
The International Arab Journal of Information Technology, Vol. 17, No. 1, January 2020 99

Modelling and Verification of ARINC 653

Hierarchical Preemptive Scheduling

Ning Fu, Lijun Shan, Chenglie Du, Zhiqiang Liu, and Han Peng

School of Computer Science, Northwestern Polytechnical University, China

Abstract: Avionics Application Standard Software Interface (ARINC 653) is a software specification for space and time

partitioning in safety-critical avionics real-time operating systems. Correctly designed task schedulers are crucial for ARINC

653 running systems. This paper proposes a model-checking-based method for analyzing and verifying ARINC 653 scheduling

model. Based on priced timed automata theory, an ARINC 653 scheduling system was modelled as a priced timed automata

network. The schedulability of the system was described as a set of temporal logic expressions, and was analyzed and verified

by a model checker. Our research shows that it is feasible to use model checking to analyze task schedulability in an ARINC

653 hierarchical scheduling system. The method discussed modelled preemptive scheduling by using the stop/watch features of

priced timed automata. Unlike traditional scheduling analysis techniques, the proposed approach uses an exhaustive method

to automate analysis of the schedulability of a system, resulting in a more precise analysis.

Keywords: ARINC653, schedulability analysis, model checking, UPPAAL.

Received June 15, 2016; accepted March 19, 2019

https://doi.org/10.34028/iajit/17/1/12

1. Introduction

The Avionics Application Standard Software Interface

(ARINC653) is a software specification for space and

time partitioning in safety-critical avionics real-time

operating systems [8]. In an integrated avionics

electronic system, correctness of calculation depends

not only on the logical result but also on the result

arrival time. Schedulability of a real-time system is

critical for the system to respond to its applications.

Therefore, it is essential to study the schedulability

analysis problem for partition management models

(ARINC 653 standards).

In this paper, we study the schedulability analysis of

ARINC 653 hierarchical schedulers based on model

checking. The partitions, hierarchical schedulers, and

tasks in ARINC 653 were modelled as a network of

priced timed automata. Schedulability was described as

a set of temporal logic formulas. We analyzed and

verified the schedulability of hierarchical schedulers

using the real-time model checker UPPAAL. By taking

into account more detailed specifics of individual tasks,

this allowed a safe but far less pessimistic

schedulability analysis. Moreover, the model based

approach provided a self-contained visual

representation of the system with formal, non-

ambiguous interpretation. This make it possible for

simulation, verification and validation.

2. Related Work

Classic schedulability analysis methods calculate the

schedulability of a system by comparing the Central

Processing Unit (CPU) utilization with a specific

boundary value [7, 10, 15]. The disadvantage of those

methods is that boundary conditions satisfaction is

only a sufficient condition to determine the

schedulability of a system. Many high CPU utilization

schedulable tasks sets often cannot pass the

verification and would be considered non-schedulable.

Therefore, the results of such analysis methods are

often too pessimistic.

In recent years, the model based method of

schedulability analysis and verification has garnered

much attention [4, 9, 11]. Paper [11] used time

automata to model the hierarchical scheduling process,

used the model checker Times to analyze and verify a

scheduling model in VxWorks. Since pure timed

automata itself does not support clock stopwatch, on

the modelling of preemption, the paper assumed that

task could be preempted only at the time points of the

integral multiple of the tiny time slice. The approach

would inevitably lead to the terrible growth of the

model state space.

Paper [12] used the UPPAAL to model and verify

Architecture Analysis and Design Language (AADL)

thread component schedulability under a non-

preemptive dispatch strategy. It studied the

schedulability problem at only the thread scheduling

level. Paper [19] used TA theory to model and check

real-time multiple task scheduling system that was in

accordance with the Open Systems and the

corresponding interfaces for automobile

Electronic/Vehicle Distributed eXecutive

(OSEK/VDX) standard. Paper [5] focus on finding the

Worst-Case Execution Time (WCET) of parallel

embedded software by generating the test-data using a

100 The International Arab Journal of Information Technology, Vol. 17, No. 1, January 2020

meta-heuristic optimizing search algorithms. The

search-based optimization used yielded the input

vectors of the parallel embedded software that cause

maximal execution times.

Paper [14, 16] modelled recurrent real-time

applications as a set of parallel Directed Acyclic Graph

(DAG) tasks and analyzed the schedulability by

exploring the space of all possible schedules using the

notion of a schedule-abstraction graph. Yalcinkaya et al.

[20] presents a model checking based exact

schedulability test for sets of periodic and sporadic self-

suspending tasks with fixed preemption. These work

did not take into consideration the characteristics of the

ARINC 653 partition scheduling system, therefore

cannot be used directly for analyzing the ARINC 653

scheduling model.

Paper [17] explored how to analyze the end-to-end

timing characteristics of an AADL model using real-

time calculus. Times is another kind of scheduling

system analysis tool based on task automata [3]. It can

analyze the schedulability of a system precisely. But the

Times definition of a periodic task is not consistent

with that of an ARINC 653 periodic task; moreover, the

tool does not support preemptive scheduling system

modelling.

Unlike related work, our work focused on the

analysis and verification of the ARINC 653 partition

scheduling system. We use priced TA to model the

hierarchical scheduling process, and analyzed the

schedulability by model checking. The method

discussed in this paper solved the modelling of

preemptive scheduling by introducing priced TA. The

formal method we propose uses an exhaustive method

to automate the analysis of the schedulability of a

system, therefore we obtained a more precise analysis

result. The details of a scheduling process could be

studied by observing the scheduling traces of a system

given by the simulator. For cases where task sets are

not schedulable, the checker provides a counterexample.

Though the method proposed in this paper is aimed at

ARINC 653 standard, the model could also be used for

analysis of other scheduling systems after modification.

3. Properties of The ARINC 653 Avionics

System

The ARINC 653 avionics partition operating system

has a hierarchal scheduling model: partition level

scheduling and task level scheduling. Partition level

scheduling refers to the allocation of fixed time slices

to different partitions. Task level scheduling refers to

the process of permitting tasks to use CPU resources.

The main features of partition level scheduling are:

1. A partition is the scheduling unit of the scheduling

system, which contains a set of partitions.

2. Partitions are independent and have no priority

preemptive relationship.

3. Partitions are cyclically activated. When a system is

initialized, a minimum period time framework is

designed and configured statically by the system

administrator, where time slices are allocated and

dispatched in sequence to the partition set. A

minimum period time framework is shown in

Figure 1.

System time of a minimum time framework

Partition2

Partition1

time window

Partition3 …… Partition n

Partition2

time window

Partition n

time window

Partition3

time window

Partition1

t

Figure 1. Minimum time cycle framework of ARINC 653.

The main features of task level scheduling are:

1. Tasks to be scheduled are mounted on different

partitions. Each partition has its own task set to be

scheduled. Scheduling policies belonging to

different partitions are independent

2. A partition’s task set is scheduled according to a

specific policy within the time slices assigned to the

partition. During a task set execution, if a time slice

is exhausted the execution is suspended and is

resumed at the arrival of the next time slice

belonging to the partition.

3. All tasks are periodic, and the first time arrival of a

task is in a partition’s time window that first gets its

time slice. The ARINC 653 avionics partition

scheduling model discussed in this paper is shown

in Figure 2.

CPU

Partition

scheduler

Partition 1

Task

Scheduler 1

Partition 2

Task

Scheduler 2

Partition n

Task

Scheduler n

Task

1

Task

2

Task

n

Task

1

Task

2

Task

n

Task

1
Task

2

Task

n
...

……

Figure 2. Partition scheduling model of ARINC 653.

4. Priced Timed Automata

The theoretical basis of our method is Networks of

Priced Timed Automata (NPTA), based generally on

regular timed automata [2] in that clocks may have

different rates in different locations. In fact, the

expressive power (up to timed bisimilarity) of NPTA

equals that of general Linear Hybrid Automata (LHA)

[1]. Priced TA supports a clock stopwatch, and thus

provides an effective mechanism for describing

preemptive scheduling.

Let X be a finite set of variables, called clocks. A

Modelling and Verification of ARINC 653 Hierarchical Preemptive Scheduling 101

clock valuation over X is a mapping v: X→IR≥0, where

IR≥0 is the set of nonnegative reals. We write 𝐼𝑅≥0
𝑋 for

the set of clock valuations over X. Let r: X→IN be a

rate vector, assigning a rate to each clock of X. Then,

for v∈ 𝐼𝑅≥0
𝑋 and d∈IR≥0 a delay, we write v+r·d for the

clock valuation defined by (ν+r·d)(x)=ν(x)+r(x)·d for

any clock x∈ X. We denote by INX the set of all rate

vectors. If Y⊆X, the valuation v[Y] is the valuation

assigning 0 when x∈ Y and v(x) when x∉Y. An upper

bounded (lower bound) guard over X is a finite

conjunction of simple clock bounds of the form x~n

where x~n where x∈X, n∈IN, and ∼∈{<,≤}

(∼∈{>,≥}). We denote by U(X) (L(X)) the set of upper

(or lower) bound guards over X, and write ν|=g

whenever ν is a clock valuation satisfying the guard g.

Let Σ=Σi⊎Σo be a disjoint set of input and output

actions.

 Definition 1. A Priced Timed Automaton (PTA) is a

tuple A=〈L, l0, X, Σ, E, R, I〉where:

1. L is a finite set of locations.

2. l0∈ L is the initial location.

3. X is a finite set of clocks.

4. Σ=Σi⊎Σo is a finite set of actions partitioned into

inputs (Σi) and outputs (Σo), (v) E ⊆ L×L(X) ×Σ

×2X×L is a finite set of edges.

5. R: L→INX assigns a rate vector to each location.

6. I:L→U(X) assigns an invariant to each location.

The semantics of NPTAs is a timed labeled transition

system whose states are pairs (l,v) ∈L× 𝐼𝑅≥0
𝑋 with

v|=I(l), and whose transitions are one of the following

two types:

1) In a time or delay transition some d∈ Time elapses,

but the location is left unchanged. Formally,〈l,v〉
𝑑
→〈 l,v'〉 , with d∈IR≥0 and v'=v+R(l)·d iff (v’

=v+R(l)·d') ╞ I(l) for all d’∈[0,d].

2) In an action or discrete transition an action α(α∈∑)

occurs and some clocks may be reset, but time does

not advance. Formally,〈l,v〉
α
→〈l’,v’〉 iff there

exist an edge (l, g, α, Y, l’)∈E with ν|=g and

v’=v[Y:=0] and ν'|=I(l')

 Definition 2. Let Aj=〈Lj, l0
j, Xj, Σ, Ej, Rj, Ij〉(with

j=1,2,…,n) be composable NPTAs. Their

composition (A1| A2|...| An) is the NPTA A=〈L, l0, X,

Σ, E, R, I 〉 , where (i) L=×jL
j, (ii) l0= 〈 l0

1;

l0
2,…,l0

n〉; (iii) X=∪jX
j, where Xj∩Xk = ∅, when j≠k;

(iv) R(l)(x)=R j (lj)(x) when x∈Xj, (v) I(l)=∩jI(l
j); and

(vi) (l,∩j gj, a,∪j rj, l') ∈E, whenever (l j, gj, a, rj, lj')

∈Ej for j=1,2,…,n.

Whenever Aj=〈Lj, Xj, Σj, Ej, Rj, Ij〉(j=1,2,…,n) are

NPTAs, they are composable into a closed network iff

their clock sets are disjoint (Xj∩Xk = ∅, when j≠k), and

they have the same action set (Σ=Σj =Σk for all j,k).

Automata in an NPTA may perform their actions

independently, or may perform synchronous

communications by simultaneous input/output actions

through shared channels. Synchronous

communications actually correspond to the

interactions between entities.

5. A Hierarchical Scheduling Model with

PTA

5.1. Periodic Task

The dispatch policy of a periodic task is that when a

new period is coming, the task is dispatched and

begins waiting for its start. By default, the deadline of

a task is the same as its period. The time interval

between adjacent task dispatches cannot be less than

the task’s period. That is, when a new dispatch of a

task is coming, the last dispatch of the task must have

executed completely. Otherwise, a timeout error

occurs.

As shown in Figure 3, six locations are defined in

the priced TA. To keep track of the task execution time

and the dispatch time, 2 clocks are defined: an

execution clock e and a deadline clock t.

Init WaitDispatch

e==initTime

Inited[ID]!

e:=0,t:=0

Ready
e:=0

run[ID]?

e:=0,t:=0

e<=initTime

dispatch[ID]?

t>Period-exeTime t>Period

e<=exeTime

done[ID]!

Running

(t<=Period)&&(e==exeTime)

Error

Blocked
e’==0 & t<=Period

preempted[ID]?

run[ID]?

t>Period

Figure 3. Template for a periodic task.

When initialization completes, Task sends an inited

event to the task trigger, moves to the Ready location,

and then sets execution clock e and deadline clock t to

zero. At the Ready location, if Task receives the permit

execution event run, Task sets execution clock e to

zero, and moves to location running. If the value of

the current deadline clock t is greater than the

difference between the deadline and execution times

(Period-exeTime), the task execution must not be

completed before the deadline, a timeout error occurs

and Task moves to the Error location.

At the Running location, if a preempted event is

received; i.e., during the course of execution a

scheduling request of a higher priority task emerges,

the current task is preempted and Task moves to the

Blocked location. At the Blocked location, execution

102 The International Arab Journal of Information Technology, Vol. 17, No. 1, January 2020

clock e is suspended and timekeeping is paused. If a

permit execution event run is received, Task moves to

location running and clock e resumes. If deadline clock

t is greater than deadline Period, a timeout error occurs

and Task moves to the Error location.

5.2. Task Trigger and Partition Scheduler

The role of the task trigger is to generate periodic

scheduling requests. As shown in Figure 4, the model

has Task triggered and dispatched by period cycles.

There are 2 temporary locations defined in the automata.

The time delays of the temporary locations are 0.

C U

Tinit
inited[ID]? rd[ID]!

x:=0

x<=Period

rd[ID]!

PTrigger
x==Period
dispatch[ID]!

x:=0

Figure 4. Automaton modelling the periodic task trigger.

The partition scheduler (Figure 5) studied in this

paper contains 2 partitions, but in the proposed method

a scheduler with n partitions could be analyzed

similarly. When the time slice is exhausted, the

partition scheduler moves to the Temp location, and

then next partition is scheduled.

U

U

Part1CLK<=Part1_Budget
Deactive_Partition1!

SchedulePartition1

Active_Partition1!
Part1CLK:=0

Restart

Active_Partition2!
Part2CLK:=0

SchedulePartition2

Part1CLK==Part1_Budget

Part2CLK<=Part2_BudgetPart2CLK==Part2_Budget

Deactive_Partition2!

Temp

Figure 5. Partition scheduler model.

5.3. Task Scheduler

The task scheduler is responsible for second level

scheduling. We take the task scheduler of partition 1 as

an example (Figure 6). The scheduling policy of is

priority-based preemptive scheduling. The array

Partition1_Queue is introduced as the task queue to be

scheduled.

The initial location of the task scheduler is pended.

When a task dispatch event is received-rd[e] (e is a task

ID)-the task scheduler adds the task ID into the task

queue. In location Idle, if there are tasks in the task

waiting queue to be scheduled, the task scheduler gets

the highest priority task ID from the queue, sends an

execution event to the task, and then moves to location

Occ. If a partition suspend event is received

(Deactive_Partition1), the task scheduler moves to

location Pended.

Pended

Active_Partition1?

rd[e]?
enqueue1(e)

Idle

Deactive_Partition1?

rd[e]?

enqueue1(e)

run[head1()]!
dequeue1()

C

rd[e]?
enqueue1(e)

getPri(e)<=curThdPri

rd[e]?

getPri(e)>curThdPri

C

preempted[curThdID]!

headEnqueue1(curThdID)

run[e]!

U

len1>0
done[e]?

run[head1()]!
dequeue1()

C

done[e]?

len1==0

Deactive_Partition1?

preempted[curThdID]!

headEnqueue1(curThdID)

Occ

Len1>0

Figure 6. Automaton modelling the partition 1 thread scheduler.

From location Occ, if a scheduling request event

rd[e] is received and the priority of the request task is

higher than that of the currently running task, the task

scheduler sends a hung up event

(preempted[curThdID]) to the running task, adds the

running task ID to the waiting list, sends a run event to

the preemptive task, and moves back to location Occ.

If a task execution completion event is received

(done[e]), and there are tasks in the waiting list, the

task scheduler sends a run event to the head task of the

task queue, deletes the head of the waiting list, and

moves back to Occ. If a task execution completion

event is received (done[e]), and the waiting list is

empty (len1==0), the task scheduler moves to the Idle

location. If a partition suspend event

Deactive_Partition1 is received, the task scheduler

sends a hung up event to the task currently using the

CPU, adds the task ID to the waiting list, and moves to

location Pended.

The scheduling policy of partition 2 is round robin,

and the implementation mechanism of task scheduling

is similar to that of partition 1. Each time the ID of the

task to be scheduled is obtained from the head of the

queue, an execution event run [ID] is sent to the task.

5.4. Automata Network of the Partition

Scheduling System

Based on the formal descriptions the ARINC 653

partition scheduling system could be modeled as a

parallel composition of a network of priced TA.

T0||T1||…||Tn||Trigger0||Trigger1||…||Triggern||Partitio

nScheduler||TaskScheduler1||TaskScheduler2,

where T0,T1,…,Tn are tasks to be scheduled,

Trigger0,Trigger1,…,Triggern are task triggers, and

Partition Scheduler, TaskScheduler1, and Task

Scheduler 2 are a partition scheduler and task

schedulers respectively. The automata modelling

different parts of the scheduling system are run in

parallel. The synchronization of state transitions is

carried out by sending and receiving actions via

shared channels.

Modelling and Verification of ARINC 653 Hierarchical Preemptive Scheduling 103

6. Logical Description of Properties

The properties to be verified can be described in

temporal logic formulas [6]. For the partition

scheduling system, we studied system properties at the

level of partition scheduling and task scheduling.

6.1. Partition Scheduling Level Verification

At the partition scheduling level, we were concerned

with the following scheduling properties:

 Property 1: During a partition schedule period a

partition Si (with index i) should never get more time

budget than is initially configured for Si.

∀□(PartitionScheduler.SchedulePartitioni imply

(PartitionScheduler.PartiCLK <= PartitionScheduler.

Parti_Budget))

 Property 2: During a partition schedule period,

partition Si (with index i) should never get less time

budget than the initially configured budget for Si.

(﹁ PartitionScheduler.SchedulePartitioni) imply

(PartitionScheduler.PartiCLK >= PartitionScheduler.

Parti_Budget)

 Property 3: During a partition schedule period,

partition Si should always be released when its

scheduling time reaches its initially configured

budget.

(PartitionScheduler.PartiCLK > Partition Scheduler.

Parti_Budget) imply (﹁ PartitionScheduler.

SchedulePartitioni)

 Property 4: CPU could be allocated to

TaskScheduleri (i=1,2).

∀◇TaskScheduleri.Occ.

 Property 5: Task scheduler 1, Task scheduler 2, ... ,

and Task scheduler n are always mutually exclusive

using a processor.

∀□(TaskScheduler1.Busy + TaskScheduler2.Busy +... +

TaskSchedulern.Busy <= 1)

6.2. Task Scheduling Level Verification

At the task scheduling level, we were concerned that

the following properties should be verified:

 Property 6: At any given point in time, CPU is used

mostly by just one task.

The property could be described as ∀□(T1.Running

+T2.Running +…+ Tn.Running<=1)

 Property 7: For a specific task set and partition time

budget configuration, the given task set is

schedulable.

∀□(T1.Error + T2.Error +…+ Tn.Error=0).

If schedule requirement can be satisfied during its

execution, all the tasks will not move into the Error

location.

 Property 8: If a partition scheduled with a priority

preemptive policy is busy, the task with the highest

priority must be the currently running task.

(﹁ProcessScheduler1.Pended) imply (curThdPri >=

getPri (head1()))

Parts of the other properties to be verified are as

follows:

∃◇Ti.Running. There is a transition sequence from the

initial state that eventually schedules Ti to execute at

least once.

Ti.Ready→Ti.Running. If the schedule request has

been dispatched and task Ti begins to wait for

scheduling, Ti could be scheduled eventually.

Ti.Running→Ti.WaitDispatch. If task Ti is

scheduled to execute, it can be terminated successfully.

Ti.WaitDispatch→Ti.Ready. Periodic tasks should

always be repeatedly activated to wait for scheduling.

Ti.Ready→(Ti.Running∧t<=s). When task Ti

becomes ready it should be scheduled to execute

within an s time unit. In the logic expression, t is a

clock variable that is set to zero when the task changes

to the ready state.

7. Analysis and Verification of The

Schedule Model

7.1. Verification Data and Process

We used UPPAAL [6] as the verification tool. We

chose a schedule case that contained 2 partitions. Each

partition contained 10 schedule tasks. The scheduling

policy of partition 1 was priority-based preemptive

scheduling, while partition 2 was round robin

scheduling. The scheduling system is presented in

Table 1.

Table 1. Partition set.

Name Budget Scheduler policy Tasks

Partition 1 1,000
Static priority preemptive

scheduling

{task1,task2,...t

ask10}

Partition 2 1,000 Round robin scheduling
{task11,task12,.

..task20}

The specifications, parameters, and time constraints

of individual tasks of the experiment are presented in

Table 2. The task data came from the schedule data of

the Herschel-Planck [13] satellite system.

By inputting the ARINC 653 scheduling model into

UPPAAL, a priced automata network was generated.

The time shifting of the model evolution could be

studied with a model simulator by observing the clock

variation or by observing time points at which trace

events happened. Furthermore, we simulated the

evolution of the scheduling model by a simulator. The

simulation process showed the current location,

interactions, the network evolution, and the clock

value of every automaton in the network. By step

simulation we traced the evolution of the model,

observed the time shift of the clock, analyzed the

errors in automaton design, and checked whether the

104 The International Arab Journal of Information Technology, Vol. 17, No. 1, January 2020

working mode met the expectations of the designer. The

simulation process is shown in Figure 7.

Table 2. Task set.

taskid Initialization time Period Execution time Priority Partition

1 0 10,000 13 1 P1

2 0 250,000 70 2 P1

3 62,500 125,000 70 3 P1

4 0 250,000 20 4 P1

5 200,000 250,000 100 5 P1

6 0 15,625 70 6 P1

7 0 20,000 70 7 P1

8 0 39,000 70 8 P1

9 0 250,000 70 9 P1

10 0 15,625 150 10 P1

11 0 125,000 400 - P2

12 0 250,000 170 - P2

13 20,000 25,000 5,000 - P2

14 20,000 250,000 720 - P2

15 20,000 250,000 230,220 - P2

16 62,500 125,000 500 - P2

17 62,500 250,000 6,000 - P2

18 200,000 250,000 6,000 - P2

19 200,000 250,000 3,000 - P2

20 0 1,000,000 1,100 - P2

7.2. Verification Result

The verification results were as follows:

At the partition scheduling level, property 1, property 2,

property 3, property 4, and property 5 were satisfied.

This also showed that at the partition scheduling level

the design of the scheduling model was consistent with

our expectations. At the task scheduling level, property

6 and property 8 were satisfied. For the specific task set,

property 7 was satisfied. This meant that for the given

task set the scheduling system was schedulable. In the

experiment, if we had changed the task set or the task

parameters, the task set may have changed to non-

schedulable. For a non-schedulable case, we can

analyze the reason that it is non-schedulable by tracking

the system evolution.

Figure 7. The step simulation of the ARINC 653 scheduling model.

Model checking uses an exhaustive method to

analyze every possible state in the system evolution.

Therefore, it provides us a way to precisely analyze the

running states and time properties for each entity in the

ARINC 653 partition scheduling system. As an

example, we can input this logic expression into the

verification system: E<>T0.Running and T0.t <= 0.

The property determines whether there exists a

possible running trace that gives T0 execution

immediately without waiting.

Figure 8. The simulation of the ARINC 653 scheduling model.

The simulation results of the experimental data of

this paper are shown in Figure 8. The simulation

makes it possible for us to visually observe the process

of scheduling, the dispatching of a time slice, the CPU

scheduling of each task, and the running state of each

entity in the system. In addition, the simulation

provides a visual method to precisely analyze the

scheduling and execution states of the scheduling

system.

Figure 9 shows the comparison of time required to

deem periodic schedulable task sets in paper [20] and

our method. It can be seen the method we presented

has a better time performance. Figure 10 shows the

time performance of our method. In the beginning,

with the number of tasks increases, the verification

time increase slowly. When the number of tasks

verified is greater than 60, time tends to grow faster.

When the number of verification tasks is 100, the

required verification time is 31.38s. When the number

of tasks to be verified is greater than 100, the time

tends to grow more and more faster with the increase

of the number of tasks.

Figure 9. Average runtime of the exact test [20] vs. our test for

schedulable task sets.

Modelling and Verification of ARINC 653 Hierarchical Preemptive Scheduling 105

Figure 10. Average runtime of verification.

8. Conclusions

In this paper we discussed how to use a formal method

and verification tools to analyze and verify the ARINC

653 hierarchical scheduling system. Based on priced TA

theory, an ARINC 653 scheduling system, including

partitions, tasks, and a hierarchical scheduler was

modeled as a priced TA network. The schedulability of

the system was described as a set of temporal logic

expressions, and schedulability was analyzed and

verified by model checking. In addition, we discussed

the analysis of a specific ARINC 653 partition

scheduling case. The method proposed solved the

modelling of preemptive scheduling by introducing

priced TA. Our research shows that it is workable to use

verification tools such UPPAAL to analyze the

schedulaibity of tasks set in an ARINC 653 hierarchical

scheduling system. Unlike traditional scheduling

analysis methods, the formal method we propose

exhaustively analyzes the schedulability of a system,

resulting in a more precise analysis.

In future distributed multicore Integrated Modular

Avionics systems (IMA) [18], the scheduling

mechanism and task model will be changed, so future

work for us is to study the analysis and verification of

the scheduling process in that distributed multicore

environment.

Acknowledgements

This research was supported by The National Key

Research and Development Program of China (No:

2017YFB1001902).

References

[1] Alur R., Courcoubetis C., Halbwachs N.,
Henzinger T., Ho P., Nicollin N., Olivero A.,

Sifakis J., and Yovine S., “The Algorithmic

Analysis of Hybrid Systems,” Theoretical

Computer Science, vol. 138, no. 1, pp. 3-34, 1995.

[2] Alur R. and Dill D., “A Theory of Timed

Automata,” Theoretical Computer Science, vol.

126, no. 2, pp. 183-235, 1994.

[3] Amnell T., Fersman E., Mokrushin L., Petterssou

P., and Yi W., “TIMES B-A Tool for Modelling

and Implementation of Embedded Systems,” in

Proceedings of Tools and Algorithms for the

Construction and Analysis of Systems, Grenoble,

pp. 460-464, 2002.

[4] Asberg M., Pettersson P., and Nolte T.,

“Modelling, Verification and Synthesis of Two-

Tier Hierarchical Fixed-Priority Preemptive

Scheduling,” in Proceedings of 23rd Euromicro

Conference on Real-Time Systems, Porto, pp.

172-181, 2011.

[5] Aziz M. and Shah S., “Evolutionary Testing for

Timing Analysis of Parallel Embedded Software,”

The International Arab Journal of Information

Technology, vol. 16, no. 3, pp. 415-423, 2019.

[6] Behrmann G., David A., and Larsen K., A

Tutorial on Uppaal, Springer, 2004.

[7] Burns A., Advances in Real-Time Systems,
Upper Prentice-Hall, 1994.

[8] Committee A., “Avionics Application Software

Standard Interface Part 1-Required Services,”

ARINC Specification 653P1-2, Technical

Standard, Aeronautical Radio Inc., Annapolis,

Maryland, 2006.

[9] Daum M., Dörrenbächer J., and Wolff B.,

“Proving Fairness and Implementation

Correctness of A Microkernel Scheduler,”

Journal of Automated Reasoning, vol. 42, no. 2-

4, pp. 349-388, 2009.

[10] Davis R. and Burns A., “Hierarchical Fixed

Priority Pre-Emptive Scheduling,” in

Proceedings of 26th IEEE International

Symposium on Real-Time Systems, Miami, pp.

388-398, 2005.

[11] Glaubius R., Tidwell T., Smart W., and Gill C.,

“Scheduling Design and Verification for Open

Soft Real-Time Systems,” in Proceedings of

IEEE International Symposium on Real-Time

Systems, Barcelona, pp. 505-514, 2008.

[12] Liu Q., Gui S., Luo L., and Li Y.,

“Schedulability Verification of AADL Model

Based on UPPAAL,” Journal of Computer

Applications Computer Applications, vol. 29, no.

7, pp. 1820-1824, 2009.

[13] Mikučionis M., Larsen K., Rasmussen J., and

Nielsen B., Schedulability Analysis Using

Uppaal: Herschel-Planck Case Study, Springer,

2010.

[14] Nasri M., Nelissen G., and Brandenburg B.,

“Response-Time Analysis of Limited-

Preemptive Parallel DAG Tasks under Global

Scheduling,” in Proceedings of Euromicro

Conference on Real-Time Systems, Dagstuhl, pp.

1-23, 2019.

[15] Regehr J., Reid A., Webb K., Parker M., and

Lepreau J., “Evolving Real-Time Systems Using

Hierarchical Scheduling and Concurrency

Analysis,” in Proceedings of 24th IEEE

International Symposium on Real-Time Systems,

Cancun, pp. 25-36, 2003.

https://www.sciencedirect.com/science/article/pii/030439759400202T#!
https://ieeexplore.ieee.org/author/37268078000
https://www.researchgate.net/journal/1001-9081_Journal_of_Computer_Applications
https://www.researchgate.net/journal/1001-9081_Journal_of_Computer_Applications
https://ieeexplore.ieee.org/author/37275053700
https://ieeexplore.ieee.org/author/37268069900

106 The International Arab Journal of Information Technology, Vol. 17, No. 1, January 2020

[16] Serrano M., Melani A., Bertogna M., and
Quinones E., “Response-Time Analysis of DAG

Tasks under Fixed Priority Scheduling with

Limited Preemptions,” in Proceedings of Design,

Automation and Test in Europe Conference and

Exhibition, Dresden, pp. 1066-1071, 2016.

[17] Sokolsky O. and Chernoguzov A., “Analysis of

AADL Models Using Real-Time Calculus with

Applications to Wireless Architectures,”

Technical Report No.MS-CIS-08-25, University

of Pennsylvania, 2008.

[18] Wang T. and Qingfan G., “Research on

Distributed Integrated Modular Avionics System

Architecture Design and Implementation,” in

Proceedings of 32nd IEEE/AIAA International

Conference on Digital Avionics Systems, East

Syracuse, pp. 1-53, 2013.

[19] Waszniowski L. and Hanzálek Z., “Formal

Verification of Multitasking Applications Based

on Timed Automata Model,” Real-Time Systems,

vol. 38, no. 1, pp. 39-65, 2008.

[20] Yalcinkaya B., Nasri M., and Brandenburg B.,

“An Exact Schedulability Test for Non-

Preemptive Self-Suspending Real-Time Tasks,”

in Proceedings of the Design, Automation and

Test in Europe Conference and Exhibition,

Florence, pp. 1-8, 2019.

Ning Fu is an assistant research

fellow at the School of Computer,

Northwestern Polytechnical

University, Xi'an. He received his

Ph.D. (2010) degree in computer

science and technology from

Northwestern Polytechnical

University. His main research

interests focus on modelling and verification

embedded system by formal methods.

Lijun Shan is a lecturer at the

School of Computer, Northwestern

Polytechnical University, Xi'an. She

received her Ph.D. degree in

computer science and technology

from National University of Defense

Technology. Her main research

interests include Model-Driven Development Method

and Formal Method.

Chenglie Du is a professor, Ph.D.

supervisor at the School of

Computer, Northwestern

Polytechnical University. His main

research interests include Cyber-

Physical system modelling &

analysis and trustworthy software

architecture.

Zhiqiang Liu is an associate

professor at the School of Software

and Microelectronics, Northwestern

Polytechnical University, Xi’an. His

current research interests focus on

modelling and verification embedded

system by formal methods.

Han Peng is a PhD candidate at the

School of Computer, Northwestern

Polytechnical University, Xi'an. His

current research interests focus on

modelling and verification Cyber-

Physical system by formal methods.

https://ieeexplore.ieee.org/xpl/conhome/8704855/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8704855/proceeding

