy range. A wide
field of view can be achieved using a small Compton camera detector. PET and SPECT are
established molecular imaging systems in nuclear medicine and have made a significant
contribution to the evaluation of the physiological function and biochemical changes of
molecular targets. PET imaging is based on the detection of radiation emitted from a
positron-emitting radioactive tracer that is injected into the body. The annihilation γ-rays
from radioactive tracers reach the detector (usually scintillators coupled with photodetec-
tors) of PET, and thus imaging is performed. Although several isotopes emit a positron,
simultaneous imaging of multiple tracers is difficult because the energy is single (511 keV).
On the other hand, SPECT imaging is based on the detection of γ-radiation-emitting RIs,
such as the isotopes of Tc and I. The γ-rays emitted from the body at different angles
were captured by the SPECT detector, which was attached to the collimator. Because the
directivity is obtained using a collimator, the energy range where imaging can be performed
is limited by the thickness of the septum (collimator wall). To achieve a high resolution,
the collimator interval should be reduced; however, because the incident photon is limited,
there is a trade-off between the sensitivity and spatial resolution. To measure high-energy
γ-rays, the septum must be thicker, further reducing the detection efficiency. Although
the spatial resolution of Compton images has not yet been achieved like that of PET and
SPECT, the theoretical facts, simulation studies, and experimental results show that the
Compton camera and its imaging technique could be the best alternative to address the
shortcomings of PET and SPECT. In nuclear imaging, depending on the type of diagnosis,
it is necessary to image the isotopes of radioactive tracers, such as 99mTc, 123I, 18F, 111In,
201Tl and so on, which possess different half-lives and energies. Some of the popular RI
tracers used in nuclear medicine are listed in Table 4, along with their half-lives, decay type,
and the energy of their γ-rays [52]. A Compton camera should possess the ability to image
tracers with a high efficiency and sensitivity. The first Compton camera designed especially
for nuclear medicine was a Ge detector-based Compton camera by Singh and Doria [23,24],
which successfully demonstrated the imaging ability of 137Cs and 99mTc [152], although the
shape of the sample used in the experiment was simple and significantly different from
that used in clinical settings. Since then, many studies have been conducted using different
types of Compton cameras for application in nuclear medicine.

Table 4. Commonly used RI tracers in nuclear medicine with their properties.

Radio Isotopes Half-Life Time Decay Type Energy [keV]
111In 2.83 days EC 171, 245
123I 13.2 hrs EC 159
99Tc 6.0 hrs EC 141
18F 108 min An. (β+) 511
67Ga 78.3 hrs EC 93, 184, 296, 388
85Sr 64.8 days EC 514
64Cu 12.7 hrs EC 579, 653, 1350
131I 8.04 days EC 364
65Zn 244 days EC 1116

EC: Electron capture, An.: annihilation.

Several in vivo imaging studies have been conducted [107,153–156]. One of the pro-
gressive studies for in vivo imaging displayed the use of a Si/CdTe Compton camera,
which was the first trial of a Compton camera in vivo [154]. Iodinated (131I) methylnor-
cholestenol and strontium chloride (85SrCl2) were injected into mice, and 131I and 85Sr,
which release 364 keV and 514 keV γ-rays, respectively, were successfully measured by the
prototype camera. Although a spatial resolution of a few millimeters was obtained, this
study inspired the improvement of the detection efficiency of the Compton camera and the
development of 3D imaging. As a continuation, the in vivo 3D imaging of 131I, 18F-FDG
(511keV), and 67Ga-citrate (300 keV) was conducted [157]. Sakai et al. [79–82] at the Gunma
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University Heavy Ion Medical Center (GHMC) tested a Si/CdTe Compton camera, and
successful measurements with 99mTc and 18F within human phantoms were demonstrated
in their studies. Finally, the in vivo results [83] in mice followed by human experiments [84]
using a Si/CdTe Compton camera have been studied by researchers for its application in
the medical field. Thus, the Si/CdTe Compton camera shows potential for the simultaneous
imaging of two radiopharmaceuticals (99mTc and 18F) in humans. Figure 8a,b shows the
human experiment setup and the spectrum obtained from the Compton camera, reprinted
from Nakano et al. [84]. Figure 8c,d show the Compton images overlaid with the CT images
for DMSA and FDG imaging. Although the spatial and contrast resolution of the Compton
camera still needs to be improved to surpass the abilities of PET and SPECT, the latest
Compton camera has improved far more than that which was initially made.
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Owing to the individual advantageous features of the Compton camera and PET
imaging system, a synchronized Compton camera with a PET detector system is an-
other application of the Compton camera in nuclear medicine which is of great interest.
Shimazoe et al. [158] of the University of Tokyo, in collaboration with Tohoku University
and the National Institutes for Quantum Science and Technology (QST), have recently
developed a Compton–PET hybrid imaging system. The Ce:GAGG scintillation-based
PET system and Ce:GAGG scintillator-based Compton imaging system were combined to
develop a Compton–PET imaging system for simultaneous imaging. PET nuclide visualiza-
tion using coincidence detection of annihilation γ-rays and the SPECT nuclide visualization
technique were implemented. The feasibility and performance of the Compton–PET imag-
ing system were also demonstrated using in vivo imaging in mice [156]. Figure 9 shows the
reconstructed Compton images superimposed with computed tomography (CT) images to
visualize 111I, and 18F-FDG accumulation in mouse body parts such as the liver, heart, and
bladder using the Compton–PET imaging system.
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Although the RI tracers in a mouse was imaged successfully, the hybrid Compton–
PET still lags sufficient spatial resolution compared with small-animal PET scanners. The
authors believe that the system can be upgraded to improve the resolution in terms of the
detector pixel size, method of image reconstruction, and the design of imaging modalities
such as ring-type Compton–PET. They are also working on whole γ-ray imaging, which is
a combination of PET and Compton imaging, based on a dual detector-ring structure [159].
Nonpure positron-emitting nuclides, such as 44Sc (half-life = 3.97 h) and 124I (4.176 d),
emit not only positrons but also additional γ-rays almost simultaneously. For each decay,
the source position can be directly identified as the intersection of the surface of the cone
given by Compton kinematics and the line given by the coincidence measurement of two
annihilation γ-rays. Several research groups have reported triple γ-ray imaging or β+-γ
coincidence simulation studies for these nonpure positron emitters [160–162].

Kataoka et al. [163] of Waseda University developed a compact Ce:GAGG scintillator
and an MPPC-based Compton camera, particularly for molecular imaging. The developed
Compton camera had typical energy and angular resolutions (FWHM) of 7.4% and 4.5◦,
respectively, for 662 keV. The prototype was successful in imaging 137Cs (662 keV) with
the point source kept at 4 cm with a spatial resolution of 3.1 mm FWHM. In addition, 22Na
(511 keV), 137Cs, and 54Mn (834 keV) point sources were simultaneously imaged using a 3D
multicolor modality. Three-dimensional in vivo multicolor imaging in a mouse was also
performed to image 131I, 85Sr, and 65Zn (1116 keV), which demonstrated that the tracers
were correctly accumulated in each target organ [155]. 131I, 85Sr, and 65Zn RI tracers were
injected into mice and 3D images were obtained using the Compton camera, as shown in
Figure 10c–f. Figure 10a illustrates the detector alignment for 3D imaging, and Figure 10b
Shows the energy spectra of 131I, 85Sr, and 65Zn RI tracers injected in mice. Although
the spatial resolution due to the energy uncertainty was reported to be worse than that
of SPECT and PET in small animals, the performance of the camera was believed to be
comparable to that of SPECT. The research team is improving the Compton camera by
developing a hybrid Compton camera that can simultaneously achieve X-ray and γ-ray
imaging by combining the features of the Compton camera and a pinhole camera in a
single-detector system [164].
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Owing to the Compton camera principle, the spatial resolution of low-energy γ-rays is
poor. Therefore, the use of high-energy γ-ray sources, which are not used in conventional
SPECT with an Anger camera, has been proposed [51]. Unlike in astronomy, in nuclear
medicine the measurement target is nearby and its radioactivity is very high. It is also
characterized by the fact that the energy of the source is known. Therefore, it is necessary
to develop a detector system that matches these characteristics.

3.3. Beam-Range Monitoring in Particle Radiotherapy

In comparison with its application in nuclear medical imaging, there is much ongoing
research on the feasibility of the application of Compton cameras in particle radiotherapy,
especially in proton therapy [47,141,165–168]. None of the research may be addressed by
this review paper; however, some recent studies will be reported in this paper. Generally,
particle radiotherapy is categorized into two categories: proton therapy and heavier positive
ion therapies, especially carbon ion radiation therapy (CIRT). In all cases of particle therapy, it
exploits the energy deposition phenomenon of ion beams, with the Bragg peak at the end of
the range, to accurately irradiate tumors and minimize the unwanted dose to healthy tissues.
However, owing to the lack of a well-established online beam-range monitoring/verification
system between the planned and delivered treatment, the full exploitation of its clinical potential
is limited. The uncertainties in the estimated range calculated from the CT images used for
treatment planning were caused by anatomical changes during treatment. Whenever the beam
interacts with the target, a wide energy range of γ-rays is emitted as secondary radiation that
bears information on its location and is correlated with the Bragg peak position [42,49]. PET
is one of the established methods; however, the images are affected by the metabolic-washout
effect. Due to the long half-lives of the RIs, some parts of the positron emitters traveling far
away from the origin point, and high-energy positrons via pair production are less related to the
beam range [169,170]. For this reason, many research groups have focused on range verification
using prompt γ-rays and hence using a Compton camera owing to its benefits, as explained in
the introduction section.

As a first attempt, Polf et al. in 2015 [167] experimentally measured prompt γ-rays
emitted by clinical proton beams irradiated on a water phantom. The Compton camera
used in the study was Polaris J to measure the prompt γ-rays from 0.2 MeV to 6.5 MeV.
Pencil beams of 114 MeV and 150 MeV and up to 500 cGy were used for irradiation. The
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study concluded that the emission profile that lined up with the distal Bragg peak fell
with an accuracy of 1.5 mm for a 3 mm shift of the target. The study opened the door for
practical tests of the Compton camera for beam-range monitoring, however, the dose used
in the study was far higher than that used in clinical treatment. The group continues their
study with the Polaris J Compton camera to develop 3D images and to conduct clinical
trials [171]. A benchmark experiment was performed using a Tandetron accelerator at
Helmho-Zentrum Dresden-Rossendorf (Germany). A two-stage Compton camera based
on a CZT (scatterer) and BGO (absorber) was used to measure 4.44 MeV prompt γ-rays
emitters due to the interaction of a proton beam of 0.9 MeV with stainless steel equipped
with a Ta plate with TiN sputtered on the top [172]. This study proves the feasibility of
imaging the localized 4.44 MeV prompt γ-rays rather than its clinical scenario. Heuso-
Gonzalez et al. in 2017 [173] measured the feasibility of a block Compton camera (two
stage BGO detector-based Compton camera) using a pencil-proton beam. The influences of
the target shifts, target thickness, and beam energy varieties were evaluated. The study
mainly recommends the use of high-density materials to maximize the coincident efficiency.
Taya et al. [122] of Waseda University demonstrated the first real-time γ-ray-imaging ability
of a handheld Compton camera for proton irradiation. A Ce:GAGG Compton camera was
used to measure γ-ray emissions due to the irradiation of a 70 MeV proton beam on
the water, calcium hydroxide (Ca(OH)2), and PMMA phantom. Both online and offline
measurements were performed. Peaks of 511 keV γ-rays were observed in the energy
spectra in both the online and offline cases. A 718 keV peak was observed during online
irradiation. The study results could not confirm whether the 718 keV peak traces the
Bragg peak. Subsequently, a 3D position-sensitive Ce:GAGG Compton camera was used
to measure the 4.4 MeV prompt γ-ray energy range due to the 70 MeV proton beam on
a PMMA phantom [123]. The improved Compton camera had an angular resolution of
5 degrees FWHM at 4.4 MeV and was able to discriminate multiple-Compton and escape
events, which were the factors for background noises. The study reported that the 4.4 MeV
prompt γ-rays has an intense peak near the Bragg peak (in agreement with the simulation
results); however, the 511 keV prompt γ-ray image did not trace the proton dose (the result
was against the suggestion of the simulation results).

Most studies have reported the use of proton beams, although CIRT is a more effective
and sophisticated radiotherapy treatment modality. Parajuli et al. [85] used a clinical
carbon ion beam to study the real-time measurement of the 511 keV annihilation γ-ray
emissions from a PMMA target using the Si/CdTe Compton camera (ASTROCAM) [76],
which is probably the first experimental study using a Compton camera in conjunction with
CIRT. The Compton camera performance was evaluated by shifting the target with a water
equivalent thickness of a few centimeters. The authors claimed that the Bragg peak was
well-traced by the peak intensity position of the γ-ray emission position obtained through
Compton images and was consistent with the simulation results. Shiba et al. in 2020 [87]
performed an in vivo study using a mouse for the measurement of carbon ion-induced
annihilation γ-rays using ASTROCAM. Figure 11 shows the experimental setup of the
in vivo imaging of a mouse using ASTROCAM and the reconstructed Compton image of
511 keV annihilation gammas [87]. Positron emitter transport was observed by evaluating
the range of γ-ray emissions after C-ion irradiation of the mouse abdomen. Using the same
prototype camera, Parajuli et al. [86] again in 2021 reported the measurement of 718 keV
prompt γ-rays released from a graphite phantom due to C-ion irradiation under clinical
conditions. Theoretical and simulation analyses show that 12C collides with the target
nuclei and produces 10B* which is responsible for the generation of 718 keV prompt γ-rays.
The study shows the preliminary feasibility of using the Si/CdTe Compton camera in
CIRT, although the Compton camera requires adequate efficiency improvement. Figure 12
shows (a) the on-beam experiment setup for beam-range monitoring, (b) Compton image
of 511 keV annihilation gammas, and (c) the Compton image of 718 keV prompt gammas.
The figure has been rearranged and reprinted from Parajuli et al. [85,86].
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Figure 11. In vivo real-time monitoring of annihilation γ-rays generated by CIRT using Si/CdTe
Compton camera. Experimental setup (left). Compton image of 511 keV annihilation gammas (right).
Images have been rearranged and reprinted from Shiba et al. [87].
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All the experimental studies for particle therapy yet published are only phantom stud-
ies, except for the study conducted by Shiba et al. [87], as it is obvious that the application
of the Compton camera for in vivo range monitoring is not yet ready. There are several
candidates to be measured, but there is also a lot of background noise such as scattered
rays and bremsstrahlung X-rays. Compton cameras, if they are to be implemented for
particle therapy, should have the ability to tolerate the extreme load during dose delivery,
the requirement of high-speed ASIC, a high performance even in low valid events, and an
effective performance in a low dead time ratio.

3.4. Environmental Measurement

One of the necessary measures for nuclear power plants is to ensure radiation leakage
in the environment by timely monitoring and to ensure radiation exposure to workers of the
nuclear plants. According to the rules of the International Atomic Energy Agency [174], nuclear
facilities worldwide should maintain some degree of decommissioning. Localizing the spatial
location and type of radioactive source is a crucial step. More concerns and awareness regarding
environmental radiation monitoring have increased since the nuclear accident that occurred
at the Fukushima Daiichi Nuclear Plant (FDNP) in 2011. Various short-term and long-term
effects of nuclear accidents have been reported by Matsunaga et al. [175]. Attempts are being
made to implement different γ-ray detectors for environmental monitoring. For instance, as
a recent progress, Carminati et al. [176] demonstrated the feasibility of a wireless, compact
gamma-ray spectrometer aiming for the spotting of radioactive material within the metal scraps.
The detectors used in the Compton camera were the NaI (Tl) scintillators combined with SiPM,
that had an energy range from 60 keV to 1.5 MeV and was compatible with small magnetic
fields. Three types of γ-ray detectors are available for localizing γ-ray-emitting radioactive
sources: pinhole cameras, coded aperture γ-ray cameras, and Compton cameras. The detection
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efficiency of a pinhole camera is limited because of the geometrical area of the pinhole, whereas
a coded aperture camera requires more detection efficiency for low-level polluted areas with
a contamination below 1 µSv/h. Studies have shown that the Compton camera is the best
alternative.

ASTROCAM 7000 HS was the first commercial soft γ-ray detector based on Si/CdTe
detectors. Its feasibility for environmental monitoring was tested in an evacuation zone
situated 20 km from the FDNP. The prototype camera was portable, containing two layers
of Si detectors and three layers of CdTe detectors sized at 3.2 × 3.2 cm2 and a 250 µm
pitch. 133Ba (356 keV), 22Na (511 keV), and 137Cs (662 keV) were individually measured,
thus possessing a good detection efficiency of 1.68 × 10−4 (effective area 1.7 × 10−3 cm2)
and an angular resolution of 3.8◦ obtained from stacks of five detector modules [66]. The
efficiency achieved for 137Cs (662 keV) is 0.035 cps/MBq at 1 m. In later years, the prototype
Compton camera was revised to increase the detector area to 5 × 5 cm2, the Si detector
layer was increased to eight layers and CdTe was increased to four layers, and thus the
efficiency of 0.06 cps/MBq at 1 m for 137Cs (662 keV) was achieved [80]. The first applica-
tion of ETCC in environmental γ-ray imaging was reported by Tomono et al. in 2013 [177].
Contaminated soil (0.02 µSv/hr) bags of Fukushima were successfully measured, and fine
images of radioactivity were obtained using ETCC. After revising the ETCC, a feasibility
study of ETCC was again conducted using lab γ-ray point sources [134]. Clear images
of 137Cs (662 keV) point source for the polar angles of 0–5◦ were obtained. Weak γ-ray
source images of 133Ba (356 keV), 137Cs (662keV), and 54Mn (835 keV) were also successfully
reconstructed, and the source positions are also clearly shown. The use of a Compton
camera for environmental monitoring is costly because the Compton camera is complex
and the employed detectors are expensive. On the other hand, considering the health
and safety issues seriously, detection of the radioactive materials remotely is an essential
measure. Very few studies could be acknowledged considering both the cost and remote
sensing issues. Buonanno et al. [178] reported the development of a gamma-ray detection
module that includes the facility of a drone-based localization of radioactive sources in the
environment and uses a machine learning-based imaging technique for directional sensitiv-
ity measurement. While in the case of the Compton camera, to minimize the cost, many
scintillator-based Compton cameras have also been used in practical applications. Jianyong
et al. [179] reported the development and application of the GAGG (32 Ce:Gd3(Al,Ga)5O12)
scintillator-based Compton camera. In this Compton camera, 4 × 4 array GAGG crystals
were coupled with the 16 silicon photomultipliers and 16 avalanche photodiodes as the
scatterer and absorber. Another striking feature of this development is that the Compton
camera could be mounted on an unmanned helicopter for measuring 137Cs and 134Cs RIs
which were released due to the accident in the FDNP, where people cannot enter due to the
radiation causing health issues. Yoshiaki et al. [180] later improved the detection efficiency
and angular resolution by increasing the 4 × 4 GAGG array to an 8 × 8 GAGG array.
Measurements were performed over the FDNP surrounding areas. The results showed the
accurate ambient dose equivalent rate maps at a height of 1 m with an angular resolution
of approximately 10 m from a height of 10 m.

A Compton camera with a Ce:GAGG detector with the specifications explained by
Kataoka et al. [118] was used to measure radiation contamination in the FDNP areas. The
camera was redesigned to improve its portability and ability to perform remote imaging,
and it can be mounted on a drone (Figure 13) [181]. Figure 13a shows the prototype drone
carrying the Ce:GaGG Compton camera, while Figure 13b shows the stick PC used for
communication with the optical camera. Figure 13c shows the optical image and Figure 13d
shows the Compton image superimposed with the optical image of the region nearby
the FDNP that contains three hotspots of radiation sources. The dose rates of the three
hotspots were successfully measured. Compton cameras using CsI scintillators have also
been studied and reported for environmental radiation measurements [9,113,115].
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3.5. Other Specific Applications

In addition to the application of Compton cameras in astronomical measurements,
medical imaging, and environmental measurements, there are ongoing studies on its
application in indoor radiation measurements. Radiation measurements, such as inside
the nuclear power plants, inside the RI facility, inside the PET imaging rooms, homeland
security, and visualizations of naturally occurring radioactive materials (NORMs) in gas,
oil, and metal factories, are critical for maintaining the health of employers working inside
such facilities to monitor their exposure to radiation. Therefore, the application of the
Compton camera is of interest. According to the latest report, Muraishi et al. [115] used
an improved omnidirectional Compton camera to measure radiation in three different
places: the RI facility, PET imaging room, and outside their private home near the FDNP.
In this study, CsI (TI) and NaI (TI) scintillator-based Compton cameras were used. The
prototype Compton camera successfully determined the position of the γ-ray source and
the counting rate at a given position in the RI facility. In a PET facility, the possibility of
visualizing the moment of radioactivity, such as the moment of 18F-FDG injected movement,
has been reported. In addition, they claimed that their Compton camera could measure a
surface dose of 1 µSv/h. In another of the latest studies, it was reported that the previous
CsI scintillators were replaced with the CaF2(Eu) scintillator to improve the detection
efficiency [140]. In another study conducted by Yuki et al. [182,183] of JAEA, radioactive
contamination inside an FDNP facility was monitored. Decommissioning work is underway
in the FDNP; therefore, it is very important to know the contamination inside and the
dose rate distributions in the work environment to reduce worker exposure and ensure
decontamination. The onsite measurements were successfully conducted by locating the
hotspot in a sophisticated 3D image developed using a Compton camera, scanning laser
range finder, and photogrammetry. The Compton camera used in this study was the
Ce:GAGG Compton camera.

The application of a Compton camera for national or homeland security has not been
reported in large numbers. There are many cases where the country is facing potential
nuclear or radiological threats that could be controlled if a highly efficient and sensitive
passive radiation source detector was developed [184,185]. Vetter et al. [33,186] used
position-sensitive Si(Li) and HPGe detector-based Compton cameras for the passive detec-
tion of nuclear materials. Sweeney et al. [187] used a SmartPET Compton camera that can
measure energies between 600 and 1500 keV γ-rays for homeland security. Alexis et al. [188]
also reported the application of a Compton camera aimed at homeland security. This study
investigated the performance of a large-scale two-plane scintillator detector-based Compton
camera using different imaging algorithms on simulated data.
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One of the planned applications of the Compton camera is the visualization of NORMs.
Oil and gas field workers are particularly exposed to NORMs. It was announced that the
Japan Oil, Gas and Metals National Corporation (JOGMEC), in collaboration with the
Japan Aerospace Exploration Agency (JAXA) and the Mitsubishi Heavy Industries (MHI),
is carrying out research and development of Compton cameras suitable for visualizing
NORMs [189,190].

4. Image Reconstruction Methods for Compton Imaging

In γ-ray imaging, not only is the detector performance important, but the reconstruc-
tion algorithms also play a very important role, especially because Compton imaging is a
complex computational task even for 2D imaging. The development of Compton cameras
with complicated detector geometries leads to complex image-reconstruction processes.
Different approaches, such as simple back-projection, analytic, and iterative methods, are
being studied to achieve the best solution for image reconstruction in Compton imaging.
Though there are many papers reporting on the image qualities, there are very few fair
comparisons of the computational time among the imaging algorithms. This is because all
imaging algorithms which are very complex should be developed for the same individual
Compton camera and its external hardware used. Some image reconstruction approaches
are explained below.

4.1. Simple Back-Projection Methods

The simple back-projection (SBP) method is a fast and straightforward algorithm used
in the reconstruction of images in many imaging modalities. SBP is a necessary process in
the filtered back-projection (FBP) and expectation-maximization (EM) algorithms, which
are reviewed in the following sections. The SBP method is an important part of the FBP
and EM algorithms and affects the image quality of each algorithm.

A Compton cone is reconstructed from the vector joining two interaction points, and
the scattering angle is calculated from the Compton kinematics, as shown in Equation (2).
In the Compton camera, SBP-based Compton images were reconstructed by superimposing
Compton cones over all events. The projection of a cone onto a plane is a quadratic curve
(an ellipse or hyperbola). In realistic imaging, the imaging space is discretized and the
pixel centers rarely intersect the cones. Therefore, a technique was used to search for pixels
that intersect the cone, and the pixels score the number of intersecting cones for recon-
struction [191]. Because searching for pixels that intersect with the cone is computationally
expensive, Wilderman et al. [192] reduced the computational complexity of the intersection
calculation so that the SBP could be performed faster.

The angle estimation of the Compton scattering contained errors. In the case of ETCC,
not only the scattering angle, but also the scattering plane can be estimated, and this error
also needs to be considered. Therefore, back-projection is now performed as a probability
distribution of the existence of the source, taking these errors into account, instead of
scoring only the intersection of the cone and imaging space [191]. This method is also used
as a back-projection in the FBP and EM methods.

If the object being measured is sufficiently far away from the Compton camera and the
detector is sufficiently small, Compton imaging is similar to that of a pinhole camera. If the
location of the scatterer is considered to be a point and back projection is made onto its celestial
plane, the issues of projection angle and distance do not arise. However, in medical applications,
contamination measurements in a plant, etc., where the object is relatively close and the 2D or
3D distribution needs to be reconstructed, Haefner et al. [193] successfully related 2D Compton
4π imaging to a 3D Radon transform with a known solution.

In the near-field case, the change in detection efficiency with the distance must also be
considered. Takeda et al. [154] compared two methods with different probability density
distributions: uniformly enlarged projection (UEP) and sampling equivalent projection
(SEP). The SEP produced “ghost structures” around the image center. This is because
many cones pile up near the field in front of the camera, which unfortunately leads to a
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misunderstanding of the source distribution unless the sensitivity is corrected. Conversely,
the UEP avoided contamination owing to its differences in the probability density profile.
Thus, they concluded that UEP is appropriate for near-field imaging. Example images of
SBP are included in Figure 11 (left) and Figure 12b,c.

4.2. Filtered Back-Projection Methods

The image of the back-projection method is contaminated with noise and artifacts,
although it is a fast and straightforward imaging method. In addition, the reconstructed
images tend to be blurred because the source position and distribution are estimated
by superposition of the probability distributions. Therefore, it is important to improve
back-projection imaging methods, such as implementing a suitable filter, to reduce blur-
ring. Daniel et al. [194] calculated the distance between the center of each pixel and
the intersection in the search for the SBP. This method can be developed into FBP by
setting the pixel values and thresholds corresponding to the distances. However, in an-
other study by Lee et al. [195], an FBP imaging algorithm that overcomes the limitations
owing to the azimuthal non-uniformity of the sources was reported. The developed al-
gorithm significantly reduced the artifacts in the images compared to the conventional
FBP method. Another important study on FBP using a spherical harmonic function was
conducted by Basko et al. [196–198]. This method was improved by Parra et al. and
Tomitani et al. [199–201] to account for the distribution of the scattering angles.
In addition, Xu et al. [202] used PSF derived from a Monte Carlo simulation using the FBP
method and demonstrated the excellence of the derived FBP imaging method. Recently,
they implemented a Wiener filter in back-projection and investigated the power spectral
density of the signal and noise to develop an appropriate SNR model for the restoration
process [203]. The FWHM of 228Th source imaging with the proposed FBP was 9.8◦, an
improvement from 29◦ when using the simple back-projection imaging method. Thus,
studies are being conducted to improve SBP with the application of FBP so that it could be
useful for real-time imaging.

4.3. Expectation-Maximization Methods

The iterative image reconstruction approach consists of several choices, such as the
basic representation of the object, basic physical modal of the detector, statistical model
for measurements, and appropriate estimation criteria. The classical approach is the
maximum likelihood (ML) estimation [204]. Wilderman et al. [205] in 1998 introduced
the ML estimation approach to reconstruct the Compton images from event-based (list-
mode) data. By passing through a series of improvements in iterative methods, both the
bin-mode and list-mode for imaging near-field as well as far-field sources were studied. In
2014, Ikeda et al. [206] proposed two imaging algorithms based on a bin-mode estimation
method: an accelerated EM method for the maximum likelihood estimation (MLE) and a
modified expectation-maximization for maximum a posteriori (MAP) estimation. It has
been reported that accelerated EM converges faster than the original EM algorithm, and
the MAP estimate converges quickly into a sparse image. List-mode maximum likelihood
expectation-maximization (LM-MLEM) has become a widely used method for Compton
imaging [205]. A general equation for the MLEM method based on the list mode is
illustrated in Equation (3).

λn
j =

λn−1
j

Sj

N

∑
i=1

tij

∑k tikλn−1
k

(3)

where λn
j represents the calculated amplitude of the image pixel j at the th iteration. N is

the number of recorded events, and tij is the weighted likelihood when event i originated
from image pixel j. The sensitivity Sj denotes the probability that a γ-ray originating from
image pixel j is detected anywhere in the imager.

Another version of an iterative method is the ordered-subset expectation maximization
(OSEM) method. OSEM works in the same manner as MLEM, but it uses data divided
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into subsets (portions of measured data), and updates are performed for each subset. If
subsets are created appropriately, image convergence can be greatly accelerated with little
degradation in the image quality [81,207,208].

An attempt to implement three-dimensional Compton imaging using MLEM was re-
ported by Tronga et al. [209] in 2009. In MLEM, determining the parameter that corresponds
to the response of the imaging system becomes the key point for reconstruction accuracy.
However, the convergence speed of the adopted iterative reconstruction method was not
sufficiently high because the imaging algorithms considered the high-energy γ-ray source
located at a far distance, and the simulation programs developed at that time considered
the simple detector system. Some studies have recently been conducted to improve the
MLEM and compare it with other imaging models, with a focus on the application of
Compton cameras in nuclear medicine and particle therapy [81,210–213]. Yabu et al. [214]
reported the superiority of the LM-MLEM method over SBP using a Si/CdTe Compton
camera. Tomographic imaging of 111In and 131I Ris within a tetrahedron-shaped phantom
using SBP and LM-MLEM methods was demonstrated.

Recently, Yao et al. [215] reported a simulation and experimental study of 3D image
reconstruction using the improved OSEM that considers the shift variant point spread
function (LM-OSEM-SV-PSFs). It is claimed that the proposed method enhances the spatial
resolution and reconstruction speed and weakens the effect of the spatial orientation of the
imaging space, which causes distortion in the direction perpendicular to the detector plane.

Median root prior expectation-maximization (MRP-EM) is another iterative method.
MRP is based on the one-step late algorithm, which modifies the OSEM by incorporating
prior information [216]. This method assumes that the most probable value of a pixel is
close to the local median of the image pixels in a neighborhood. The general equation of
MRP-EM, by which the pixel value is calculated, is represented by Equation (4).

λ
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j
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j −med(λ.j)
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∑
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tij

∑m timλ
(k, l)
m
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Here in Equation (4), β is a hyperparameter that influences the degree of smoothness of
the estimated images and med(λ.j) is the median of the image pixels over a neighborhood
around the j th pixel. Sakai et al. [81] implemented this method in their studies to compare
the imaging ability with other imaging modalities and reported that MRP-EM has the ability
to produce high-quality images in a reasonable time. A median filter can reduce noise
(especially spike noise) while preserving the contours. However, there is a problem that
the sum of pixel values is not preserved. This may have affected quantitative evaluation.
Many studies are being conducted to improve iterative methods, despite their intensive
computation and ambiguous point conversion.

4.4. Stochastic Origin Ensemble Methods

The stochastic origin ensemble (SOE) method was introduced by
Andreyev et al. [217–219]. The imaging algorithm is based on the Monte Carlo Markov
chain algorithm, which assumes that each event is associated with a pixel of the recon-
structed image. With respect to the transition probability, each event may move to another
pixel for each iteration. For the initialization of this iterative method, the possible origin
points and their new location within a back-projected cone are randomly selected. Finally,
the pixel values of the former and new candidate points are compared in accordance with
the acceptance probability; the former point or the current point will be the new point. The
image was reconstructed using the estimated new location for all the events. Figure 14
shows an example of an implication of the event position by the SOE method, where the
event may move to the new location or remain at the current (old) location, accordance to
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the acceptance probability equation [207]. The general equation for the position transition
is represented by Equation (5).

pi = min(1,
(d(ni) + 1)d(ni)+1(d(oi)− 1)d(oi)−1

d(ni)
d(ni)d(oi)

d(oi)
) (5)

where for the ith former event, ni is being the new selected position, oi is being the old
position, and the transition probability is given by pi. Sakai et al. [81] used this imaging
algorithm as an iterative algorithm without ML-EM and compared it with other methods.
It was reported that the SOE reconstructed images more quickly for an even higher number
of iterations.
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Figure 14. Example of an implication of event position by the SOE method. The event may move
to the new location or remain at the current (old) location, according to the acceptance probability
equation: (a) a new position will be accepted with 100% probability as in this case the event density
increases; (b) the new position will be accepted with low probability due to the sharp decrease in
event density. The figures are rearranged and reprinted with permissions from Andreyev et al. [218].

5. Future Perspectives

Since the first developed Compton camera, it has undergone many development
phases in terms of detectors, signal-processing hardware, imaging algorithms, and ap-
plications. At this stage, research on the development of Compton cameras for medical
applications is progressing at a good pace. Han et al. made some statistical comparison
of the Compton camera with the collimated detectors [50]. The results showed that the
Compton camera outperforms the collimated anger camera when evaluated for an equal
number of detected events. With the Compton camera, the spatial resolution for a 26 cm
diameter disk object was imaged with a resolution better than 12 mm FWHM. Moreover,
the sensitivity was 15–20 times higher than the collimated camera. Similarly, Fontana et al.
compared the radial event distribution, detection efficiency, and the imaging quality of
a commercial SPECT-anger camera with the Compton camera by means of Monte Carlo
simulations [51]. The result showed that the detection efficiency of the Compton camera
was increased by the factor larger than an order of magnitude with an enhanced spatial
resolution for energies beyond 500 keV. From such studies, it is believed that the Compton
camera could be a new option in nuclear medicine in the near future. However, we are
not able to achieve the desirable image resolution that is useful for medical imaging. The
spatial resolution is insufficient, especially in the medical field, and further improvements
are required in terms of detector performance, data acquisition and processing hardware,
and imaging algorithms.

The detector performance required for Compton cameras is a high energy resolution,
high measurement position accuracy, large reaction cross-section, small Doppler effect, and
fast response time. Semiconductor detectors generally have a high energy resolution and
measurement position accuracy. In terms of the reaction cross-section, the appropriate material
depends on the energy to be measured. When measuring low-energy γ-rays (less than a few
hundreds of keV), the scatterer should be made of a material with a small absorption cross-
section. The Doppler effect is also a significant factor and can be reduced using a Si or a C [57]
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detector. Conversely, when measuring MeV γ-rays, the Doppler effect is negligible, and the
reaction cross-section is too small for detectors with low atomic numbers.

In a Compton camera, it is necessary to know at least two measurement sets of the position
and energy to measure a single event. Many high-precision analog to digital (AD) conversions
are required. The radioactivity of the measurement target is particularly high for medical
applications and plant environmental measurements. Thus, it is necessary to have a system to
prevent the equipment from pile-up, owing to the high frequency of the γ-rays. The ratio of
dead time to live time in the Compton camera depends on the electronic circuit implemented in
the Compton camera. Therefore, improvements in the ASIC would enhance the performance of
Compton cameras [220]. If the desired γ-ray energy is determined, it will be possible to devise
a layout that reduces the measurement of unnecessary scattering. Moreover, as reported in
the Iyomoto et al. [221] the implementation of a suitable technique such as a position-sensitive
transition-edge sensor (TES) to minimize the negative influence of Compton scattering could
lead to improvements in Compton cameras.

Another factor intended for further development in Compton cameras is the image
reconstruction speed as well as the data acquisition speed. As explained in Section 4, a
rapid image reconstruction method is required. Compton imaging in tomography recon-
structs images of a large number of events. Moreover, data processing tends to be both
complex and computationally intensive. The EM method is the mainstay of Compton
camera research; however, it requires additional computational resources. Algorithms
must be optimized to perform imaging at realistic times and machine specifications for
each objective. Currently, the LM-MLEM imaging algorithm is widely used and is under
further improvement. Although the current stage of the iterative method is acceptable in
nuclear medical imaging, it is not yet realizable for the real-time imaging of γ-rays. An
alternative to LM-MLEM is the FBP algorithm; however, the image resolution is insufficient
and needs to be improved significantly. To improve the imaging algorithm, it is necessary
to determine the characteristics of the object to be measured.

Nevertheless, a detailed analysis of PSF can improve imaging algorithms [222]. The
PSF of Compton imaging varies depending on the configuration of the Compton camera
and target energy. Therefore, it is important to conduct specific research for each application
and Compton camera configuration, along with general Compton camera research.
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