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1. Introduction 

The Avionics Application Standard Software Interface 

(ARINC653) is a software specification for space and 

time partitioning in safety-critical avionics real-time 

operating systems [8]. In an integrated avionics 

electronic system, correctness of calculation depends 

not only on the logical result but also on the result 

arrival time. Schedulability of a real-time system is 

critical for the system to respond to its applications. 

Therefore, it is essential to study the schedulability 

analysis problem for partition management models 

(ARINC 653 standards). 

In this paper, we study the schedulability analysis of 

ARINC 653 hierarchical schedulers based on model 

checking. The partitions, hierarchical schedulers, and 

tasks in ARINC 653 were modelled as a network of 

priced timed automata. Schedulability was described as 

a set of temporal logic formulas. We analyzed and 

verified the schedulability of hierarchical schedulers 

using the real-time model checker UPPAAL. By taking 

into account more detailed specifics of individual tasks, 

this allowed a safe but far less pessimistic 

schedulability analysis. Moreover, the model based 

approach provided a self-contained visual 

representation of the system with formal, non-

ambiguous interpretation. This make it possible for 

simulation, verification and validation. 

2. Related Work 

Classic schedulability analysis methods calculate the 

schedulability of a system by comparing the Central 

Processing Unit (CPU) utilization with a specific  

 
boundary value [7, 10, 15]. The disadvantage of those 

methods is that boundary conditions satisfaction is 

only a sufficient condition to determine the 

schedulability of a system. Many high CPU utilization 

schedulable tasks sets often cannot pass the 

verification and would be considered non-schedulable. 

Therefore, the results of such analysis methods are 

often too pessimistic. 

In recent years, the model based method of 

schedulability analysis and verification has garnered 

much attention [4, 9, 11]. Paper [11] used time 

automata to model the hierarchical scheduling process, 

used the model checker Times to analyze and verify a 

scheduling model in VxWorks. Since pure timed 

automata itself does not support clock stopwatch, on 

the modelling of preemption, the paper assumed that 

task could be preempted only at the time points of the 

integral multiple of the tiny time slice. The approach 

would inevitably lead to the terrible growth of the 

model state space.  

Paper [12] used the UPPAAL to model and verify 

Architecture Analysis and Design Language (AADL) 

thread component schedulability under a non-

preemptive dispatch strategy. It studied the 

schedulability problem at only the thread scheduling 

level. Paper [19] used TA theory to model and check 

real-time multiple task scheduling system that was in 

accordance with the Open Systems and the 

corresponding interfaces for automobile 

Electronic/Vehicle Distributed eXecutive 

(OSEK/VDX) standard. Paper [5] focus on finding the 

Worst-Case Execution Time (WCET) of parallel 

embedded software by generating the test-data using a 
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meta-heuristic optimizing search algorithms. The 

search-based optimization used yielded the input 

vectors of the parallel embedded software that cause 

maximal execution times. 

Paper [14, 16] modelled recurrent real-time 

applications as a set of parallel Directed Acyclic Graph 

(DAG) tasks and analyzed the schedulability by 

exploring the space of all possible schedules using the 

notion of a schedule-abstraction graph. Yalcinkaya et al. 

[20] presents a model checking based exact 

schedulability test for sets of periodic and sporadic self-

suspending tasks with fixed preemption. These work 

did not take into consideration the characteristics of the 

ARINC 653 partition scheduling system, therefore 

cannot be used directly for analyzing the ARINC 653 

scheduling model. 

Paper [17] explored how to analyze the end-to-end 

timing characteristics of an AADL model using real-

time calculus. Times is another kind of scheduling 

system analysis tool based on task automata [3]. It can 

analyze the schedulability of a system precisely. But the 

Times definition of a periodic task is not consistent 

with that of an ARINC 653 periodic task; moreover, the 

tool does not support preemptive scheduling system 

modelling.  

Unlike related work, our work focused on the 

analysis and verification of the ARINC 653 partition 

scheduling system. We use priced TA to model the 

hierarchical scheduling process, and analyzed the 

schedulability by model checking. The method 

discussed in this paper solved the modelling of 

preemptive scheduling by introducing priced TA. The 

formal method we propose uses an exhaustive method 

to automate the analysis of the schedulability of a 

system, therefore we obtained a more precise analysis 

result. The details of a scheduling process could be 

studied by observing the scheduling traces of a system 

given by the simulator. For cases where task sets are 

not schedulable, the checker provides a counterexample. 

Though the method proposed in this paper is aimed at 

ARINC 653 standard, the model could also be used for 

analysis of other scheduling systems after modification. 

3. Properties of The ARINC 653 Avionics 

System 

The ARINC 653 avionics partition operating system 

has a hierarchal scheduling model: partition level 

scheduling and task level scheduling. Partition level 

scheduling refers to the allocation of fixed time slices 

to different partitions. Task level scheduling refers to 

the process of permitting tasks to use CPU resources.  

The main features of partition level scheduling are:  

1. A partition is the scheduling unit of the scheduling 

system, which contains a set of partitions.  

2. Partitions are independent and have no priority 

preemptive relationship.  

3. Partitions are cyclically activated. When a system is 

initialized, a minimum period time framework is 

designed and configured statically by the system 

administrator, where time slices are allocated and 

dispatched in sequence to the partition set. A 

minimum period time framework is shown in 

Figure 1. 
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Figure 1. Minimum time cycle framework of ARINC 653. 

The main features of task level scheduling are: 

1. Tasks to be scheduled are mounted on different 

partitions. Each partition has its own task set to be 

scheduled. Scheduling policies belonging to 

different partitions are independent 

2.  A partition’s task set is scheduled according to a 

specific policy within the time slices assigned to the 

partition. During a task set execution, if a time slice 

is exhausted the execution is suspended and is 

resumed at the arrival of the next time slice 

belonging to the partition. 

3. All tasks are periodic, and the first time arrival of a 

task is in a partition’s time window that first gets its 

time slice. The ARINC 653 avionics partition 

scheduling model discussed in this paper is shown 

in Figure 2. 
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Figure 2. Partition scheduling model of ARINC 653. 

4. Priced Timed Automata 

The theoretical basis of our method is Networks of 

Priced Timed Automata (NPTA), based generally on 

regular timed automata [2] in that clocks may have 

different rates in different locations. In fact, the 

expressive power (up to timed bisimilarity) of NPTA 

equals that of general Linear Hybrid Automata (LHA) 

[1]. Priced TA supports a clock stopwatch, and thus 

provides an effective mechanism for describing 

preemptive scheduling. 

Let X be a finite set of variables, called clocks. A 
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clock valuation over X is a mapping v: X→IR≥0, where 

IR≥0 is the set of nonnegative reals. We write 𝐼𝑅≥0
𝑋  for 

the set of clock valuations over X. Let r: X→IN be a 

rate vector, assigning a rate to each clock of X. Then, 

for v∈ 𝐼𝑅≥0
𝑋  and d∈IR≥0 a delay, we write v+r·d for the 

clock valuation defined by (ν+r·d)(x)=ν(x)+r(x)·d for 

any clock x∈ X. We denote by INX the set of all rate 

vectors. If Y⊆X, the valuation v[Y] is the valuation 

assigning 0 when x∈ Y and v(x) when x∉Y. An upper 

bounded (lower bound) guard over X is a finite 

conjunction of simple clock bounds of the form x~n 

where x~n where x∈X, n∈IN, and ∼∈{<,≤} 

(∼∈{>,≥}). We denote by U(X) (L(X)) the set of upper 

(or lower) bound guards over X, and write ν|=g 

whenever ν is a clock valuation satisfying the guard g. 

Let Σ=Σi⊎Σo be a disjoint set of input and output 

actions. 

 Definition 1. A Priced Timed Automaton (PTA) is a 

tuple A=〈L, l0, X, Σ, E, R, I〉where:  

1. L is a finite set of locations. 

2. l0∈ L is the initial location.  

3. X is a finite set of clocks.  

4. Σ=Σi⊎Σo is a finite set of actions partitioned into 

inputs (Σi) and outputs (Σo), (v) E ⊆ L×L(X) ×Σ 

×2X×L is a finite set of edges. 

5. R: L→INX assigns a rate vector to each location. 

6. I:L→U(X) assigns an invariant to each location. 

The semantics of NPTAs is a timed labeled transition 

system whose states are pairs (l,v) ∈L× 𝐼𝑅≥0
𝑋  with 

v|=I(l), and whose transitions are one of the following 

two types: 

1) In a time or delay transition some d∈ Time elapses, 

but the location is left unchanged. Formally,〈l,v〉
𝑑
→〈 l,v'〉 , with d∈IR≥0 and v'=v+R(l)·d iff (v’ 

=v+R(l)·d') ╞ I(l) for all d’∈[0,d].  

2) In an action or discrete transition an action α(α∈∑) 

occurs and some clocks may be reset, but time does 

not advance. Formally,〈l,v〉
α
→〈l’,v’〉 iff there 

exist an edge (l, g, α, Y, l’)∈E with ν|=g and 

v’=v[Y:=0] and ν'|=I(l') 

 Definition 2. Let Aj=〈Lj, l0
j, Xj, Σ, Ej, Rj, Ij〉(with 

j=1,2,…,n) be composable NPTAs. Their 

composition (A1| A2|...| An) is the NPTA A=〈L, l0, X, 

Σ, E, R, I 〉 , where (i) L=×jL
j, (ii) l0= 〈 l0

1; 

l0
2,…,l0

n〉; (iii) X=∪jX
j, where Xj∩Xk = ∅, when j≠k; 

(iv) R(l)(x)=R j (lj)(x) when x∈Xj, (v) I(l)=∩jI(l
j); and 

(vi) (l,∩j gj, a,∪j rj, l') ∈E, whenever (l j, gj, a, rj, lj') 

∈Ej for j=1,2,…,n. 

Whenever Aj=〈Lj, Xj, Σj, Ej, Rj, Ij〉(j=1,2,…,n) are 

NPTAs, they are composable into a closed network iff 

their clock sets are disjoint (Xj∩Xk = ∅, when j≠k), and 

they have the same action set (Σ=Σj =Σk for all j,k). 

Automata in an NPTA may perform their actions 

independently, or may perform synchronous 

communications by simultaneous input/output actions 

through shared channels. Synchronous 

communications actually correspond to the 

interactions between entities. 

5. A Hierarchical Scheduling Model with 

PTA 

5.1. Periodic Task 

The dispatch policy of a periodic task is that when a 

new period is coming, the task is dispatched and 

begins waiting for its start. By default, the deadline of 

a task is the same as its period. The time interval 

between adjacent task dispatches cannot be less than 

the task’s period. That is, when a new dispatch of a 

task is coming, the last dispatch of the task must have 

executed completely. Otherwise, a timeout error 

occurs.  

As shown in Figure 3, six locations are defined in 

the priced TA. To keep track of the task execution time 

and the dispatch time, 2 clocks are defined: an 

execution clock e and a deadline clock t. 

Init WaitDispatch

e==initTime

Inited[ID]!

e:=0,t:=0

Ready
e:=0

run[ID]?

e:=0,t:=0

e<=initTime

dispatch[ID]?

t>Period-exeTime t>Period

e<=exeTime

done[ID]!

Running

(t<=Period)&&(e==exeTime)

Error

Blocked
e’==0 & t<=Period

preempted[ID]?

run[ID]?

t>Period

Figure 3. Template for a periodic task. 

When initialization completes, Task sends an inited 

event to the task trigger, moves to the Ready location, 

and then sets execution clock e and deadline clock t to 

zero. At the Ready location, if Task receives the permit 

execution event run, Task sets execution clock e to 

zero, and moves to location running. If the value of 

the current deadline clock t is greater than the 

difference between the deadline and execution times 

(Period-exeTime), the task execution must not be 

completed before the deadline, a timeout error occurs 

and Task moves to the Error location. 

At the Running location, if a preempted event is 

received; i.e., during the course of execution a 

scheduling request of a higher priority task emerges, 

the current task is preempted and Task moves to the 

Blocked location. At the Blocked location, execution 
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clock e is suspended and timekeeping is paused. If a 

permit execution event run is received, Task moves to 

location running and clock e resumes. If deadline clock 

t is greater than deadline Period, a timeout error occurs 

and Task moves to the Error location. 

5.2. Task Trigger and Partition Scheduler 

The role of the task trigger is to generate periodic 

scheduling requests. As shown in Figure 4, the model 

has Task triggered and dispatched by period cycles. 

There are 2 temporary locations defined in the automata. 

The time delays of the temporary locations are 0. 

C U

Tinit
inited[ID]? rd[ID]!

x:=0

x<=Period

rd[ID]!

PTrigger
x==Period
dispatch[ID]!

x:=0

 

Figure 4. Automaton modelling the periodic task trigger. 

The partition scheduler (Figure 5) studied in this 

paper contains 2 partitions, but in the proposed method 

a scheduler with n partitions could be analyzed 

similarly. When the time slice is exhausted, the 

partition scheduler moves to the Temp location, and 

then next partition is scheduled. 

U

U

Part1CLK<=Part1_Budget
Deactive_Partition1!

SchedulePartition1

Active_Partition1!
Part1CLK:=0

Restart

Active_Partition2!
Part2CLK:=0

SchedulePartition2

Part1CLK==Part1_Budget

Part2CLK<=Part2_BudgetPart2CLK==Part2_Budget

Deactive_Partition2!

Temp

 

Figure 5. Partition scheduler model. 

5.3. Task Scheduler 

The task scheduler is responsible for second level 

scheduling. We take the task scheduler of partition 1 as 

an example (Figure 6). The scheduling policy of is 

priority-based preemptive scheduling. The array 

Partition1_Queue is introduced as the task queue to be 

scheduled.  

The initial location of the task scheduler is pended. 

When a task dispatch event is received-rd[e] (e is a task 

ID)-the task scheduler adds the task ID into the task 

queue. In location Idle, if there are tasks in the task 

waiting queue to be scheduled, the task scheduler gets 

the highest priority task ID from the queue, sends an 

execution event to the task, and then moves to location 

Occ. If a partition suspend event is received 

(Deactive_Partition1), the task scheduler moves to 

location Pended. 

Pended

Active_Partition1?

rd[e]?
enqueue1(e)

Idle

Deactive_Partition1?

rd[e]?

enqueue1(e)

run[head1()]!
dequeue1()

C

rd[e]?
enqueue1(e)

getPri(e)<=curThdPri

rd[e]?

getPri(e)>curThdPri

C

preempted[curThdID]!

headEnqueue1(curThdID)

run[e]!

U

len1>0
done[e]?

run[head1()]!
dequeue1()

C

done[e]?

len1==0

Deactive_Partition1?

preempted[curThdID]!

headEnqueue1(curThdID)

Occ

Len1>0

Figure 6. Automaton modelling the partition 1 thread scheduler. 

From location Occ, if a scheduling request event 

rd[e] is received and the priority of the request task is 

higher than that of the currently running task, the task 

scheduler sends a hung up event 

(preempted[curThdID]) to the running task, adds the 

running task ID to the waiting list, sends a run event to 

the preemptive task, and moves back to location Occ. 

If a task execution completion event is received 

(done[e]), and there are tasks in the waiting list, the 

task scheduler sends a run event to the head task of the 

task queue, deletes the head of the waiting list, and 

moves back to Occ. If a task execution completion 

event is received (done[e]), and the waiting list is 

empty (len1==0), the task scheduler moves to the Idle 

location. If a partition suspend event 

Deactive_Partition1 is received, the task scheduler 

sends a hung up event to the task currently using the 

CPU, adds the task ID to the waiting list, and moves to 

location Pended.  

The scheduling policy of partition 2 is round robin, 

and the implementation mechanism of task scheduling 

is similar to that of partition 1. Each time the ID of the 

task to be scheduled is obtained from the head of the 

queue, an execution event run [ID] is sent to the task. 

5.4. Automata Network of the Partition 

Scheduling System 

Based on the formal descriptions the ARINC 653 

partition scheduling system could be modeled as a 

parallel composition of a network of priced TA.  

T0||T1||…||Tn||Trigger0||Trigger1||…||Triggern||Partitio

nScheduler||TaskScheduler1||TaskScheduler2, 

where T0,T1,…,Tn are tasks to be scheduled, 

Trigger0,Trigger1,…,Triggern are task triggers, and 

Partition Scheduler, TaskScheduler1, and Task 

Scheduler 2 are a partition scheduler and task 

schedulers respectively. The automata modelling 

different parts of the scheduling system are run in 

parallel. The synchronization of state transitions is 

carried out by sending and receiving actions via 

shared channels. 
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6. Logical Description of Properties 

The properties to be verified can be described in 

temporal logic formulas [6]. For the partition 

scheduling system, we studied system properties at the 

level of partition scheduling and task scheduling. 

6.1. Partition Scheduling Level Verification 

At the partition scheduling level, we were concerned 

with the following scheduling properties: 

 Property 1: During a partition schedule period a 

partition Si (with index i) should never get more time 

budget than is initially configured for Si. 

∀□(PartitionScheduler.SchedulePartitioni imply 

(PartitionScheduler.PartiCLK <= PartitionScheduler. 

Parti_Budget)) 

 Property 2: During a partition schedule period, 

partition Si (with index i) should never get less time 

budget than the initially configured budget for Si. 

( ﹁ PartitionScheduler.SchedulePartitioni) imply 

(PartitionScheduler.PartiCLK >= PartitionScheduler. 

Parti_Budget) 

 Property 3: During a partition schedule period, 

partition Si should always be released when its 

scheduling time reaches its initially configured 

budget. 

(PartitionScheduler.PartiCLK > Partition Scheduler. 

Parti_Budget) imply ( ﹁ PartitionScheduler. 

SchedulePartitioni) 

 Property 4: CPU could be allocated to 

TaskScheduleri (i=1,2).  

∀◇TaskScheduleri.Occ. 

 Property 5: Task scheduler 1, Task scheduler 2, ... , 

and Task scheduler n are always mutually exclusive 

using a processor. 

∀□(TaskScheduler1.Busy + TaskScheduler2.Busy +... + 

TaskSchedulern.Busy <= 1) 

6.2. Task Scheduling Level Verification 

At the task scheduling level, we were concerned that 

the following properties should be verified: 

 Property 6: At any given point in time, CPU is used 

mostly by just one task.  

The property could be described as ∀□(T1.Running 

+T2.Running +…+ Tn.Running<=1) 

 Property 7: For a specific task set and partition time 

budget configuration, the given task set is 

schedulable. 

∀□(T1.Error + T2.Error +…+ Tn.Error=0).  

If schedule requirement can be satisfied during its 

execution, all the tasks will not move into the Error 

location. 

 Property 8: If a partition scheduled with a priority 

preemptive policy is busy, the task with the highest 

priority must be the currently running task. 

(﹁ProcessScheduler1.Pended) imply (curThdPri >= 

getPri (head1())) 

Parts of the other properties to be verified are as 

follows: 

∃◇Ti.Running. There is a transition sequence from the 

initial state that eventually schedules Ti to execute at 

least once. 

Ti.Ready→Ti.Running. If the schedule request has 

been dispatched and task Ti begins to wait for 

scheduling, Ti could be scheduled eventually. 

Ti.Running→Ti.WaitDispatch. If task Ti is 

scheduled to execute, it can be terminated successfully. 

Ti.WaitDispatch→Ti.Ready. Periodic tasks should 

always be repeatedly activated to wait for scheduling. 

Ti.Ready→(Ti.Running∧t<=s). When task Ti 

becomes ready it should be scheduled to execute 

within an s time unit. In the logic expression, t is a 

clock variable that is set to zero when the task changes 

to the ready state. 

7.  Analysis and Verification of The 

Schedule Model 

7.1. Verification Data and Process 

We used UPPAAL [6] as the verification tool. We 

chose a schedule case that contained 2 partitions. Each 

partition contained 10 schedule tasks. The scheduling 

policy of partition 1 was priority-based preemptive 

scheduling, while partition 2 was round robin 

scheduling. The scheduling system is presented in 

Table 1. 

Table 1. Partition set. 

Name Budget Scheduler policy Tasks 

Partition 1 1,000 
Static priority preemptive 

scheduling 

{task1,task2,...t

ask10} 

Partition 2 1,000 Round robin scheduling 
{task11,task12,.

..task20} 

The specifications, parameters, and time constraints 

of individual tasks of the experiment are presented in 

Table 2. The task data came from the schedule data of 

the Herschel-Planck [13] satellite system.  

By inputting the ARINC 653 scheduling model into 

UPPAAL, a priced automata network was generated. 

The time shifting of the model evolution could be 

studied with a model simulator by observing the clock 

variation or by observing time points at which trace 

events happened. Furthermore, we simulated the 

evolution of the scheduling model by a simulator. The 

simulation process showed the current location, 

interactions, the network evolution, and the clock 

value of every automaton in the network. By step 

simulation we traced the evolution of the model, 

observed the time shift of the clock, analyzed the 

errors in automaton design, and checked whether the 
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working mode met the expectations of the designer. The 

simulation process is shown in Figure 7. 

Table 2. Task set. 

taskid Initialization time Period Execution time Priority Partition 

1 0 10,000 13 1 P1 

2 0 250,000 70 2 P1 

3 62,500 125,000 70 3 P1 

4 0 250,000 20 4 P1 

5 200,000 250,000 100 5 P1 

6 0 15,625 70 6 P1 

7 0 20,000 70 7 P1 

8 0 39,000 70 8 P1 

9 0 250,000 70 9 P1 

10 0 15,625 150 10 P1 

11 0 125,000 400 - P2 

12 0 250,000 170 - P2 

13 20,000 25,000 5,000 - P2 

14 20,000 250,000 720 - P2 

15 20,000 250,000 230,220 - P2 

16 62,500 125,000 500 - P2 

17 62,500 250,000 6,000 - P2 

18 200,000 250,000 6,000 - P2 

19 200,000 250,000 3,000 - P2 

20 0 1,000,000 1,100 - P2 

7.2. Verification Result 

The verification results were as follows: 

At the partition scheduling level, property 1, property 2, 

property 3, property 4, and property 5 were satisfied. 

This also showed that at the partition scheduling level 

the design of the scheduling model was consistent with 

our expectations. At the task scheduling level, property 

6 and property 8 were satisfied. For the specific task set, 

property 7 was satisfied. This meant that for the given 

task set the scheduling system was schedulable. In the 

experiment, if we had changed the task set or the task 

parameters, the task set may have changed to non-

schedulable. For a non-schedulable case, we can 

analyze the reason that it is non-schedulable by tracking 

the system evolution. 

 

Figure 7. The step simulation of the ARINC 653 scheduling model. 

Model checking uses an exhaustive method to 

analyze every possible state in the system evolution. 

Therefore, it provides us a way to precisely analyze the 

running states and time properties for each entity in the 

ARINC 653 partition scheduling system. As an 

example, we can input this logic expression into the 

verification system: E<>T0.Running and T0.t <= 0. 

The property determines whether there exists a 

possible running trace that gives T0 execution 

immediately without waiting. 

 

Figure 8. The simulation of the ARINC 653 scheduling model. 

The simulation results of the experimental data of 

this paper are shown in Figure 8. The simulation 

makes it possible for us to visually observe the process 

of scheduling, the dispatching of a time slice, the CPU 

scheduling of each task, and the running state of each 

entity in the system. In addition, the simulation 

provides a visual method to precisely analyze the 

scheduling and execution states of the scheduling 

system. 

Figure 9 shows the comparison of time required to 

deem periodic schedulable task sets in paper [20] and 

our method. It can be seen the method we presented 

has a better time performance. Figure 10 shows the 

time performance of our method. In the beginning, 

with the number of tasks increases, the verification 

time increase slowly. When the number of tasks 

verified is greater than 60, time tends to grow faster. 

When the number of verification tasks is 100, the 

required verification time is 31.38s. When the number 

of tasks to be verified is greater than 100, the time 

tends to grow more and more faster with the increase 

of the number of tasks. 

 

 

Figure 9. Average runtime of the exact test [20] vs. our test for 

schedulable task sets. 
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Figure 10. Average runtime of verification. 

8. Conclusions 

In this paper we discussed how to use a formal method 

and verification tools to analyze and verify the ARINC 

653 hierarchical scheduling system. Based on priced TA 

theory, an ARINC 653 scheduling system, including 

partitions, tasks, and a hierarchical scheduler was 

modeled as a priced TA network. The schedulability of 

the system was described as a set of temporal logic 

expressions, and schedulability was analyzed and 

verified by model checking. In addition, we discussed 

the analysis of a specific ARINC 653 partition 

scheduling case. The method proposed solved the 

modelling of preemptive scheduling by introducing 

priced TA. Our research shows that it is workable to use 

verification tools such UPPAAL to analyze the 

schedulaibity of tasks set in an ARINC 653 hierarchical 

scheduling system. Unlike traditional scheduling 

analysis methods, the formal method we propose 

exhaustively analyzes the schedulability of a system, 

resulting in a more precise analysis. 

In future distributed multicore Integrated Modular 

Avionics systems (IMA) [18], the scheduling 

mechanism and task model will be changed, so future 

work for us is to study the analysis and verification of 

the scheduling process in that distributed multicore 

environment. 
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