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Abstract

In 1986, Shi derived the famous formula (n + 1)n−1 for the number of regions
of the Shi arrangement, a hyperplane arrangement in Rn. There are at least two
different bijective explanations of this formula, one by Pak and Stanley, another by
Athanasiadis and Linusson. In 1996, Athanasiadis used the finite field method to
derive a formula for the number of k-dimensional faces of the Shi arrangement for
any k. Until now, the formula of Athanasiadis did not have a bijective explanation.
In this paper, we extend a bijection for regions defined by Bernardi to obtain a
bijection between the k-dimensional faces of the Shi arrangement for any k and
a set of decorated binary trees. Furthermore, we show how these trees can be
converted to a simple set of functions of the form f : [n− 1]→ [n+ 1] together with
a marked subset of Im(f). This correspondence gives the first bijective proof of the
formula of Athanasiadis. In the process, we also obtain a bijection and counting
formula for the faces of the Catalan arrangement. All of our results generalize to
both extended arrangements.

Mathematics Subject Classifications: 05A15, 05A19
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1 Introduction

A (real) hyperplane arrangement is a finite collection of affine hyperplanes in Rn for n > 1.
There are several interesting examples, including the braid, Catalan, and Shi arrangements
(defined below). These arrangements have been studied in numerous research papers, such
as [2, 6, 7, 22, 17, 24, 19, 18, 11, 8, 16, 5]. However, one aspect of these arrangements
that has received less attention is their faces, which are the focus of this paper. Our main
result is an explicit bijection between the faces of the Catalan/Shi arrangements and
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Figure 1: The braid, Shi, and Catalan hyperplane arrangements1 in R3.

certain decorated binary trees. In turn, we obtain a bijective explanation for counting
formulae that were previously only obtained by a finite field method. We start with some
basic definitions.

1.1 Hyperplane arrangements

The regions of a hyperplane arrangement are the connected components of the comple-
ment of its hyperplanes. The braid arrangement in Rn is the collection of hyperplanes

xi − xj = 0, for 1 6 i < j 6 n.

It is not hard to see that there are n! regions, one for each possible relative ordering of
the coordinates (pi) ∈ Rn. The Shi arrangement in Rn is the collection of hyperplanes

xi − xj = 0, 1, for 1 6 i < j 6 n.

It is known that there are (n+ 1)n−1 regions. This formula was first derived algebraically
by Shi [25] in 1986, and later re-proved bijectively [7, 8, 26, 13]. The Catalan arrangement
in Rn is the collection of hyperplanes

xi − xj = 0, 1, for 1 6 i, j 6 n.

There are n!Catn regions, where Catn = (2n)!
n!(n+1)!

is the nth Catalan number. This re-

sult first appeared explicitly in [26], where it is obtained by describing a connection to
semiorders. All three arrangements are shown in Figure 1 for n = 3.

1.2 Faces

A face of a hyperplane arrangement is the solution set to a non-void system of equalities
and (strict2) inequalities, one for each hyperplane. The dimension of a face is the dimen-

1Technically speaking, Figure 1 displays the induced hyperplane arrangements in the vector space
{(x1, x2, x3) ∈ R3 | ∑xi = 0} ∼= R2. Such induced arrangements are referred to in the literature as
“essentializations”. In this paper, we will not use any essentializations.

2We use strict inequalities so that the faces are disjoint as subsets of Rn. Taking the topological
closure of our faces gives the conventional notion of a face.
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sion of its affine span. The regions are the highest-dimensional faces. Viewing the regions
as polytopes, the faces of the arrangement are the (open) faces of these polytopes. We
also refer to the faces of the braid (resp. Shi, Catalan) arrangement as braid (resp. Shi,
Catalan) faces .

The braid faces have an easy combinatorial description, which we recall now. A set
partition of a set X is a set of pairwise-disjoint nonempty subsets, called blocks , whose
union equals X. The number of set partitions of an n-element set with k blocks is denoted
by S(n, k), and called the Stirling number of the second kind . An ordered set partition
of a set X is a set partition of X with a chosen ordering of the blocks. The number of
ordered set partitions of an n-element set with k blocks is therefore k!S(n, k).

Here and throughout we use the notation [n] for the set {1,2,. . . ,n}. It is not hard
to prove that the braid faces are in bijection with ordered set partitions of [n] (see [28,
Exercise 2.10]). From this bijection we obtain the counting formula k!S(n, k) for the
number of Braid faces of dimension k = 1, 2, . . . , n.

Counting the Catalan and Shi faces is not so simple. In 1996, Athanasiadis devised the
innovative “finite field method,” and thereby obtained counting formulae for the number
of faces of these arrangements. His result for the Shi arrangement is the following:

Theorem 1. [3, Cor. 8.2.2] [4, Thm. 6.4] The number of k-dimensional faces of the Shi
arrangement in Rn is(

n

k

) n−k∑
i=0

(
n− k
i

)
(−1)i(n− i+ 1)n−1, 1 6 k 6 n. (1.1)

Athanasiadis remarked that, by inclusion-exclusion, the formula (1.1) enumerates the
set of marked functions , (f, S) |

f : [n− 1]→ [n+ 1]
S ⊂ Im(f) ∩ [n]
|S| = n− k

 , (1.2)

where Im(f) denotes the image of f . He raised the question of a bijective explanation.
One of our main results is an answer to this question, that is, an explicit bijection between
the set of Shi faces and the set of marked functions in (1.2).

1.3 Main results

We have three main results. First, we obtain a bijection between the set of Catalan faces
and a set of decorated binary trees that we call [n]-decorated binary trees. Second, using
the map for Catalan faces as an ingredient, we obtain a bijection between the set of Shi
faces and a simple subset of these trees (namely, those that “decrease to the right”). The
key fact is that among all Catalan faces belonging to a given Shi face, there is a unique
face whose corresponding tree is “decreasing to the right.” Our bijection (and overall
method) is an extension of an approach for regions due to Bernardi [8]. Our third result
is a bijection between the trees corresponding to Shi faces and the set of marked functions
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(1.2). An example of the resulting bijections for the Shi arrangement with n = 3 is shown
in Figure 2.

Furthermore, our results extend to the “extended arrangements,” indexed by an integer
parameter m > 1. The m-Catalan arrangement in Rn is the collection of hyperplanes

xi − xj = 0, 1, . . . ,m− 1,m, for 1 6 i, j 6 n.

The m-Shi arrangement in Rn is the collection of hyperplanes

xi − xj = −m+ 1, . . . ,m− 1,m, for 1 6 i < j 6 n.

The classical arrangements are obtained by specializing to m = 1. For any m > 1,
we describe an explicit bijection between the faces of these arrangements and certain
decorated (m+1)-ary trees. In the m-Shi case, we also obtain a set of functions analogous
to those in (1.2). The counting formulae were already found by Athanasiadis, but the
bijective correspondences are new.

1.4 Outline of this paper

In Section 2 we give the definitions of the bijections between the faces of the extended
Catalan/Shi arrangements and the appropriate decorated trees. In Section 3 we prove that
the map for Catalan faces is a bijection, including constructing an inverse. In Section 4
we prove that the map for Shi faces is a bijection. The other sections can be read even
if these two proof sections are skipped. In Section 5 we give additional bijections to
other combinatorial classes equinumerous to the Shi faces including the marked functions
in (1.2). Enumerative consequences (generating functions and counting formulae) are
derived in Section 6. We conclude with some open questions in Section 7.

2 Bijections from faces to trees

In this section, we describe our two main bijections. First, we describe our bijection
from a set of decorated trees to the faces of the Catalan arrangement. We also give a
generalization for the m-Catalan arrangement. Next, we describe our bijection from a
sub-family of the decorated trees to the faces of the Shi arrangement, and we also give
the analogous result for the m-Shi arrangement. We postpone the proofs until Section 3
and Section 4.

2.1 Result for the Catalan arrangement

We first clarify the appropriate set of trees, and then describe our bijection.

2.1.1 Decorated binary trees

A tree is a finite connected acyclic graph. A rooted tree is a tree with a distinguished
vertex, which is called its root . We adopt the usual vocabulary of parent , children, siblings ,
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Figure 2: The two-dimensional faces of the Shi arrangement in R3, each labeled by its
image under our bijection to “marked functions,” that is, pairs (f, {s}) where f : [2]→ [4],
displayed as a number sequence, and s ∈ Im(f)∩ [3], shown by underlining the number s.
In addition, we display each of the corresponding [3]-decorated binary trees with exactly
two free nodes and such that all right internal edges are descents. The bijection between
faces and trees is described in Section 2.3, and the bijection between trees and “marked
functions” is described in Section 5.

leaves (vertices with no children), and nodes (vertices with some children). When drawing
rooted trees, we conventionally draw the root at the base, meaning e.g. that a child appears
above its parent. A rooted plane tree is a rooted tree with a chosen ordering of the children
of each node. A binary tree is a rooted plane tree such that each vertex has either 2 or 0
children. For binary trees, the first child of a node is called its left-child , and the second
is called its right-child . The edge connecting a node to its left (resp. right) child is called
a left (resp. right) edge. An internal edge is an edge between two nodes.

Definition 2. An [n]-decorated binary tree is a binary tree together with the following
decorations:

• Each node is labeled with a non-empty subset of [n]. Together, the set of labels
forms a partition of [n].
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• All right internal edges are of two types: solid and dashed.

We consider any edge that is not dashed to be solid, in particular, all left-edges must
always be solid.

Figure 3 shows a [7]-decorated binary tree. To define our bijection between Catalan

2, 3

1

5

7

4

6

Figure 3: A [7]-decorated binary tree.

faces and [n]-decorated binary trees, we require a certain total ordering on the set of
vertices. For v any vertex in a binary tree, let ρ(v) denote the word in the alphabet
{E0, E1} encoding the path from the root to v, where E0 refers to taking a left-edge, and
E1 refers to taking a right-edge. Let ρ(v) be the number of right-edges in this path.

Definition 3. Let T be a binary tree and let v 6= w be two vertices. We say v ≺T w if
either:

• ρ(v) < ρ(w), or

• ρ(v) = ρ(w) and either ρ(v) is a proper prefix of ρ(w), or the first index at which
they differ has E1 in ρ(v) and E0 in ρ(w).

This order is illustrated by example in Figure 4.

2.1.2 Bijection from [n]-decorated binary trees to Catalan faces

In this subsection, we will define the bijection between Catalan faces in Rn and [n]-
decorated binary trees. To define the map, we require some further vocabulary and
notation.

Definition 4. Let T be an [n]-decorated binary tree. A captive node of T is a node that
is connected to its parent by a dashed edge. A free node is a node that is not a captive
node.
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Figure 4: In this binary tree, a ≺T b ≺T · · · ≺T m.

Definition 5. Let T be an [n]-decorated binary tree. For i ∈ [n],

(1) Let vT (i) denote the unique node of T whose label contains i.

(2) Let v1T (i) denote the right-child vertex of vT (i)

Our main result about the faces of the Catalan arrangement is the following:

Theorem 6. For any [n]-decorated binary tree T , there exists a unique Catalan face c in
Rn consisting of all points p = (p1, . . . , pn) for which the following three conditions hold:

(1) For all i, j ∈ [n], pi 6 pj if and only if vT (i) �T vT (j).

(2) For all i, j ∈ [n], pi < pj + 1 if and only if vT (i) ≺T v1T (j).

(3) For all i, j ∈ [n], pi = pj +1 if and only if vT (i) = v1T (j) and v1T (j) is a captive node.

Let ΦCatn denote the associated mapping T 7→ c. Then ΦCatn is a bijection from [n]-
decorated binary trees to Catalan faces in Rn. Furthermore, an [n]-decorated binary tree
T has k free nodes if and only if ΦCatn(T ) is a face of dimension k.

Theorem 6 follows from setting m = 1 in Theorem 14, our result for the m-Catalan
arrangement. A selection of examples of the correspondence is shown in Figure 5. The
map ΦCatn can be made very explicit at the level of individual hyperplanes as follows. A
Catalan face may be defined by a choice function

δ : {(i, j, s) | i, j ∈ [n], s ∈ {0, 1}} → {−1, 0, 1},

assigning to each hyperplane a choice of −1 (xi − xj < s), 0 (xi − xj = s), or +1
(xi − xj > s), such that the resulting system of equalities and inequalities is non-void.
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Figure 5: Some examples of the correspondence described by Theorem 6 between the
faces of the Catalan arrangement in R3 and [n]-decorated binary trees. For clarity, we
only show the 18 trees corresponding to faces within the “dominant Braid region,” that
is, those whose points p satisfy p1 6 p2 6 p3.

Given T, i, j, we define δ(i, j, 0) and δ(i, j, 1) as:

δ(i, j, 0) :=


−1 if vT (i) ≺T vT (j),

0 if vT (i) = vT (j),

+1 otherwise.

(2.1)

δ(i, j, 1) :=


−1 if vT (i) ≺T v1T (j),

0 if vT (i) = v1T (j) and v1T (j) is a captive node,

+1 otherwise.

(2.2)

The face ΦCatn(T ) is the face arising from this choice function δ. It is easy to see that
this is an equivalent definition of ΦCatn to the one given in Theorem 6.
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Example 7. Suppose T is the tree in Figure 3. Since T is a [7]-decorated binary tree
with 5 free nodes, its corresponding Catalan face lives in R7 and has dimension 5. We list
a selection of the inequalities that define the face corresponding to T .

• Using the definition of δ(i, j, 0), we obtain the relative order of all xi:

x2 = x3 < x1 < x5 < x7 < x4 < x6. (2.3)

• Since vT (2) ≺T vT (1) ≺T v1T (2), we have x2 < x1 < x2 + 1.

• Since v1T (1) = vT (4), and v1T (1) is a captive node, we have x1 + 1 = x4.

• On the other hand, v1T (2) = vT (5) but v1T (2) is a free node, so x2 + 1 < x5.

One point in the face corresponding to T is

(1.3, 1.0, 1.0, 2.3, 2.1, 2.4, 2.2).

For this example, δ is given by the following two tables:

δ(i, j, 0)
i→
j↓ 1 2 3 4 5 6 7

1 0 −1 −1 +1 +1 +1 +1
2 +1 0 0 +1 +1 +1 +1
3 +1 0 0 +1 +1 +1 +1
4 −1 −1 −1 0 −1 +1 −1
5 −1 −1 −1 +1 0 +1 +1
6 −1 −1 −1 −1 −1 0 −1
7 −1 −1 −1 +1 −1 +1 0

δ(i, j, 1)
i→
j↓ 1 2 3 4 5 6 7

1 −1 −1 −1 0 −1 +1 −1
2 −1 −1 −1 +1 +1 +1 +1
3 −1 −1 −1 +1 +1 +1 +1
4 −1 −1 −1 −1 −1 −1 −1
5 −1 −1 −1 −1 −1 −1 −1
6 −1 −1 −1 −1 −1 −1 −1
7 −1 −1 −1 −1 −1 −1 −1

The left table describes whether xi is less than, equal to, or greater than xj. This simply
encapsulates (2.3). The right table describes whether xi is less than, equal to, or greater
than xj + 1.

Remark 8. We highlight the lowest-dimensional case of Theorem 6 (k = 1). The theorem
establishes a bijection between the one-dimensional Catalan faces in Rn and [n]-decorated
binary trees with exactly one free node. It is easy to see that these trees must be right-
paths with only dashed edges (with all left-children being leaves). Each of these paths is
uniquely defined by the labels of its nodes, which form any ordered set partition. Thus,
the number of one-dimensional faces of the Catalan arrangement is

∑n
i=1 S(n, i)i!. This

result also appears in [17, Thm. 1], where it is obtained by solving a recurrence relation,
and in [3, Cor. 8.3.2] as a result of the finite field method.

2.2 Result for the m-Catalan arrangement

A few more definitions are required to state our result for the m-Catalan arrangement.
First we clarify the appropriate set of trees.
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2.2.1 Decorated m-ary trees

An m-ary tree is a rooted plane tree such that each vertex has either m or 0 children. For
a non-root vertex v, let lsib(v) denote the siblings of v to its left (strictly earlier in the
child ordering). The rank of a non-root vertex v is |lsib(v)|. For a node v such that at
least one child of rank > 0 is a node, the cadet of v is its rightmost such child3. A cadet
edge is an internal edge whose child is the cadet of the parent.

Definition 9. An [n]-decorated m-ary tree is an m-ary tree together with the following
decorations:

• Each node is labeled with a non-empty subset of [n]. Together, the set of labels
forms a partition of [n].

• All cadet edges are of two types: solid and dashed.

We consider any edge that is not dashed to be solid, in particular, all leftmost edges must
always be solid.

Note that, each node can have at most one child that is joined by a dashed edge, which
must be of rank > 0. Figure 6 shows a [9]-decorated binary tree.

To define our bijection between m-Catalan faces and [n]-decorated (m+ 1)-ary trees,
we require a certain total ordering on the set of vertices. For v any vertex in an (m+1)-ary
tree, let ρ(v) denote the word in the alphabet {E0, E1, . . . , Em} encoding the path from
the root to v, where Ei refers to taking an edge of rank i. Let ρ(v) :=

∑
i>0 i · |ρi(v)|

where |ρi(v)| is the number of occurrences of letter Ei in ρ(v).

Definition 10. Let T be an m-ary tree and let v 6= w be two vertices. We say v ≺T w if
either:

• ρ(v) < ρ(w), or

• ρ(v) = ρ(w) and either ρ(v) is a proper prefix of ρ(w), or the first index at which
they differ has Eb in ρ(v) and Ea in ρ(w) with a < b.

The important features of this ordering are the following:

(PR0) The root of T is the ≺T minimum vertex.

(PR1) A node is immediately followed in the ≺T order by its child of rank 0.

(PR2) For vertices v, w each of rank > 0, v ≺T w if and only if left(v) ≺T left(w), where
left(v) is the sibling of v with rank one less than the rank of v.

One can show that the ≺T order is the unique order satisfying (PR0), (PR1), and (PR2).
This order is illustrated by example in Figure 7.

3In [8] “cadet” is used to mean the rightmost child that is a node. Our definition differs in that the
cadet must have rank > 0. The word comes from genealogy, in which it refers to a junior heir.
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2.2.2 Bijection from [n]-decorated (m+ 1)-ary trees to m-Catalan faces

In this subsection, we will define the bijection between m-Catalan faces in Rn and [n]-
decorated (m+ 1)-ary trees. To define the map, we require some further vocabulary and
notation.

Definition 11. Let T be an [n]-decorated (m + 1)-ary tree. A captive node of T is a
node that is connected to its parent by a dashed edge. A free node is a node that is not
a captive node.

Definition 12. Let T be an [n]-decorated (m + 1)-ary tree. A dead leaf of T is a leaf `
such that there is a captive node in lsib(`). Any vertex that is not a dead leaf is said to
be live.

Definition 13. Let T be an [n]-decorated (m+ 1)-ary tree.

(1) For i ∈ [n], let vT (i) denote the unique node of T whose label contains i.

(2) For i ∈ [n] and s ∈ [0,m], let vsT (i) denote the child vertex of vT (i) of rank s.
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(3) For v a vertex in T , let nextlive(v) denote the minimum live vertex of T in the ≺T
order that is greater than or equal to v.

For example, if T is the [9]-decorated 3-ary tree shown in Figure 6, then:

• The edge from vT (6) to vT (7) is a cadet edge, as is the edge from vT (1) to vT (3).

• This T contains two dead leaves, v2T (1) and v2T (3).

• We have e.g. nextlive(v1T (1)) = vT (3) and nextlive(v2T (1)) = vT (8).

A dashed path is a path consisting of only dashed edges. For integers a 6 b, let
[a, b] := {a, a+ 1, . . . , b}. Our main result about the faces of the m-Catalan arrangement
is the following:

Theorem 14. For any [n]-decorated (m+ 1)-ary tree T , there exists a unique m-Catalan
face c in Rn consisting of all points p = (p1, . . . , pn) for which the following three conditions
hold:

(C1) For all i, j ∈ [n], pi 6 pj if and only if vT (i) �T vT (j).

(C2) For all i, j ∈ [n], and s ∈ [1,m], pi < pj + s if and only if vT (i) ≺T vsT (j).

(C3) For all i, j ∈ [n], and s ∈ [1,m], pi = pj + s if and only if vT (i) = nextlive(vsT (j))
and there is a dashed path from vT (j) to vT (i).

Let ΦCatn denote the associated mapping T 7→ c 4. Then ΦCatn is a bijection from [n]-
decorated (m + 1)-ary trees to m-Catalan faces in Rn. Furthermore, an [n]-decorated
(m+ 1)-ary tree T has k free nodes if and only if ΦCatn(T ) is a face of dimension k.

We will prove Theorem 14 in Section 3. The map ΦCatn can be made very explicit at
the level of individual hyperplanes as follows. An m-Catalan face may be defined by a
choice function

δ : {(i, j, s) | i, j ∈ [n], s ∈ [0,m]} → {−1, 0, 1},
assigning to each hyperplane a choice of −1 (xi − xj < s), 0 (xi − xj = s), or +1
(xi − xj > s), such that the resulting system of equalities and inequalities is non-void.
Given T, i, j, we define δ(i, j, 0) and δ(i, j, s) for s ∈ [1,m] as:

δ(i, j, 0) :=


−1 if vT (i) ≺T vT (j),

0 if vT (i) = vT (j),

+1 otherwise.

(2.4)

δ(i, j, s) :=


−1 if vT (i) ≺T vsT (j),

0
if vT (i) = nextlive(vsT (j)) and
there is a dashed path from vT (j)
to vT (i),

+1 otherwise.

(2.5)

4The map in Theorem 6 is a special case of this map, namely the case m = 1. We use the same symbol
for both, since the value of m may be inferred from context.
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The face ΦCatn(T ) is the face arising from this choice function δ. It is easy to see that this
is an equivalent definition of ΦCatn to the one given in Theorem 14. We also note that
δ is unchanged if the first case in (2.5) is replaced by “−1 if vT (i) ≺T nextlive(vsT (j))”,
which bears a closer resemblance to the second case.

Example 15. Suppose T is the tree in Figure 6. Since T is a [9]-decorated 3-ary tree
with 6 free nodes, its corresponding 3-Catalan face lives in R9 and has dimension 6. We
list a selection of the inequalities that define the face corresponding to T .

• Using the definition of δ(i, j, 0), we obtain the relative order of all xi:

x6 < x4 = x5 < x2 < x1 < x7 < x3 < x9 < x8.

• Since nextlive(v2T (1)) = vT (8), with a dashed path from vT (1) to vT (8), we have
x1 + 2 = x8. Similarly, we also have x3 + 1 = x8, and we must also have x1 + 1 = x3.

• On the other hand nextlive(v1T (7)) = vT (9) but with a solid path, so we have x7+1 <
x9.

One point in the face corresponding to T is

(2.3, 1.5, 3.3, 1.4, 1.4, 1.0, 3.1, 4.3, 4.2).

For this example, δ is given by the following three tables:

δ(i, j, 0)
i→
j↓ 1 2 3 4 5 6 7 8 9

1 0 +1 −1 +1 +1 +1 −1 −1 −1
2 −1 0 −1 +1 +1 +1 −1 −1 −1
3 +1 +1 0 +1 +1 +1 +1 −1 −1
4 −1 −1 −1 0 0 +1 −1 −1 −1
5 −1 −1 −1 0 0 +1 −1 −1 −1
6 −1 −1 −1 −1 −1 0 −1 −1 −1
7 +1 +1 −1 +1 +1 +1 0 −1 −1
8 +1 +1 +1 +1 +1 +1 +1 0 +1
9 +1 +1 +1 +1 +1 +1 +1 −1 0

δ(i, j, 1)
i→
j↓ 1 2 3 4 5 6 7 8 9

1 −1 −1 −1 −1 −1 +1 −1 −1 −1
2 −1 −1 −1 −1 −1 −1 −1 −1 −1
3 0 +1 −1 +1 +1 +1 −1 −1 −1
4 −1 −1 −1 −1 −1 −1 −1 −1 −1
5 −1 −1 −1 −1 −1 −1 −1 −1 −1
6 −1 −1 −1 −1 −1 −1 −1 −1 −1
7 −1 +1 −1 +1 +1 +1 −1 −1 −1
8 +1 +1 0 +1 +1 +1 +1 −1 −1
9 +1 +1 −1 +1 +1 +1 +1 −1 −1

δ(i, j, 2)
i→
j↓ 1 2 3 4 5 6 7 8 9

1 −1 −1 −1 −1 −1 −1 −1 −1 −1
2 −1 −1 −1 −1 −1 −1 −1 −1 −1
3 −1 −1 −1 −1 −1 +1 −1 −1 −1
4 −1 −1 −1 −1 −1 −1 −1 −1 −1
5 −1 −1 −1 −1 −1 −1 −1 −1 −1
6 −1 −1 −1 −1 −1 −1 −1 −1 −1
7 −1 −1 −1 −1 −1 +1 −1 −1 −1
8 0 +1 −1 +1 +1 +1 −1 −1 −1
9 −1 +1 −1 +1 +1 +1 −1 −1 −1

Remark 16. It is possible to phrase (C3) without reference to “nextlive(vsT (j)).” The drift
of a path of vertices (v1, . . . , vt) is

∑t
i=1 |lsib(vi)|. One can show that (C3) can be replaced

by
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(C3′) For all i, j ∈ [n], and s ∈ [1,m], pi = pj + s if and only if there is a dashed path
from vT (j) to vT (i) whose drift is equal to s.

This condition will also hold for s > m, unlike (C3). The proof that (C3) ⇐⇒ (C3′) can
be done through Lemma 25. We have chosen to use (C3) as stated because of its greater
resemblance to the other conditions (C1) and (C2).

Remark 17. We highlight the lowest-dimensional case of Theorem 14 (k = 1). The
theorem establishes a bijection between the one-dimensional m-Catalan faces in Rn and
[n]-decorated (m + 1)-ary trees with exactly one free node. For these trees, all nodes
except the root are captive nodes. Such a tree consists of a single dashed path, where the
siblings of each node are all leaves. The number of such trees is

n∑
i=1

S(n, i)i!mi−1,

since the node labels are described by an ordered set partition, and the number of left-
sibling leaves for each of the captive nodes may be any number in [1,m]. This result was
first obtained by the finite field method [3, Thm. 8.3.1, coefficient on tn−1].

2.3 Result for the Shi arrangement

We require two additional definitions to state the bijections.

Definition 18. An internal edge of an [n]-decorated (m + 1)-ary tree is a descent if
maxA > minB, where A is the label of the parent and B is that of the child.

Definition 19. A [n]-decorated binary tree is of Shi type if all right internal edges are
descents.

For example, all of the trees shown in Figure 2 are of Shi type. Let
(
[n]
2

)
:= {(i, j) ∈

[n]× [n] | i < j}. Our main result about the Shi faces is the following:

Theorem 20. For any [n]-decorated binary tree T of Shi type, there exists a unique Shi
face s in Rn consisting of all points p = (p1, . . . , pn) for which the following three conditions
hold:

(1) For all i, j ∈ [n], pi 6 pj if and only if vT (i) �T vT (j).

(2) For all (i, j) ∈
(
[n]
2

)
, pi < pj + 1 if and only if vT (i) ≺T v1T (j).

(3) For all (i, j) ∈
(
[n]
2

)
, pi = pj + 1 if and only if vT (i) = v1T (j) and v1T (j) is a captive

node.

Let ΦShin denote the associated mapping T 7→ s.5 Then ΦShin is a bijection from [n]-
decorated binary trees of Shi type to Shi faces in Rn. Furthermore, an [n]-decorated binary
tree of Shi type T has k free nodes if and only if ΦShin(T ) is a face of dimension k.

5The map in Theorem 20 is a special case of this map, namely the case m = 1. We use the same
symbol for both, since the value of m may be inferred from context.
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Equivalently, one could simply define ΦShin(T ) to be the unique Shi face in Rn that
contains all points in the Catalan face ΦCatn(T ). Theorem 20 follows from setting m = 1
in Theorem 23, our result for the m-Shi arrangement. Figure 2 shows the bijection ΦShin

for the 21 Shi faces of dimension 2 in R3.
As we did for ΦCatn , the map ΦShin can be made explicit at the level of individual

hyperplanes. A Shi face may be defined by a choice function

δShin : {(i, j, s) | 1 6 i < j 6 n, s ∈ {0, 1}} → {−1, 0, 1}. (2.6)

Let δCatn be the choice function corresponding to T given by (2.1) and (2.2). Then the
choice function δShin for the face ΦShin(T ) is simply the restriction of δCatn to the domain
in (2.6).

Remark 21. We highlight the lowest-dimensional case of Theorem 20 (k = 1). Specialized
to this case, Theorem 20 establishes a bijection between the one-dimensional Shi faces
in Rn and [n]-decorated binary trees of Shi type with exactly one free node. As in
Remark 8, these trees must be right-paths with all nodes joined by dashed edges (with all
left-children being leaves). Furthermore, all right-edges must be descents. Each of these
paths is uniquely defined by the labels of its nodes, which form the ascending runs of any
permutation of [n]. It follows that the number of one-dimensional Shi faces in Rn is n!.

2.4 Result for the m-Shi arrangement

Definition 22. An [n]-decorated (m + 1)-ary tree is of Shi type if all internal edges of
rank m are descents.

Our main result about the m-Shi faces is the following:

Theorem 23. For any [n]-decorated (m+ 1)-ary tree T of Shi type, there exists a unique
m-Shi face s in Rn consisting of all points p = (p1, . . . , pn) for which the following five
conditions hold:

(S1) For all i, j ∈ [n], pi 6 pj if and only if vT (i) �T vT (j).

(S2) For all i, j ∈ [n] and s ∈ [1,m− 1], pi < pj + s if and only if vT (i) ≺T vsT (j).

(S2M) For all (i, j) ∈
(
[n]
2

)
, pi < pj +m if and only if vT (i) ≺T vmT (j).

(S3) For all i, j ∈ [n] and s ∈ [1,m− 1], pi = pj + s if and only if vT (i) = nextlive(vsT (j))
and there is a dashed path from vT (j) to vT (i).

(S3M) For all (i, j) ∈
(
[n]
2

)
, pi = pj + m if and only if vT (i) = nextlive(vmT (j)) and there is

a dashed path from vT (j) to vT (i).

Let ΦShin denote the associated mapping T 7→ s. Then ΦShin is a bijection from [n]-
decorated (m+1)-ary trees of Shi type to m-Shi faces in Rn. Furthermore, an [n]-decorated
(m+1)-ary tree of Shi type T has k free nodes if and only if ΦShin(T ) is a face of dimension
k.
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Equivalently, one could simply define ΦShin(T ) to be the unique m-Shi face in Rn that
contains all points in the m-Catalan face ΦCatn(T ). We will use this latter formulation
in the proof of Theorem 23 in Section 4. The key fact underlying Theorem 23 is that for
every m-Shi face s, there is one and only one m-Catalan face contained by s such that
Φ−1Catn

(c) is of Shi type.
As we did for ΦCatn , the map ΦShin can be made explicit at the level of individual

hyperplanes. An m-Shi face may be defined by a choice function

δShin : {(i, j, s) | 1 6 i < j 6 n, s ∈ [−m+ 1,m]} → {−1, 0, 1}.

Let δCatn be the choice function corresponding to T given by (2.4) and (2.5). Then the
face ΦShin(T ) is given by the following δShin . For i, j ∈

(
[n]
2

)
and s ∈ [−m+ 1,m],

δShin(i, j, s) =

{
δCatn(i, j, s) if s > 0

−δCatn(j, i,−s) if s < 0.

Put another way, we can re-use the choice function for the m-Catalan face corresponding
to T , and then “forget” the choices for hyperplanes that are not in the m-Shi arrangement.

Remark 24. We highlight the lowest-dimensional case of Theorem 23 (k = 1). Specialized
to this case, Theorem 23 establishes a bijection between the one-dimensional m-Shi faces
in Rn and [n]-decorated (m + 1)-ary trees of Shi type with exactly one free node. As in
Remark 17, all nodes except the root are captive nodes, so the tree must be simply a path
of captive nodes each with siblings that are all leaves. Furthermore, any internal edges of
rank m must be descents. One can show that the number of such trees is

mn−1n!, (2.7)

which we leave as an exercise for the reader. It follows that the number of one-dimensional
m-Shi faces in Rn is given by (2.7). This striking formula also follows easily from [3,
Thm. 8.2.1], which is obtained using the finite field method. This formula has been
further refined in [14, Cor. 4.3] via a recurrence relation. This result will reappear later
as a consequence of our general bijection from trees of Shi type to certain functions
f : [n− 1]→ [mn+ 1] in Subsection 5.2.

3 Proof that ΦCatn is a bijection

In this section we will prove Theorem 14, which implies Theorem 6. Throughout this
section, T is a given [n]-decorated (m+1)-ary tree. We separate this proof into five distinct
elements: existence and uniqueness of the m-Catalan face, injectivity and surjectivity of
ΦCatn , and the grading by dimension. From our point of view, the hardest element to
prove is surjectivity, which will require several additional definitions and lemmas.

Before moving to these proofs, we record a useful lemma, which will be used in the
following sections, and again later in Subsection 4.3.
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Lemma 25. Let R be an [n]-decorated (m+ 1)-ary tree and let ` be a dead leaf of R. Let
v, k be such that ` is the kth right-sibling of a captive node v, meaning the rank of ` is k
more than the rank of v. Then the vertex immediately following ` in the ≺R order is the
child of v of rank k.

Proof. We use induction on k, starting with k = 1. Recall from (PR0) that the vertex
immediately following v is its child of rank 0. Letting v1 be the child of v of rank 1, it
then follows from (PR2) that ` ≺R v1. Now suppose there exists a vertex u such that
` ≺R u ≺R v1. Either u has rank > 0, in which case we may apply (PR2) to obtain a
vertex strictly between v and v0, which is impossible by (PR0), or u has rank 0 and we
may replace u by its parent, repeating until u has rank > 0, all the while maintaining
` ≺R u ≺R v1 by (PR1). We must eventually replace u by a node of rank > 0, since
` ≺R u and ` is a leaf (here we have used (PR0)). Thus, in either case we eventually reach
a contradiction. The inductive step for general k follows by analogous reasoning.

Lemma 25 can be used to give an explicit description of nextlive(v) for any vertex v.
If v is live, then nextlive(v) = v. If v is dead, then we may apply Lemma 25 to advance
the ≺R order by one vertex, and repeat as necessary. We omit the details, since this is
not needed for our purposes.

3.1 Existence, uniqueness, and grading by dimension

In this subsection, we will prove the existence and uniqueness of the m-Catalan face
corresponding to T , and that this face has dimension k, where k is the number of free
nodes of T .

We first point out that uniqueness is trivial, since the hyperplanes of the m-Catalan
arrangement consist of all those of the form xi = xj + s for i, j ∈ [n] and s ∈ [0,m]. If
two m-Catalan faces are on the same side of all m-Catalan hyperplanes then they must
be the same face.

We will show existence and dimension grading at the same time. We say a point
p ∈ Rn is valid (for T ) if it satisfies conditions (C1), (C2), and (C3) from Theorem 14.
To show existence, it is enough to construct a single valid point p ∈ Rn, since whichever
m-Catalan face contains p will satisfy the requirements of Theorem 14. Fix a vector of
positive reals ε = (ε0, ε1, . . . , εk−1) ∈ Rk

>0 such that ε0 < 1/2 and for all q ∈ [k − 1] we
have εq <

εq−1

2
.

Let E be the set of internal edges of T . For e ∈ E, let child(e) be the endpoint of e
that is further from the root. For e, e′ ∈ E say e ≺T e′ if child(e) ≺T child(e′). Since T
has k free nodes, T has k − 1 solid internal edges (every free node except the root is the
child endpoint of a solid internal edge). Let e1 ≺T · · · ≺T ek−1 be the internal solid edges
of T , and define ωε : E → R by

ωε(e) :=

{
εq if e = eq,

0 otherwise.
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For i ∈ [n], let ρ(i) be the tuple of edges in E that appear on the path from the root of T
to vT (i). We define ρ(i) := ρ(vT (i)), which was defined in Subsection 2.2.1. For the point
p, we set

pi := ε0 + ρ(i) +
∑
e∈ρ(i)

ωε(e). (3.1)

It remains to show that p is valid. We show p satisfies (C2) and (C3), and leave the
similar verification of (C1) to the reader.

Let i, j, s be given, and assume vT (i) ≺T vsT (j). There are three cases arising from the
definition of ≺T :

Case A: ρ(i) < ρ(vsT (j)). Since ρ(vsT (j)) = ρ(j) + s, we have ρ(i) − ρ(j) 6 s − 1.
Therefore from (3.1) we have

pi − pj = ρ(i)− ρ(j) +
∑
e∈ρ(i)

ωε(e)−
∑
e∈ρ(j)

ωε(e)

6 s− 1 +
k−1∑
q=1

εq < s,

because it is clear from the definition of ε that
∑k−1

q=1 εq < 1.
Case B: ρ(i) = ρ(vsT (j)) and ρ(i) is a proper prefix of ρ(vsT (j)). This case is not

possible, since s > 0. Explicitly, if ρ(i) is a proper prefix of ρ(vsT (j)), then ρ(i) 6 ρ(j).
Since ρ(vsT (j)) = ρ(j) + s and s > 0, we have strictly ρ(i) < ρ(vsT (j)).

Case C: ρ(i) = ρ(vsT (j)) and the first difference between ρ(i) and ρ(vsT (j)) is Eb in
ρ(i) and Ea in ρ(vsT (j)) with a < b. First, we claim that this edge Ea in ρ(vsT (j)) must be
an internal edge, say e`. This is because if Ea were not an internal edge, then since a < b,
we would have strictly ρ(i) > ρ(vsT (j)).

Since ρ(i) = ρ(vsT (j)) = ρ(j) + s, we have

pi − pj = s+
∑
e∈ρ(i)

ωε(e)−
∑
e∈ρ(j)

ωε(e) 6 s− ε` +
∑

e∈ρ(i)rρ(j)
ωε(e), (3.2)

where the inequality is obtained by cancellation of the common ωε terms, and then re-
placing the negative sum by only one of its terms (the notation e ∈ ρ(i) r ρ(j) should be
understood to mean e is in ρ(i) and e is not in ρ(j)). Next, we claim that, all edges in
ρ(i)r ρ(j) are greater than e` in the ≺T order. This is immediately true for the first edge
Eb ∈ ρ(i) r ρ(j), since a < b, and so it will indeed be true for all edges that follow Eb.
Therefore the

∑
in the last expression of (3.2) is less than or equal to

∑k−1
q=`+1 εq. Thus,

pi − pj 6 s− ε` +
k−1∑
q=`+1

εq < s,

where the last inequality follows from the geometric decay of ε.
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We have shown the forward direction of (C2), and the backwards direction follows by
identical reasoning. We now show p satisfies (C3). It is not hard to show from Lemma 25
and induction on s that ρ(nextlive(vsT (j))) = ρ(vT (j)) + s, and that there is a path from
vT (j) to nextlive(vsT (j)). It follows that, if vT (i) = nextlive(vsT (j)) then

pi − pj = s+
∑

e∈ρ(i)rρ(j)
ωε(e). (3.3)

Furthermore, if the path from vT (j) to vT (i) is a dashed path, then the
∑

in (3.3) is zero.
This shows pi = pj +s as desired. For the other direction of (C3), assume that pi−pj = s.
It follows from (3.1) that

s = ρ(i)− ρ(j) +
∑
e∈ρ(i)

ωε(e)−
∑
e∈ρ(j)

ωε(e).

Therefore the right-hand-side must be an integer, and since 0 <
∑
ε < 1, we have∑

e∈ρ(i)
ωε(e) =

∑
e∈ρ(j)

ωε(e), (3.4)

and

ρ(i) = ρ(j) + s. (3.5)

It follows from the geometric decay of ε that no distinct subsets of ε can have equal sum.
Thus, the positive terms on each side of (3.4) are identical. It follows that the set of solid
edges in ρ(i) and the set of solid edges in ρ(j) are equal. Since each node can have at
most one dashed edge, either ρ(j) is a prefix of ρ(i) or vice-versa. Since ρ(i) = ρ(j) + s,
with s > 0, it must be that ρ(j) is a prefix of ρ(i). Thus, we have a dashed path from
vT (j) to vT (i).

It remains to show vT (i) = nextlive(vsT (j)). If vT (i) ≺T nextlive(vsT (j)), then we could
apply (C2) to show pi < pj +s, which is a contradiction. If nextlive(vsT (j)) ≺T vT (i), then
by the definition of ≺T and (3.5), the first difference in the paths must be Ea in the path
to vT (i) and Eb in the path to nextlive(vsT (j)) with a < b. But since there is a path from
vT (j) to nextlive(vsT (j)), and there is a dashed path from vT (j) to vT (i), the edge Ea in
question must be dashed. Therefore, since a < b, the edge Eb leads to a dead leaf. This
contradicts the fact that nextlive(vsT (j)) is live. Thus, we have vT (i) = nextlive(vsT (j)) as
desired.

We have shown that p is valid for any ε, and clearly by varying ε one obtains a
k-dimensional neighborhood of distinct valid points p ∈ Rn. It follows that the c in
Theorem 14 exists for every T , and that the dimension of ΦCatn(T ) is at least k.

It remains to show that the dimension of the face ΦCatn(T ) is no more than k. For a
node v in T , let label(v) denote the set of numbers in the label of v. Let r1 ≺T · · · ≺T rk
be the free nodes of T , and for i ∈ [k] let Ji := label(ri), and let ji := min Ji. Assume
that two valid points p, p′ match for all coordinates ji, that is, pji = p′ji for all i ∈ [k].
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Under this assumption, we claim that the validity of p and p′ implies p = p′. First, it is
easy to show that for each Ji, pj = p′j for all j ∈ Ji. This follows from condition (C1) in
Theorem 14. The remaining coordinates have indices appearing in the labels of captive
nodes, and those are easily seen to be determined by condition (C3) in Theorem 14 (every
such node has an ancestor which is free). Hence p = p′. Since we only assumed p and p′

matched on k coordinates, it follows that the affine dimension of ΦCatn(T ) is at most k,
as desired.

3.2 Proof that ΦCatn is injective

Suppose T and T ′ are [n]-decorated (m+ 1)-ary trees and that the following three condi-
tions hold:

(T1) For all i, j ∈ [n], vT (i) �T vT (j) if and only if vT ′(i) �T ′ vT ′(j).

(T2) For all i, j ∈ [n] and s ∈ [1,m], vT (i) ≺T vsT (j) if and only if vT ′(i) ≺T ′ vsT (j).

(T3) For all i, j ∈ [n] and s ∈ [1,m], vT (i) = nextlive(vsT (j)) and there is a dashed path
from vT (j) to vT (i) if and only if vT ′(i) = nextlive(vsT ′(j)) and there is a dashed
path from vT ′(j) to vT ′(i).

In this subsection, we show that these conditions imply T = T ′, which proves that ΦCatn

is injective.

Definition 26. Let T, T ′ be [n]-decorated (m + 1)-ary trees, and suppose v is a vertex
in T and w is a vertex in T ′. We write v ' w if both vertices are leaves, or if they
are both nodes. We write v ∼= w if v, w are both leaves, or if v, w are both nodes and
label(v) = label(w).

Lemma 27. Let T, T ′ be [n]-decorated (m + 1)-ary trees. Let v1 ≺T · · · ≺T vp be the
vertices of T and w1 ≺T ′ · · · ≺T ′ wp′ be the vertices of T ′. For any q > 1, if vi ' wi for
all i ∈ [q − 1] then ρ(vi) = ρ(wi) for all i ∈ [q] (where [0] = ∅).

Proof. We proceed by induction on q. Since ρ(v1) and ρ(w1) are both the empty word,
the claim is true for q = 1. For q > 1, we assume that vi ' wi for all i ∈ [q − 1], and,
by induction, it is enough to show only that ρ(vq) = ρ(wq). We may deduce from vi ' wi
for i ∈ [q − 1] that the path ρ(vq) must also be a path to some vertex in T ′. It is easy to
show that the terminus of this path is none other than wq, and thus ρ(vq) = ρ(wq).

Let v1 ≺T · · · ≺T vp be the vertices of T , and let w1 ≺T ′ · · · ≺T ′ wp be the vertices of
T ′. To show T = T ′, it is enough to show that for all i ∈ [p],

(i) vi ∼= wi,

(ii) ρ(vi) = ρ(wi), and

(iii) vi is a captive node if and only if wi is a captive node.
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We prove (i) by induction on i. The base case i = 1 clearly falls under Case A below.
Case A: vi is a node and wi is a node. Let a be any element of label(vi). Let b be

any element of label(wi). Since b ∈ [n], b appears in label(vj) for some j ∈ [p], and by the
inductive hypothesis j > i. This proves

vT (a) �T vT (b). (3.6)

Similarly, a appears in T ′ in label(wj′) for some j′ > i, so we also have

vT ′(b) �T ′ vT ′(a). (3.7)

On the other hand, by (T1), (3.6) implies

vT ′(a) �T ′ vT ′(b). (3.8)

Combining (3.8) and (3.7), we obtain vT ′(a) = vT ′(b), which by (T1) also proves vT (a) =
vT (b). This shows that label(vi) = label(wi), and so vi ∼= wi.

Case B: vi is a leaf and wi is a leaf. In this case, vi ∼= wi trivially.
Case C: vi is a leaf and wi is a node. We will show that this case is not possible. Let

b be any element of label(wi). The number b appears in label(vj) for some j, and by the
inductive hypothesis j > i. Therefore, there is at least one node following vi in the ≺T
order. Let nextnode(v) denote the minimum node of T in the ≺T order that is greater
than or equal to v. Let u := nextnode(v). It follows that u �T vj = vT (b). Further, it
follows from (PR1) and the fact that vi is a leaf that u is the child of rank s > 0 of some
vertex, vh. Let a be any element of label(vh). Since vh is the parent of u, vh ≺T u and
since u = nextnode(vi) we have vh ≺T vi. In summary we have

vT (a) = vh ≺T vi ≺T u = vsT (a) �T vT (b). (3.9)

The final relation vsT (a) � vT (b) is the one that will create a contradiction. We claim that
the opposite is true in T ′, namely

vT ′(b) ≺T ′ vsT ′(a). (3.10)

Our proof of (3.10) goes as follows. First, since vh ≺T vi, we have h < i. From Lemma 27
and the inductive hypothesis, we obtain

ρ(vh) = ρ(wh), (3.11)

and

ρ(vi) = ρ(wi). (3.12)

Furthermore, since h < i we have wh ∼= vh. Since vh = vT (a) this implies wh = vT ′(a). So
we can rewrite (3.11) as

ρ(vT (a)) = ρ(vT ′(a)),
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which implies

ρ(vsT (a)) = ρ(vsT ′(a)). (3.13)

Finally, combining the equations (3.12), (3.13) and the fact that vi ≺T vsT (a), we can
deduce

wi ≺T ′ vsT ′(a),

since the ≺T and ≺T ′ orders are defined completely in terms of the paths given by ρ.
Finally, since wi = vT ′(b), we obtain (3.10). It is easy to see that (3.10) and the last
relation of (3.9) contradict (T2). So indeed this case is impossible.

Case D: vi is a node and wi is a leaf. This is the same as Case C by symmetry, so it
is also impossible.

This completes our proof of (i), that vi ∼= wi for all i ∈ [p]. Lemma 27 shows that (i)
implies (ii). Moreover, (iii) clearly follows from (T3) together with (i) and (ii). Thus we
obtain T = T ′ as desired.

3.3 Proof that ΦCatn is surjective

In this subsection, we will show that for every m-Catalan face c in Rn, there exists an [n]-
decorated (m+ 1)-ary tree T such that the three conditions in Theorem 14 are satisfied.
To do so, we will need to construct the tree T . Before coming to the construction, we
introduce some additional structure and vocabulary.

We associate to any point p ∈ Rn a tuple consisting of m+ 1 functions and m subsets
of [n]. Let

Wp :=
n⋃
i=0

m⋃
s=0

{ (pi + s,−s) }.

For x ∈ R and z ∈ Z we write (x, z) <lex (x′, z′) if x < x′ or x = x′ and z < z′. Given
k ∈ [n] and s ∈ [0,m], we define

ηs(k) := #{w ∈ Wp | w 6lex (pk + s,−s)}.

For s ∈ [1,m] we define

Es := {k | there exists j ∈ [n] such that pj + s = pk}.

We let ηp denote (η0, . . . , ηm, E1, . . . , Em), and call ηp the m-Catalan code of p.
Let Im(ηs) denote the image of ηs. Note that ∪ns=0 Im(ηs) = [h] for some h 6 (m+1)n,

and that for any s, s′ ∈ [1,m] with s 6= s′ we have Im(ηs) ∩ Im(ηs′) = ∅. We call the
t ∈ ∪ns=0 Im(ηs) the sites of ηp. For s > 0, we say t is a type s site if t ∈ Im(ηs).

A dash site is a site t of type s > 0 such that t + 1 is a type s′ site with s′ < s and
η−1s′ (t+ 1) ⊂ Es−s′ , where

η−1s (i) := {k ∈ [n] | ηs(k) = i}.
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Example 28. Suppose m = 1. Let p = (1.0, 1.0, 1.1, 2.0, 2.2, 4.0) ∈ R6. Then

Wp = {(1.0, 0), (1.1, 0), (2.0,−1), (2.0, 0), (2.1,−1),

(2.2, 0), (3.0,−1), (3.2,−1), (4.0, 0), (5.0,−1)}.

The resulting values of η0 and η1 are given by the following table.

k 1 2 3 4 5 6
η0(k) 1 1 2 4 6 9
η1(k) 3 3 5 7 8 10

We have E1 = {4}. The type 0 sites are 1, 2, 4, 6, 9. The type 1 sites are 3, 5, 7, 8, 10.
The only dash site is 3.

Example 29. Suppose m = 2. Let p = (2.3, 1.5, 3.3, 1.4, 1.4, 1.0, 3.1, 4.3, 4.2) ∈ R7.
The set Wp has cardinality 24. The resulting values of η0, η1, and η2 are given by the
following table.

k 1 2 3 4 5 6 7 8 9
η0(k) 5 3 11 2 2 1 9 18 15
η1(k) 10 7 17 6 6 4 14 22 20
η2(k) 16 13 21 12 12 8 19 24 23

We have E1 = {3, 8}, and E2 = {8}. The type 0 sites are 1, 2, 3, 5, 9, 11, 15, and 18. The
type 1 sites are 4, 6, 7, 10, 14, 17, 20, and 22. The type 2 sites are 8, 12, 13, 16, 19, 21, 23,
and 24. Sites 10, 16, 17 are dash sites.

We record a simple fact that will be important later.

Lemma 30. Let η = (η0, . . . , ηm, E1, . . . , Em) be the m-Catalan code of a point p ∈ Rn,
and suppose ηs(i) is a dash site. Let s′, j be such that ηs(i) + 1 = ηs′(j). Then for any
u ∈ [−s′,m− s], we have ηs+u(i) + 1 = ηs′+u(j) and ηs+u(i) is a dash site.

Proof. It is easy to show from the definition of dash site that the hypothesis implies
pi + s = pj + s′, which trivially implies pi + (s + u) = pj + (s′ + u) for any u. For
u ∈ [−s′,m− s] we have 0 6 s′ + u, s+ u 6 m, and so in Wp we have

(pi + s+ u,−(s+ u)) <lex (pj + s′ + u,−(s′ + u)),

and one easily sees that there cannot be an element between them, because ηs(i) + 1 =
ηs′(j). The conclusion follows.

Proposition 31. Let η = (η0, . . . , ηm, E1, . . . , Em) be the m-Catalan code of a point
p ∈ Rn.

(1) For all i, j ∈ [n], pi 6 pj if and only if η0(i) 6 η0(j).

And for any s ∈ [1,m] we have:
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(2) For all i, j ∈ [n], pi < pj + s if and only if η0(i) < ηs(j).

(3) For all i, j ∈ [n], pi = pj + s if and only if every t ∈ [ηs(j), η0(i)− 1] is a dash site.

Proof. Items (1) and (2) are clear from the definitions.
For the forward direction of (3), we use induction on s. For the case s = 1, it is easy

to show that pi = pj + 1 implies η1(j) + 1 = η0(i), and that η1(j) is a dash site, as desired.
For s > 1, let s′, j′ be such that ηs(j) + 1 = ηs′(j

′). In Wp, we must have

(pj + s,−s) <lex (pj′ + s′,−s′) <lex (pi, 0), (3.14)

which implies pj + s = pj′ + s′ and s > s′. Therefore ηs(j) is a dash site. We also see from
(3.14) that pj′ + s′ = pi so, by the inductive hypothesis, every t ∈ [ηs′(j), η0(i) − 1] is a
dash site. This proves the claim.

For the backward direction of (3), we use (strong) induction on s. For the case s = 1,
it is clear that η1(j) + 1 = η0(i). Since η1(j) is a dash site, we know there exists j′ ∈ [n]
with pj′+1 = pi. It is easy to see that this implies η1(j

′)+1 = η0(i), whence η1(j
′) = η1(j).

It is obvious that η1(j
′) = η1(j) implies pj = pj′ , and the claim follows.

For s > 1, let j′, s′ be such that ηs(j) + 1 = ηs′(j
′). First, since ηs(j) is a dash site,

we have s′ < s, so by the inductive hypothesis, we have pj′ + s′ = pi. On the other hand,
by Lemma 30, we must have ηs−s′(j) + 1 = η0(j

′) and ηs−s′(j) is a dash site. Applying
the inductive hypothesis again gives pj + s − s′ = pj′ . Adding s′ to both sides proves
pj + s = pi as desired.

For p ∈ Rn, let Cm(p) denote the unique m-Catalan face in Rn containing the point p.

Corollary 32. For two points p, q ∈ Rn,

ηp = ηq ⇐⇒ Cm(p) = Cm(q).

Proof. Follows from Proposition 31.

We are now ready to carry out the construction of the tree T , given a m-Catalan face
c. We will denote this construction c 7→ T by ΨCatn .

For the remainder of this section, we let ηc = (η0, . . . , ηm, E1, . . . , Em) denote the
m-Catalan code of any point in c. By Corollary 32, the choice of point is immaterial.

A budding (m+ 1)-ary tree is an (m+ 1)-ary tree whose nodes are labeled by disjoint
subsets of [n] (not necessarily a partition of [n]), with a choice of solid/dashed for each
edge, and with a marked subset of leaves, referred to as buds . Leaves that are not buds
are called true leaves . We construct T through a sequence of budding (m+1)-ary trees as
illustrated in Figure 8. We establish some vocabulary regarding these trees and operations
on them:
Vocabulary: Let R be a budding (m+ 1)-ary tree.

• first bud : Assuming R contains at least one bud, its first bud is its minimum bud
according to the ≺R order.
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Figure 8: The intermediary trees R0, . . . , R12 and final result of ΨCatn(c) where c has ηc

given by Example 28. The stars represent buds. The highlighted bud is the first bud.

Operations: Let R be a budding (m+ 1)-ary tree.

• close : Find the first bud of R and replace it with a true leaf.

• openS: With S ⊂ [n], find the first bud of R and replace it with a node labeled
with S that has m+ 1 children, all buds.

• dashopenS: Apply openS and make the new node labeled S a captive node, that
is, make dashed the edge connecting the node labeled S to its parent.

Examples may be seen in Figure 8.
We start with the budding binary tree R0, which consists of just a single bud. For

each site i of η, we construct Ri from Ri−1 according to the following three cases:

(1) If i is a type s site for s > 0, then apply a close operation to Ri−1.

(2) If i is a type 0 site and η−10 (i) 6⊂ ∪ms=1Es, then let S = η−10 (i) and apply a openS
operation to Ri−1.

(3) If i is a type 0 site and η−10 (i) ⊂ ∪ms=1Es, then apply a dashopenS operation to
Ri−1, with S = η−10 (i).

Finally Rh, the last tree, will have exactly one bud remaining (proved below). Apply a
close operation, and define ΨCatn(c) to be the resulting tree. We will soon show that
T = ΨCatn(c) is a well-defined [n]-decorated (m+1)-ary tree, and that ΦCatn(T ) = c (that
is, c satisfies the conditions (C1), (C2), and (C3) of Theorem 14).
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Example 33. As illustrated in Figure 8 the η described in Example 28 is mapped by
ΨCatn to the [7]-decorated binary tree in Figure 3. The reader can verify that the η
described in Example 29 is mapped by ΨCatn to the [9]-decorated 3-ary tree in Figure 6.

To prove that this construction is well-defined, there are two main issues to resolve.
First, we need to prove that there are always enough buds so that Ri is well-defined for all
i. Second, we need to prove that the final tree T satisfies the definition of [n]-decorated
(m + 1)-ary tree, namely, that any dashed edges are cadet edges, and no buds remain.
We will then show that this construction produces a tree T such that ΦCatn(T ) = c, the
m-Catalan face with which we started. We will use the following definition and lemma.

Definition 34. Let R be a budding (m+ 1)-ary tree, let k ∈ [n], and s ∈ [0,m]. We say
k is s-open in R if R has a node containing k and if the child of rank s of that node is a
bud. We say k is s-closed in R if R has a node containing k and if the child of rank s of
that node is not a bud (either a node or true leaf).

Lemma 35. Let R0, . . . , Rh be the intermediate trees in the construction of T = ΨCatn(c).
For k ∈ [n] and s ∈ [0,m] and i ∈ [h], we have:

(1) k is s-open in Ri if and only if η0(k) 6 i 6 ηs(k)

(2) k is s-closed in Ri if and only if ηs(k) < i

Proof. For i ∈ [h], and s ∈ [0,m], let

Os(Ri) := {k ∈ [n] | k is s-open in Ri},

and

Ds(Ri) := {k ∈ [n] | k is s-closed in Ri}.

We must show that

Os(Ri) = {k ∈ [n] | η0(k) 6 i 6 ηs(k)}, (3.15)

and

Ds(Ri) = {k ∈ [n] | ηs(k) + 1 6 i}.

Since k becomes s-closed as soon as k becomes not s-open, it is enough to just show
(3.15). By induction on i ∈ [h], it suffices to show

Os(Ri) = Os(Ri−1) r η−1s (i− 1) ∪ η−10 (i), (3.16)

the claim (3.15) being clearly true for R1. There are two cases:
Case 0: i− 1 is a type 0 site. Then Ri−1 was obtained from Ri−2 by replacing its

first bud by a node with label η−10 (i − 1) and m + 1 buds. Since ≺Ri−1
obeys (PR1),

the child of rank 0 of the new node must be the first bud of Ri−1. It follows that Ri
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is obtained from Ri−1 by replacing the child of rank 0 of the node with label η−10 (i− 1),
either by a node with label η−10 (i) if i is a type 0 site, or simply a leaf if i is a type u > 0
site. In either case, equation (3.16) is satisfied (in this case, η−1s (i− 1) = ∅).

Case 1: i− 1 is a type u site for u > 0. Let k be such that ηu(k) = i− 1. We claim
that for any z and u′ such that z ∈ Ou′(i− 1) we have

vuRi−1
(k) �Ri−1

vu
′

Ri−1
(z). (3.17)

It follows that the first bud of Ri−1 is the child of rank u of the node with label η−1u (i−1).
Therefore Ri is obtained from Ri−1 by replacing this bud by either a node if i is type 0
or simply a leaf for all other types. In either case (3.16) is satisfied. Thus it remains only
to prove (3.17).

It follows by the inductive hypothesis that O0(Ri−1) = ∅, and so we have u′ > 0. We
may also assume that z /∈ Ou′−1(i − 1), otherwise replace u′ by u′ − 1. It follows by the
inductive hypothesis with s = u′ that i− 1 6 ηu′(z). Since i− 1 = ηu(k) we have

ηu(k) 6 ηu′(z),

and therefore

ηu−1(k) 6 ηu′−1(z). (3.18)

Since z /∈ Ou′−1(i−1), we know ηu′−1(z)+1 6 i−1. Therefore, by the inductive hypothesis
(strong induction with s = u′ − 1) we know that ηu′−1(z) + 1 is the first site such that
z is (u′ − 1)-closed. Similarly, ηu−1(k) + 1 is the first site such that k is (u − 1)-closed.
Combined with (3.18), this shows that k became (u−1)-closed before z was (u′−1)-closed,
and therefore

vu−1Ri−1
(k) �Ri−1

vu
′−1
Ri−1

(z). (3.19)

Then (3.17) follows from (3.19) and (PR2).

We now show that ΨCatn well-defined:

Corollary 36. Let R0, . . . , Rh be the intermediate trees in the construction of T =
ΨCatn(c).

(1) Every Ri contains a positive number of buds, and Rh contains exactly one bud.

(2) Any edges that are dashed in Ri are cadet edges.

Thus, T = ΨCatn(c) is a well-defined [n]-decorated (m+ 1)-ary tree.

Proof. For (1): first R0 by definition contains one bud. For i ∈ [h], if i is a type 0 site,
then η−10 (i) 6= ∅, and by Lemma 35 any k ∈ η−10 (i) is 0-open in Ri. Therefore Ri contains
at least one bud. If i is a type s site, then η−1s (i) 6= ∅, and by Lemma 35 any k ∈ η−1s (i)
is s-open in Ri, and so again Ri contains at least one bud. It is clear from Lemma 35 that
Rh has exactly one bud.
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For (2), dashopen operations occur when creating trees Ri where i satisfies η−10 (i) ⊂
∪ms=1Es. It is easy to show, from the definition of ηs and Es, that i − 1 must be a dash
site, and therefore is of type s > 0. For any j ∈ η−1s (i − 1), it follows from Lemma 35
that j is s-open in Ri−1 and is s-closed in Ri, which means the first bud of Ri−1 is the
child of rank s of the node containing j. Therefore, the dashopen operation will create
a captive node at the child of rank s of j. This proves that only edges of rank > 0 will
ever be dashed.

From Lemma 30, for every u ∈ [s,m], the site immediately following ηu(j) is a type s′

site for some s′ > 0. It follows from this and Lemma 35 that the children of vT (j) of rank
> s will all be leaves. This shows that any dashed edges are indeed cadet edges.

Now that ΨCatn is well-defined, we can show that ΦCatn ◦ΨCatn is the identity.

Proposition 37. With T = ΨCatn(c), for any point p ∈ c we have

(1) For all i, j ∈ [n], pi 6 pj if and only if vT (i) �T vT (j).

(2) For all i, j ∈ [n], and s ∈ [1,m], pi < pj + s if and only if vT (i) ≺T vsT (j).

(3) For all i, j ∈ [n], and s ∈ [1,m], pi = pj + s if and only if vT (i) = nextlive(vsT (j))
and there is a dashed path from vT (j) to vT (i).

Whence, ΦCatn(T ) = c.

Proof. Part (1) is clear from the fact that the construction of T takes place in the ≺T
order.

For (2): By Lemma 35, the first appearance of a node containing i is in the tree Rη0(i),
and the first tree in which j is s-closed is Rηs(j)+1. Thus, vT (i) ≺T vsT (j) if and only if
η0(i) < ηs(j) + 1. Since a site cannot be both type 0 and type s > 0, η0(i) cannot equal
ηs(j), so η0(i) < ηs(j) + 1 is equivalent to η0(i) < ηs(j). By Proposition 31, η0(i) < ηs(j)
if and only if pi < pj + s, as desired.

For (3): By Proposition 31, we have pi = pj +s if and only if every t ∈ [ηs(j), η0(i)−1]
is a dash site. Let L be the length of this interval; we will prove the claim by induction
on L. Assume first that L = 1, that is, ηs(j) is a dash site and ηs(j) + 1 = η0(i). It then
follows from the definition of ΨCatn and Lemma 35 that T has a dashed edge of rank s
with parent vT (j) and child vT (i). Thus, in this case vT (i) = vsT (j) and so the claim is
certainly true for L = 1.

If L > 1, let s′, j′ be such that the interval of dash sites starts [ηs(j), ηs′(j
′), . . . ]. In

particular, this means every t ∈ [ηs′(j
′), . . . , η0(i) − 1] is a dash site. By the inductive

hypothesis, and Proposition 31, we have vT (i) = nextlive(vs
′
T (j′)) and there is a dashed

path from vT (j′) to vT (i).
On the other hand, by Lemma 30, ηs−s′(j) + 1 = η0(j

′), and ηs−s′(j) is a dash site.
Therefore from the L = 1 case proved above we have

vT (j′) = vs−s
′

T (j), (3.20)
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and there is a dashed edge between vT (j) and vT (j′).
Combining facts, we have a dashed path from vT (j) to vT (j′) and a dashed path from

vT (j′) to vT (i), and therefore we have one from vT (j) to vT (i), as desired.
It remains to show vT (i) = nextlive(vsT (j)). So far, we have vT (i) = nextlive(vs

′
T (j′))

and (3.20). So the claim may be rewritten as

nextlive(the child of vs−s
′

T (j) of rank s′) = nextlive(vsT (j)). (3.21)

Note that, since vT (j′) is a captive child of vT (j) of rank s−s′, the vertex vsT (j) in question
must be a dead leaf. With this in mind, equation (3.21) is a consequence of Lemma 25
(in the notation of Lemma 25, we have v = vs−s

′

T (j) with ` = vsT (j) and k = s′).

Proposition 37 proves that ΦCatn is surjective, which completes the proof of Theo-
rem 14.

4 Proof that ΦShin is a bijection

In this section we will prove Theorem 23, which implies Theorem 20. As in Section 3,
we separate this proof into five distinct elements: existence and uniqueness of the m-
Shi face, injectivity and surjectivity of ΦShin , and the grading by dimension. The “core
claim” of this section is that each m-Shi face contains exactly one m-Catalan face whose
corresponding tree is of Shi type. That there exists at most one is equivalent to the
claim that ΦShin is injective. That there exists at least one is equivalent to the claim that
ΦShin is surjective. The other three elements: existence, uniqueness, and the grading by
dimension, are somewhat more straightforward consequences of Theorem 14, and we start
with these. Throughout this section, T is a given [n]-decorated (m+ 1)-ary tree.

4.1 Existence, uniqueness, and grading by dimension

Uniqueness is immediate, since the hyperplanes of the m-Shi arrangement are of the form
xi = xj + s for s ∈ [0,m− 1] for all i, j ∈ [n], and xi = xj +m for (i, j) ∈

(
[n]
2

)
.

For existence, first let c := ΦCatn(T ). It is straightforward to show from Theorem 14
that any point p ∈ c will satisfy all of (S1), (S2), (S2M), (S3), and (S3M) of Theorem 23. It
follows that the unique m-Shi face that contains all points of c will satisfy the requirements
of Theorem 23, and so existence is proven.

Next we will show that for any [n]-decorated (m+ 1)-ary tree T of Shi type,

dim(ΦShin(T )) = #{free nodes of T},

as claimed in Theorem 23. It is enough to show that

dim(ΦShin(T )) = dim(ΦCatn(T )).

We begin with an important remark, which we will refer to again in the following subsec-
tion.

the electronic journal of combinatorics 28(4) (2021), #P4.29 30



Remark 38. Since the m-Shi arrangement is obtained by deleting hyperplanes from the
m-Catalan arrangement, for every m-Shi face s, there exist m-Catalan faces c1, . . . , c` such
that s is the disjoint union of the ci. Furthermore, it is clear that

dim(s) = max
i

dim(ci). (4.1)

Let the inverse of ΦCatn be denoted Φ−1Catn
. The main result of this subsection is the

following:

Proposition 39. Let s be any Shi face. Let c1, . . . , c` be as in Remark 38. If ci∗ has the
property that Φ−1Catn

(ci∗) is of Shi type, then for any i ∈ [`],

dim(ci) 6 dim(ci∗), (4.2)

and therefore dim(s) = dim(ci∗).

Proof. Let Ti∗ := Φ−1Catn
(ci∗) and Ti := Φ−1Catn

(ci). It is easy to see by the properties in
Theorem 14 and the fact that ci and ci∗ belong to the same m-Shi face that:

(1) Two numbers a, b ∈ [n] appear in the same node of Ti∗ if and only if a, b appear in
the same node of Ti.

(2) For A,B ⊂ [n] and s ∈ [1,m − 1], in Ti∗ there is a dashed edge of rank s from a
node labeled A to a node labeled B if and only if in Ti there is a dashed edge of
rank s from a node labeled A to a node labeled B.

(3) For A,B ⊂ [n], in Ti∗ there is a dashed edge of rank m that is a descent from a node
labeled A to a node labeled B if and only if in Ti there is a dashed edge of rank m
that is a descent from a node labeled A to a node labeled B.

It follows from (1) that Ti∗ and Ti have the same number of nodes. Since Ti∗ is assumed to
be of Shi type, all rank m edges are descents. Therefore, from (2) and (3) we see that any
captive node in Ti∗ must also be a captive node in Ti. Thus the number of captive nodes
in Ti∗ is less than or equal to the number of captive nodes in Ti. Since the total number
of nodes is the same, we have that the number of free nodes of Ti∗ is greater than or equal
to the number of free nodes of Ti. Applying the dimension grading of Theorem 14, we
obtain (4.2).

The last statement of the proposition follows immediately from (4.2) and (4.1).

4.2 Proof that ΦShin is injective

We will prove that ΦShin is injective by showing that the conditions on T in Theorem 23
are enough to define T . Suppose T and T ′ are [n]-decorated (m+ 1)-ary trees of Shi type
and that the following five conditions hold.

(ST1) For all i, j ∈ [n], vT (i) �T vT (j) if and only if vT ′(i) �T ′ vT ′(j).
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(ST2) For all i, j ∈ [n], and s ∈ [1,m− 1], vT (i) ≺T vsT (j) if and only if vT ′(i) ≺T ′ vsT ′(j).

(ST2M) For all (i, j) ∈
(
[n]
2

)
, vT (i) ≺T vmT (j) if and only if vT ′(i) ≺T ′ vmT ′(j).

(ST3) For all i, j ∈ [n] and s ∈ [1,m − 1], vT (i) = nextlive(vsT (j)) and there is a dashed
path from vT (j) to vT (i) if and only if vT ′(i) = nextlive(vsT ′(j)) and there is a dashed
path from vT ′(j) to vT ′(i).

(ST3M) For all (i, j) ∈
(
[n]
2

)
, vT (i) = nextlive(vmT (j)) and there is a dashed path from vT (j)

to vT (i) if and only if vT ′(i) = nextlive(vmT ′(j)) and there is a dashed path from
vT ′(j) to vT ′(i).

We will show T = T ′. First, it is clear from (ST1) that two numbers a, b ∈ [n] appear in
the same node of T if and only if they appear in the same node of T ′. This proves that
T and T ′ have the same number of nodes, and since they are (m+ 1)-ary trees, they also
have the same number of total vertices, p.

Let v1 ≺T · · · ≺T vp be the vertices of T , and let w1 ≺T ′ · · · ≺T ′ wp be the vertices of
T ′. As in Subsection 3.2, to show T = T ′, it is enough to show:

(i) vi ∼= wi for all i ∈ [p],

(ii) ρ(vi) = ρ(wi) for all i ∈ [p], and

(iii) vi is a captive node if and only if wi is a captive node.

We prove (i) by induction on i. The base case i = 1 is covered by Case A below.
Case A: vi is a node and wi is a node. Since (ST1) and (T1) are the same, this case is

identical to the Case A in Subsection 3.2. Using the same argument verbatim, we obtain
vi ∼= wi.

Case B: vi is a leaf and wi is a leaf. In this case, vi ∼= wi trivially.
Case C: vi is a leaf and wi is a node. We will show that this case is not possible. The

basic setup is the same as Case C in Subsection 3.2. Namely, we define the following:

• Let b be any element of label(wi).

• Let u := nextnode(vi).

• Let s be the rank of u. We know s > 0.

• Let vh be the parent of u.

• Let a be any element of label(vh).

Moreover, we have the following facts:

vT (a) = vh ≺T vi ≺T u = vsT (a) �T vT (b), (4.3)
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and

vT ′(b) ≺T ′ vsT ′(a). (4.4)

If s ∈ [1,m − 1] then the last relation of (4.3) and (4.4) contradict (ST3), and we are
done. From now on we assume s = m. Unlike in the Catalan case, or the s < m case, the
equations (4.4) and the last relation of (4.3) do not directly create a contradiction, since
we would require b < a to apply (ST2M). In order to create the contradiction, we will
now find b∗ in label(vT (b)) and a∗ in label(vT (a)) such that b∗ < a∗, which then leads to
a contradiction with (ST2M). The key fact is the following:

u = vT (b). (4.5)

To prove (4.5) it is enough to show vT (b) �T u, since the last relation of (4.3) already
gives u �T vT (b). Let z be any element of u. By the definition of u, z does not appear in
the labels of any of v1, . . . , vi. By the inductive hypothesis, this means z does not appear
in the labels of any of w1, . . . , wi−1. Since z has to appear somewhere in T ′, we have
shown

wi �T ′ vT ′(z). (4.6)

Since wi = vT ′(b), (4.6) is equivalent to

vT ′(b) �T ′ vT ′(z). (4.7)

By (ST1), (4.7) implies

vT (b) �T vT (z).

and since vT (z) = u, we have shown vT (b) �T u. Before we showed u �T vT (b), so we
have proven (4.5).

The importance of (4.5) is that it proves vT (b) is the child of rank m of vT (a), and
therefore the edge connecting them is a descent. Let a∗ := max (label(vT (a))) and b∗ :=
min (label(vT (b))). Since T is of Shi type, we have b∗ < a∗. We have vT (a) = vT (a∗) and
vT (b) = vT (b∗), so by (ST1) we also have vT ′(a) = vT ′(a

∗) and vT ′(b) = vT ′(b
∗). Since

u = vT (b), we can rewrite the penultimate relation of (4.3) as

vmT (a∗) = vT (b∗). (4.8)

We can also rewrite (4.4) as

vT ′(b
∗) ≺T ′ vmT ′(a∗). (4.9)

Finally we have a clear contradiction between (4.8), (4.9), and (ST2M).
Case D: vi is a node and wi is a leaf. This is the same as Case C by symmetry.
This completes our proof of (i), that vi ∼= wi for all i ∈ [p]. Lemma 27 shows that (i)

implies (ii).
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It remains to show (iii), which is straightforward: suppose vi is a captive node of T ,
and let s be the rank of vi. By Definition 9, s ∈ [1,m]. If s ∈ [1,m − 1], then since
vi ∼= wi, (ST3) implies that wi must be a captive node in T ′, as desired.

If s = m, then since T is of Shi type, the edge connecting vi to its parent is a descent.
Therefore there exist i ∈ label(vi) and j ∈ label(parent(vi)) such that (i, j) ∈

(
[n]
2

)
. By

(i) and (ii), i ∈ label(wi) and j ∈ label(parent(wi)), so (ST3M) shows wi is captive, as
desired. Thus we obtain T = T ′.

4.3 Proof that ΦShin is surjective

Let s be an arbitrary m-Shi face. We will show that there exists a tree T of Shi type such
that ΦShin(T ) = s.

By Remark 38 there exist m-Catalan faces c1, . . . , c` such that s is the disjoint union
of the ci. Recall that each m-Catalan face is defined by choices of inequality or equality
for each hyperplane of the m-Catalan arrangement. For any m-Catalan face c, let h(c) be
the number of inequalities in the definition of c of the form xi +m > xj for (i, j) ∈

(
[n]
2

)
.

Among the ci, choose one c∗ such that h(c∗) is maximal.
Let T be Φ−1Catn

(c∗). We will show that T is of Shi type. Note that this implies
ΦShin(T ) = s, which proves that ΦShin is surjective.

Suppose for contradiction that T is not of Shi type, that is, there exists an edge of
rank m with parent node v labeled A and child node w labeled B such that a < b for
all a ∈ A and b ∈ B. It follows from Lemma 25, (PR1), and the fact that w has rank
m that the vertex immediately preceding w in the ≺T order must be a live leaf, ` (see
Definition 12). We construct a new tree T ′ in the following manner. Let the sub-trees
that are children of w be T0, . . . , Tm. Replace the child of rank m of v with T0. Then
replace ` by a node with label B, with a leaf for its child of rank 0, and with the sub-trees
T1, . . . , Tm for its other children. If there was a dashed edge from w to Ti for i ∈ [m], then
the edge from the new node labeled B to Ti is also dashed. Since ` is a live leaf, we know
that the resulting tree T ′ satisfies the definition of [n]-decorated (m+ 1)-ary tree.

Therefore, T ′ corresponds to another m-Catalan face c′ := Φ−1Catn
(T ′), and we claim

that s contains this new c′ and that h(c′) > h(c∗). It is not too hard to show from
Theorem 14 that the only change between c∗ and c′ is that the inequalities xa + m 6 xb
for all a ∈ A and b ∈ B have flipped to xa + m > xb. This follows from the fact that
the ≺T order has not changed except for the fact that the node B in T ′ now precedes the
child of rank m of the node labeled A in T ′.

Furthermore, for all a ∈ A and b ∈ B we have a < b, so the modified inequalities are
not hyperplanes in the m-Shi arrangement, and therefore s contains both c∗ and c′. Since
the inequalities xa +m > xb count towards h(c′), we have h(c′) > h(c∗). This contradicts
the choice of c∗, and therefore we have shown T must be of Shi type.

Recall that ΦShin(T ) is the unique Shi face that contains ΦCatn(T ). Since we have
shown that s contains ΦCatn(T ), it follows that ΦShin(T ) = s as desired. This concludes
the proof that ΦShin is surjective. We have now proved the entirety of Theorem 23.
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5 Bijections from m-Shi faces to marked functions

The original counting formula of Athanasiadis suggests that Shi faces correspond bijec-
tively to the set of marked functions defined in (1.2). In this section, we explain how to
obtain these marked functions from our decorated trees.

5.1 Result for the Shi arrangement

Before considering a general m, we specialize to the case m = 1. A Cayley tree is a
labeled graph that is connected and acyclic. An internal node of a Cayley tree is a vertex
of degree at least two. Let

Tn,k :=

{
[n]-decorated binary trees such that all right
internal edges are descents, and with k free

nodes.

}
,

Un,k :=


Binary trees with n nodes, labeled by [n],

such that all right internal edges are
descents, with n− k marked nodes, each of

which has non-leaf left-children.

 ,

Vn,k :=


Cayley trees with n+ 1 vertices, with n− k
marked internal nodes among those labeled

{1, . . . , n}.

 ,

Wn,k :=

{
Pairs (f, S) where f : [n− 1]→ [n+ 1] and

S ⊂ Im(F ) ∩ [n] with |S| = n− k.

}
.

Theorem 40. For any n > 1 and k ∈ [n], the four sets Tn,k,Un,k,Vn,k,Wn,k are all in
bijection with one another. Consequently,

#

{
Shi faces in

Rn of
dimension k

}
= |Tn,k| = |Un,k| = |Vn,k| = |Wn,k|.

The first equals sign in the above theorem was obtained in Theorem 20. We prove
Theorem 40 by describing a sequence of bijections

Tn,k
∼−→Un,k

∼−→Vn,k
∼−→Wn,k.

One example of the chain of correspondences is shown in Figure 9. The descriptions of each
map will be given for a general m in the following subsections. We briefly describe the case
m = 1 here, omitting some of the details. The trickiest bijection is the first, Tn,k

∼−→Un,k.
For T ∈ Tn,k, we apply two local operations (Step 1 and Step 2) to T to obtain its
corresponding U ∈ Un,k. Both operations are summarized in Figure 10. For Step 1, let v
be a node of T , with left-child L, right-child R, and with label S = {s1, s2, . . . , sp} with
s1 < s2 < · · · < sp. If |S| > 1, then replace v by an increasing left-path of singleton
marked nodes labeled by s1, s2, . . . , sp, each with right-leaves, except for the last singleton
which is left unmarked and keeps the original left and right children of v. If the original
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T ∈ Tn,k U ∈ Un,k V ∈ Vn,k (f, S) ∈ Wn,k
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1 7→

2 7→

3 7→

4 7→

5 7→

6 7→

7 7→

8 7→

Figure 9: An example of the bijections in Theorem 40. In this example, m = 1, n = 9,
and k = 5. The element from Wn,k has S = {1, 3, 6, 8}.

Step 1 Step 2a

Step 2b

S = {s1, . . . , sp},
s1 < s2 < · · · < sp

S

L R

s1

s2

. . .

sp

L R

hi

node lo

hi

node lo

hi

lo

hi

lo

Figure 10: The two steps of the bijection Tn,k
∼−→Un,k. The notation of “hi” and “lo”

should be understood to mean the edge connecting them is a descent, that is, the vertex
labeled “hi” contains a number that is greater than the number in the vertex labeled “lo”.

edge connecting v to R was dashed, then the new edge from sp to R remains dashed. This
completes Step 1. Let T ′ be the intermediary tree obtained by applying Step 1.

For Step 2, we apply a local operation to each node of T ′ with a dashed right-edge.
Let v be such a node. Since dashed edges are internal, v has a node as its right-child,
and the corresponding right-edge must be a descent. First convert the right-edge of v
to a solid edge, and add v to the set of marked nodes. Now there are two cases: if the
left-child of v is a node, we are done with v (case (a)). If the left-child of v is a leaf, then
swap the two children of v (case (b)).

It is not too hard to see that the resulting map obtained by applying Steps 1 and 2 is
a bijection, so we have established Tn,k

∼−→Un,k.
The second bijection Un,k

∼−→Vn,k is given by a standard bijection from binary trees to
plane trees, which has been called the “natural correspondence” in [20, §2.3.2] (see also
[29, Thm. 1.5.1, (iii) to (ii)]). In our case, since right-paths are decreasing, we can forget
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Step 1 Step 2
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Figure 11: A full example of steps 1 and 2 of the bijection Tn,k
∼−→Un,k.

Step 1 Steps 2 and 3 Result
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Figure 12: The three steps of the bijection Un,k
∼−→Vn,k. The dashed gray edges are

deleted, the bold edges are added.

the order of the children, obtaining Cayley trees for Vn,k instead of plane trees.
The map can be described in three steps, illustrated by example in Figure 12. For Step

1, delete all leaves. For Step 2, add edges connecting each vertex to all of the vertices in
the right path starting from its left-child, and add a node labeled n+ 1, connected to the
vertices of the root’s right-path (including the root). For Step 3, delete all of the original
right-edges. This concludes the bijection Un,k

∼−→Vn,k.
The third bijection Un,k

∼−→Wn,k is a decorated version of the standard Prüfer code
bijection. A leaf of a Cayley tree is a vertex of degree one. Given V ∈ Vn,k, we define

the pair (f, S) ∈ W (m)
n,k as follows. Define f(1) to be the label of the parent of the leaf

vertex of V of minimum label. Then delete this leaf, and use the same rule to define f(2),
then f(3), and so on to f(n − 1) (deleting leaves at each stage). The resulting function
f is known as the Prüfer sequence of the tree V , and it can be shown that this encoding
is a bijection from Cayley trees to functions f : [n − 1] → [n + 1] (see [23] or [27, Prop.
5.3.2]). For the subset S we take the set of labels of the marked internal nodes of V . It
is not hard to show that Im(f) consists of all internal nodes of V , whence S ⊂ Im(f).

the electronic journal of combinatorics 28(4) (2021), #P4.29 37



The inverse of this map is given by inverting the Prüfer sequence, and then marking the
vertices recorded in S. Thus we have the final bijection Vn,k

∼−→Wn,k.

5.2 Result for the m-Shi arrangement

We now state our results for a general m, and give detailed descriptions of the bijections.
A Cayley m-foliage is a Cayley tree (connected, acyclic, labeled graph) where all edges
are assigned one of m colors, represented by the numbers [0,m− 1], except for the edges
incident to the vertex with maximum label always have color 0. An internal node of a
Cayley m-foliage is a vertex of degree at least two. Let

T (m)
n,k :=

{
[n]-decorated (m+ 1)-ary trees such that all
internal edges of rank m are descents, and

with k free nodes.

}
,

U (m)
n,k :=


(m+ 1)-ary trees with n nodes, labeled by
[n], such that all internal edges of rank m

are descents, with n− k marked nodes, each
of which has at least one node among its

children of rank < m.

 ,

V (m)
n,k :=

{
Cayley m-foliages with n+ 1 total vertices,

with n− k marked internal nodes.

}
,

W (m)
n,k :=

 Pairs (f, S) where f : [n− 1]→ [mn+ 1]
and S ⊂ [n], with |S| = n− k such that

Im(f) ∩ [(i− 1)m+ 1, im] 6= ∅ for all i ∈ S.

 .

Theorem 41. For any n > 1 and k ∈ [n], the four sets T (m)
n,k ,U

(m)
n,k ,V

(m)
n,k ,W

(m)
n,k are all

in bijection with one another. Consequently,

#

{
m-Shi faces

in Rn of
dimension k

}
= |T (m)

n,k | = |U
(m)
n,k | = |V

(m)
n,k | = |W

(m)
n,k |.

The first equals sign in the above theorem is obtained from Theorem 23. We prove
Theorem 41 by describing the sequence of bijections

T (m)
n,k

∼−→U (m)
n,k

∼−→V (m)
n,k

∼−→W (m)
n,k .

One example of the chain of correspondences is shown in Figure 13.

5.3 Bijection T
(m)
n,k

∼−→U
(m)
n,k

Let T ∈ T (m)
n,k . We apply two local operations (Step 1 and Step 2) to T to obtain its

corresponding U ∈ U (m)
n,k .

For Step 1, let v be a node of T with children (T0, . . . , Tm), and with label S =
{s1, s2, . . . , sp} with s1 < s2 < · · · < sp. If |S| > 1, then replace v by an increasing left-
path of singleton marked nodes labeled by s1, s2, . . . , sp, each with leaves for their other
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T ∈ T
(m)
n,k U ∈ U

(m)
n,k V ∈ V

(m)
n,k (f , S) ∈ W

(m)
n,k
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5

2

1

7

4

3

6

6
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1 7

(2)

(2)

(1)

(0)

(0)

(0)

(1)

(5, 2)

(3, 0)

(5, 2)

(1, 1)

(2, 0)

(5, 1)

1 7→

2 7→

3 7→

4 7→

5 7→

6 7→

Figure 13: An example of the bijections from Theorem 41. In this example, m = 3, n = 7,
and k = 4. The edge labels for V ∈ V (m)

n,k are the number for that edge’s color (black is

0, blue is 1, orange is 2). The element from W (m)
n,k has S = {2, 3, 5}. The function f is

shown using the convention described in Subsection 5.5.

(rank > 1) children, except for the last singleton (labeled sp), which is left unmarked and
keeps the original children of v. If there was a dashed edge in T from v to one of its
children, say Ts, then the new vertex labeled sp has the same dashed edge to its sth child
(which is Ts). Let T ′ be this new tree obtained by applying Step 1. Trees obtained as T ′

are easily seen to constitute the set of

(1) (m+ 1)-ary trees with n nodes labeled by [n],

(2) Such that all internal edges of rank m are descents,

(3) With a choice of solid/dashed for every cadet edge.

(4) With a subset of marked nodes such that every marked node has a node for its
leftmost child, and the corresponding edge of rank 0 is an ascent, meaning the label
of its parent is less than the label of its child, and all other children (of rank > 1)
are leaves.

It is also clear that Step 1 may be inverted by merging any marked nodes with their sole
child node.

For Step 2, we apply a local operation to each node of T ′ with a dashed edge. Let v
be such a node, with dashed edge to its child of rank s (we must have s ∈ [1,m]). First
convert the dashed edge to a solid edge, and add v to the set of marked nodes. Now there
are two cases: if there is at least one node among the children of v of rank < m, then we
are done with v. Otherwise (the only non-leaf child of v is its child of rank m), then swap
the leftmost child of v, a leaf, with the mth child of v.

After applying Step 2 to T ′ we obtain the resulting tree U . It is easy to verify that
U ∈ U (m)

n,k . Furthermore, the map has a straightforward inverse: for any marked node v
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of U , if there is a child node of rank s with s ∈ [1,m− 1], simply dash the cadet edge of

v. Otherwise, by the definition of U (m)
n,k , the leftmost child of v must be a node, and all

other children of v must be leaves. In this case, if the leftmost edge is a descent, we swap
the leftmost and rightmost children of v and dash the resulting internal edge of rank m.
If the leftmost edge is an ascent, then we undo the Step 1 as described above, that is,
merge v with its sole child. Thus we have established the bijection T (m)

n,k

∼−→U (m)
n,k .

5.4 Bijection U
(m)
n,k

∼−→ V
(m)
n,k

Let U ∈ U (m)
n,k . To obtain V ∈ V (m)

n,k , we apply three steps:
Step 1: For a vertex v, let rightpath(v) denote the unique tuple of nodes (v0, . . . , v`)

where v0 = v, and for all i ∈ [`], vi is the child of rank m of vertex vi−1, and v` has a leaf
for its child of rank m. Now we apply an operation to each vertex v of U . Let (v0, . . . , vm)
be the children of v in rank order. For each i ∈ [0,m− 1], if vi is a node, then color the
edge from v to vi with the color i, and add more edges of color i between v and every
element of rightpath(vi). Edges of rank m will soon be deleted, and are not given a color.

Step 2: Add a node with label n+1 and connect it with edges of color 0 to every node
in rightpath(u) where u is the root of U .

Step 3: Delete all of the original edges of rank m, and delete all leaves.
The set of marked vertices is unchanged throughout. In the end we obtain an element

of V (m)
n,k .

We can describe the inverse of this map explicitly. Let V ∈ V (m)
n,k be given, and view

it as a rooted tree with root n+ 1.
We modify the children of each vertex v as follows. For each s ∈ [0,m − 1], let

(v
(s)
1 , v

(s)
2 , . . . , v

(s)
` ) be the tuple consisting of all children of v that are connected to v by

an edge with color s, and with label(v
(s)
1 ) > label(v

(s)
2 ) > · · · > label(v

(s)
` ). If ` > 2,

then for each i ∈ [2, `], remove the edge connecting v
(s)
i to v, and add an edge of color m

connecting v
(s)
i−1 to v

(s)
i .

Once this has been done for each vertex, arrange the children of each vertex v in
increasing order by the color of the edge connecting them to v. Then add child leaves to
v such that the rank of each child node of v is equal to the color of the edge connecting
it to v (it is easy to see that this is always possible). Finally delete the vertex n+ 1 and
forget all of the edge colors.

It is not too hard to see that these maps are inverses of one another. Note also that the
marked vertices of U must have non-leaf left-children, and therefore the marked vertices
of V will have degree at least 2, and vice versa. This establishes the bijection Un,k

∼−→Vn,k.

5.5 Bijection V
(m)
n,k

∼−→W
(m)
n,k

Given V ∈ Vn,k, we define the pair (f, S) ∈ Wn,k as follows. For convenience we instead
define a function f : [n− 1]→ [n]× [m] ∪ {(n+ 1, 0)} which is obviously equivalent to a
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function f : [n− 1]→ [mn+ 1], as in the definition of W (m)
n,k . The condition on S is that

for every s ∈ S there exists i ∈ [n− 1] such that s is the first element of f(i).
A leaf of a Cayley m-foliage is a vertex of degree 1. Define f(1) to be the ordered

pair (i, c) where i is the label of the leaf vertex of V of minimum label, and c is the color
of the edge connecting this leaf to its parent. Then delete this leaf, and use the same rule
to define f(2), then f(3), and so on to f(n− 1) (deleting leaves at each stage). For the
subset S we take the set of labels of the marked internal vertices of V . It is easy to see
that

{a | a is the first coordinate of f(i) for some i ∈ [n− 1]} =
{

labels of non-leaf
vertices of V

}
.

It follows that, since S consists of only non-leaf vertices, the set S satisfies its requirement.
This simple map is inverted by inverting the associated Prüfer sequence and then

filling in the colors and the marked internal vertices. Explicitly, given (f , S), let f̂ be

defined as f̂(i) = â where â is the first coordinate in the pair given by f(i). Then f̂
is the Prüfer sequence of a Cayley tree T . To turn T into a Cayley m-foliage, we mark
the vertices in the set S, and then color the edges of T as follows. The color of the edge
connecting the leaf of minimum label to its parent is given by the second coordinate in the
pair f(1). Then we delete this leaf, and use the same rule to obtain another edge color
from f(2). Continuing in this manner through f(n − 1), we establish colors for all but
one edge, the one exception being the edge connecting the two remaining vertices after
these n− 1 deletions. But it is easy to see that one of these remaining vertices is labeled
n+ 1 (every tree has at least two leaves, and we delete the minimum leaf, so we will never
delete n+1), and we already know that all edges incident to the vertex labeled n+1 have

color 0, by the definition of W (m)
n,k . Thus we have filled in all missing colors. It is clear

that this map is the inverse of the first, and so we have the final bijection V (m)
n,k

∼−→W (m)
n,k .

Figure 14 shows the full bijection from the faces of the 3-Shi arrangement in R3 to the
marked functions in W (3)

3,k for k = 1, 2, 3.

6 Enumerative corollaries

In this section, we derive functional equations for the exponential generating functions
of the m-Catalan and m-Shi faces counted according to their dimension. The results
for the classical Catalan and Shi arrangements are obtained by substituting m = 1.
We also give explicit counting formulae for the faces of each dimension. These results
are straightforward corollaries of the bijective correspondences obtained in the previous
sections (Theorem 14 and Theorem 41).

6.1 m-Catalan generating function and counting formula

We define the exponential generating function

Cm(x, y) := 1 +
∑
n>1

xn

n!

n∑
k=1

c
(m)
n,k y

k,
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Figure 14: The bijection between faces of the 3-Shi arrangement in R3 and elements of
3⋃

k=1

W (3)
3,k . We view the elements (f, S) ∈ W (3)

3,k as the equivalent pair (f , S) as described

in Subsection 5.5. The function f is displayed as a number sequence, where the number
in position i is the first number of the pair f(i), with a color determined by the second
number of f(i) (black is 0, blue is 1, orange is 2). The set S is a subset of the numbers
appearing as the first element of a pair in Im(f), and is indicated by underlining these
numbers in the number sequence.
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where c
(m)
n,k is the number of k-dimensional m-Catalan faces in Rn.

Corollary 42. Let C stand for Cm(x, y). We have the functional equation

C = 1 + (ex − 1)
(
(1 + y)Cm+1 − C

)
. (6.1)

Furthermore, the number of k-dimensional m-Catalan faces in Rn is

c
(m)
n,k =

n∑
i=k

S(n, i)(i− 1)!

(
i

k

) i−k∑
j=0

(−1)j
(
i− k
j

)(
i(m+ 1)− jm

i− 1

)
. (6.2)

Proof. Let

Cm =
⋃
n>0

{[n]-decorated (m+ 1)-ary trees}.

By Theorem 14, Cm(x, y) is the generating function for elements of Cm, with x tracking
n (the size of the labelling set), and y tracking the number of free nodes. We now give a
recursive description of these trees, which translates into the equation

C = 1 + y(ex − 1)Cm+1 + (ex − 1)C(Cm − 1). (6.3)

Our approach follows the Symbolic Method (see [15, Part A]). First, we claim that for any
tree T ∈ Cm, the number of free nodes of T is equal to the number of nodes of T “without
dashed children,” that is, the number of nodes of T for which none of their children are
captive. This follows from the fact that every node has at most one captive child, and
so the number of captive nodes of T is equal to the number of nodes of T that have a
captive child (the bijection is v 7→ parent(v)). Taking complements proves the claim.

Therefore, we treat Cm(x, y) as the generating function for elements of Cm with x
tracking n and y tracking the number of nodes without dashed children. With this in
mind, a tree in Cm can be either:

• A leaf, contributing the term 1 in (6.3).

• A tree whose root is a node with no captive children. Such a tree is built from a
nonempty set (the label of the root) and an arbitrary m-tuple of trees (the children).
Thus, these trees contribute the term y(ex− 1)C2. The y counts the root as a node
with no dashed children.

• A tree whose root is a node with a captive child. Such a tree is built from a nonempty
set (the label of the root), an arbitrary left-child, and a m-tuple of trees (the other
children) not all of which are leaves. We need not record which child is captive,
since it is always the cadet. These trees contribute the term (ex − 1)C(Cm − 1).

Summing up the decomposition we obtain (6.3). Then equation (6.1) results from (6.3)
by a simple algebraic simplification.
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We now proceed to the counting formula (6.2). It is possible to obtain (6.2) directly
from the function equation (6.1), but a significant amount of algebraic manipulation is
required. Instead, we will obtain (6.2) by slightly more direct tree enumeration.

First, we remove the labels from our trees and count them separately. A unlabeled
(m + 1)-ary dash tree is an unlabeled (m + 1)-ary tree that has two types of internal
edges: solid/dashed, where leftmost edges are always solid, and if an edge is dashed
then all sibling edges to its right must lead to leaves. We define the ordinary generating
function

Hm(x, y) := 1 +
∑
n>1

xn
n∑
k=1

h
(m)
n,k y

k,

where h
(m)
n,k is the number of unlabeled (m + 1)-ary dash trees with n nodes, of which k

have no dashed children (or, equivalently, with k free nodes). Clearly, an [n]-decorated
(m+ 1)-ary tree may be represented by a pair (T, π) where T is an unlabeled (m+ 1)-ary
dash tree and π is an ordered set partition of [n] with the number of blocks of π equal to
the number of nodes of T . Since the number of ordered set partitions of [n] with i parts
is equal to S(n, i)i!, we have

c
(m)
n,k = #

{
[n]-decorated (m+ 1)-ary
trees such that k nodes do
not have dashed children

}
=

n∑
i=1

S(n, i)i!h
(m)
i,k . (6.4)

It remains to prove that for i > 0,

h
(m)
i,k =

1

i

i∑
j=0

(−1)j
(
i− k
j

)(
i(m+ 1)− jm

i

)
. (6.5)

We obtain equation (6.5) via the Lagrange Inversion Theorem [15, pg. 66]. Let H stand
for Hm(x, y). By the same decomposition as the one given above for C, we have

H = 1 + x
(
(y + 1)Hm+1 −H

)
.

Let H∗ = H − 1. It follows that

H∗ = x
(
(y + 1)(H∗ + 1)m+1 − (H∗ + 1)

)
. (6.6)

We recognize (6.6) as a functional equation of the form H∗ = xφ(H∗) where φ(t) :=
(y + 1)(t+ 1)m+1 − (t+ 1). Therefore, the Lagrange Inversion Theorem gives

h
(m)
i,k = [xi][yk]H∗

=
1

i
[ti−1][yk]φ(t)i

=
1

i
[ti−1][yk]

(
(y + 1)(t+ 1)m+1 − (t+ 1)

)i
, (6.7)
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where [xi]F denotes the coefficient on xi in the formal power series F . Instead of pursuing
an algebraic simplification, we prefer to give a combinatorial interpretation of

[ti−1][yk]
(
(y + 1)(t+ 1)m+1 − (t+ 1)

)i
. (6.8)

Consider the set [m + 1] × [i], viewed as a grid with m + 1 rows and i columns. Let
Qi,m+1 := {(X,N) | X ⊂ [m+ 1]× [i], N ⊂ [i]}. It is not hard to see that the generating

function for Qi,m+1 with t tracking |X| and y tracking |N | is ((y + 1)(t+ 1)m+1)
i
.

Now let Qi,m+1 consist of the elements (X,N) ∈ Qi,m+1 such that for every n′ ∈ [i]rN ,
the subset X includes at least one cell in the last m rows of column n′. We claim that
the analogous generating function for Qi,m+1 is ((y + 1)(t+ 1)m+1 − (t+ 1))

i
.

We reason as follows: the term (y+ 1)(t+ 1)m+1 generates all subsets of [m+ 1] twice,
once with weight y and once with weight y0. By subtracting t+ 1, we exclude all subsets
of [m + 1] counted with weight y0 that do not include any elements except for possibly
1 ∈ [m + 1]. Taking to the ith power fills out a [m + 1]× [i] grid such that each column
given the weight y0 contains at least one selected cell in its last m rows. Thus we obtain
exactly the elements of Qi,m+1.

Hence the expression (6.8) counts elements (X,N) ∈ Qi,m+1 with |X| = i − 1 and
|N | = k. Since these elements are constrained by several “at least one” conditions, we
will count them by inclusion-exclusion.

For s = 1, . . . , i − k, let As be the set of pairs (X,N) ∈ Qi,m+1 with |X| = i − 1,
|N | = k, and such that the subset X includes at least one cell in the last m rows of
column n′s, where n′s is the sth smallest element of [i]rN . Note that the right-hand-side
of (6.8) equals |⋂i−k

s=1As|.
Let Acs denote the complement of As in {(X,N) ∈ Qi,m+1 | |X| = i − 1, |N | = k},

that is, the elements of Qi,m+1 with |X| = i − 1, |N | = k, and such that the subset X
does not include any cells in the last m rows of column n′s, where n′s is the sth smallest
element of [i] r N . Observe that the intersection of any j > 0 of the Acs has cardinality(
i
k

)(
i(m+1)−jm

i−1
)
: the first coefficient is the choice of N , and the second is the choice of X.

Thus starting from (6.7), and applying the above reasoning and inclusion-exclusion,
we have

[xi][yk]H =
1

i

∣∣∣∣∣
i−k⋂
s=1

As

∣∣∣∣∣
=

1

i

i−k∑
j=0

(−1)j
(
i− k
j

) ∣∣∣∣∣
j⋂
s=1

Acs

∣∣∣∣∣
=

1

i

i−k∑
j=0

(−1)j
(
i− k
j

)(
i

k

)(
i(m+ 1)− jm

i− 1

)
. (6.9)

Finally, combining (6.4) and (6.9) we obtain

c
(m)
n,k =

n∑
i=0

S(n, i)i!
1

i

i−k∑
j=0

(−1)j
(
i− k
j

)(
i

k

)(
i(m+ 1)− jm

i− 1

)
.

the electronic journal of combinatorics 28(4) (2021), #P4.29 45



The formula (6.2) follows by canceling the 1
i
, and factoring the

(
i
k

)
out of the sum on

j.

Remark 43. In the case m = 1 in (6.2), one can show that the inner sum on j collapses
to
(
i+k
k−1
)
, that is,

i−k∑
j=0

(−1)j
(
i− k
j

)(
2i− j
i− 1

)
=

(
i+ k

k − 1

)
.

This follows from the above inclusion-exclusion argument, because for m = 1 the “at
least one” conditions become “exactly one” conditions, removing the need for inclusion-
exclusion entirely. We leave the details to the reader. It follows that the number of
k-dimensional faces of the classical Catalan arrangement in Rn is simply

c
(1)
n,k =

n∑
i=k

S(n, i)(i− 1)!

(
i

k

)(
i+ k

k − 1

)
.

This formula was first obtained via a finite field method in [3, Cor. 8.3.2]. We have
a combinatorial explanation for each term: S(n, i)(i − 1)!

(
i
k

)(
i+k
k−1
)

is the number of [n]-
decorated binary trees with i nodes, of which k do not have dashed children. Summing
on i gives all the [n]-decorated binary trees that correspond to a face of dimension k.

Remark 44. In proving Corollary 42 we have shown via Lagrange Inversion that these two
sets are equinumerous:

Ways of choosing k columns and
i− 1 cells from an (m+ 1)× i

grid such that the unchosen
columns have at least one

selected cell in their last m slots.

 ∼=


Unlabeled (m+ 1)-ary
dash trees with i nodes,

of which k have no
dashed children

× [i]. (6.10)

It is not hard to construct a direct bijection. The columns of the grid play the role of
nodes, and the k chosen columns correspond to nodes without dashed children. The
chosen cells in each column indicate which children are nodes. Reading the grid from
left-to-right, we can construct the tree one node at a time. The extra factor of i is there
to allow a cyclic re-ordering of the columns (only one ordering is possible so we do not
run out of nodes before columns).

This is one example of the ubiquitous “Cycle Lemma”, which arises frequently in the
enumeration of trees (see [12] for more examples). If one specializes to k = i − 1 and
m = 1, then the bijection in (6.10) recovers the well-known formula Cati = 1

i

(
2i
i−1
)
.

By including the labels of the trees, we could obtain a bijection between the set of
Catalan faces and certain placements of subsets of [n] into grids of various sizes. We leave
the details to the reader.
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6.2 m-Shi generating function and counting formula

We define the exponential generating function

Sm(x, y) := 1 +
∑
n>1

xn

n!

n∑
k=1

s
(m)
n,k y

k,

where s
(m)
n,k is the number of k-dimensional m-Shi faces in Rn.

Corollary 45. Let S stand for Sm(x, y). We have the functional equation

S = exp (x(y + 1)Sm − x) . (6.11)

Furthermore, the number of k-dimensional m-Shi faces in Rn is

s
(m)
n,k =

(
n

k

) n−k∑
i=0

(−1)i
(
n− k
i

)
(m(n− i) + 1)n−1. (6.12)

Proof. We claim that S is the generating function for “rooted Cayley m-forests”, which
we define now. A rooted Cayley m-tree is a Cayley tree (see Subsection 5.1) with one
distinguished vertex called the root , and with every edge assigned one of m colors, rep-
resented by the numbers [0,m− 1]. An elder node of a rooted Cayley m-tree is a vertex
with at least one child (that is, v is an elder node if at least one of its neighbors is further
from the root than v is). A rooted Cayley m-forest is an unordered set of rooted Cayley

m-trees. By Theorem 41, s
(m)
n,k is equal to the number of Cayley m-trees with n+1 vertices

with a marked subset of the vertices {1, . . . , n} that have degree > 1, and such that all
edges incident to the vertex n+1 have color 0. It is easy to see that, by deleting the vertex
labeled n+ 1, s

(m)
n,k is also equal to the number of rooted Cayley m-forests with n vertices

and a marked subset of n − k elder nodes. Thus S is the generating function for rooted
Cayley m-forests with a marked subset of elder nodes, where x tracks the number of ver-
tices and y tracks the number of unmarked vertices. Let E = E(x, y) be the exponential
generating function for rooted Cayley m-trees with a marked subset of elder nodes, where
x tracks the number of vertices and y tracks the number of unmarked vertices. By the
Exponential Formula (see [27, Cor. 5.1.1]), S = expE. Furthermore, we claim that

E = x(y + 1)(Sm − 1) + xy. (6.13)

Indeed, a tree described by E may be decomposed at the root vertex, leaving either:

(1) A tree whose root has at least one child. In this case, the root is an elder node, so
may or may not be marked. For all s ∈ [0,m− 1], the set of children connected to
the root by an edge of color s forms an element appearing as a term in the generating
function S. Viewing the full set of children as a tuple

(children of color 0, children of color 1, . . . , children of color m− 1),

the full (nonempty) set of children forms an element appearing as a term in the
generating function Sm − 1. Thus, we have the term x(y + 1)(Sm − 1) in (6.13).
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(2) A tree whose root has no children (just a single vertex). This vertex is not an elder
node, so it can never be marked. Thus, these trees contribute the term xy.

Summing up, we obtain (6.13). By combining (6.13) with S = expE we obtain

S = exp (x(y + 1)(Sm − 1) + xy) ,

whence, by slight algebraic simplification, we obtain (6.11).
Now we proceed to the counting formula (6.12). It is possible to obtain this formula

directly from the functional equation (6.11), but we prefer to make use of our bijective
results. What follows is a routine application of inclusion-exclusion to the functions in
W (m)
n,k (see Subsection 5.2). Let A be the set of pairs (f, S) where f : [n− 1]→ [mn + 1]

and S ⊂ [n]. For j = 1, . . . , n− k, let Aj be the set of pairs (f, S) ∈ A such that at least
one element of [n − 1] is mapped to [(sj − 1)m + 1, sjm], where sj is the jth element of
S. Let Acj denote A r Aj, that is, the set of pairs (f, S) ∈ A such that no elements of
[n−1] are mapped to [(sj−1)m+1, sjm], where sj is the jth element of S. Note that the
intersection of any i > 0 of the Acj has cardinality

(
n

n−k
)
(m(n− i) + 1)n−1, since once we

choose S (the
(

n
n−k
)

term) we have merely blocked out mi possible values in the codomain
of f . In total,

s
(m)
n,k =

∣∣∣∣∣
n−k⋂
j=1

Aj

∣∣∣∣∣
=

n−k∑
i=0

(−1)i
(
n− k
i

) ∣∣∣∣∣
i⋂

j=1

Acj

∣∣∣∣∣
=

n−k∑
i=0

(−1)i
(
n− k
i

)(
n

n− k

)
(m(n− i) + 1)n−1.

Of course,
(

n
n−k
)

=
(
n
k

)
, and the formula (6.12) is obtained by factoring this binomial

coefficient out of the sum.

Setting m = 1 in (6.12), we recover the formula (1.1) in Theorem 1 first obtained via
a finite field method in [3, Thm. 8.2.1].

Remark 46. For small k, the functions in W (m)
n,k yield easy positive formulae. For example,

the number of one-dimensional m-Shi faces is simply

s
(m)
n,1 = n!mn−1, (6.14)

which was also observed in Remark 24. For k = 2, there are only a few cases to consider,
so it is easily shown that

s
(m)
n,2 =

n!(n− 1)(m(n+ 2) + 2)mn−2

4
. (6.15)

It is not too hard to derive the formula (6.14) directly from the definition of Shi faces,
but we do not know a direct proof of the formula (6.15).
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7 Conclusions and questions

We are hopeful that the bijections introduced in this paper will be useful for future study
of the faces of hyperplane arrangements. In this section, we highlight some possible
directions for future research.

7.1 Structure of the faces

So far, we have only used the bijection to find the cardinality of the set of faces of
each dimension. Going further, the faces have a natural partial order given by closure-
inclusion, and it would be interesting to understand the corresponding partial order on
[n]-decorated binary trees. Further still, the set of faces of any hyperplane arrangement
can be given a semigroup structure, whose linearization defines the so-called Tits algebra
[1, Chs. 1 & 9]. It would be interesting to understand this structure in terms of trees,
or other combinatorial objects. For the braid arrangement, the Tits algebra structure is
well-understood in terms of interleaving the blocks of ordered set partitions [10, Sec. 3C].
Interesting applications are given in [9]. No such combinatorial answer is known for the
Catalan or Shi arrangements. The question of understanding this structure for the Shi
arrangement was raised explicitly in [10, Sec. 3F], but remains open.

7.2 Other hyperplane arrangements

There are many other hyperplane arrangements closely related to the Catalan and Shi
arrangements. Of particular interest is the Linial arrangement, consisting of hyperplanes

xi − xj = 1 for 1 6 i < j 6 n.

It has been shown [22, Thm. 8.1] that the number of regions of the Linial arrangement
in Rn is

2−n
n∑
k=0

(
n

k

)
(k + 1)n−1. (7.1)

It was further shown [22, Thm. 8.2] that (7.1) is the number of “alternating trees” with
n vertices, and also the number of “local binary search trees” with n vertices. It would
be interesting to find a similar combinatorial interpretation for the rest of the faces.
Currently, there is not even a known formula for the number of Linial faces.

The braid, Catalan, and Shi arrangements belong to a large family known as truncated
affine arrangements, which are arrangements consisting of the hyperplanes

xi − xj = s for 1 6 i < j 6 n,

where s runs through an interval of integers [−a, b] for a, b > 0. The regions of truncated
affine arrangements have been enumerated in full generality in [22] and bijections from
the regions to certain families of trees have been given in [8]. The faces have not been
enumerated in general, and merit future study.
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In another direction, the Shi arrangement bears a resemblance to the so-called Ish
arrangement [2], consisting of hyperplanes

xi − xj = 0 for 1 6 i < j 6 n, and

x1 − xj = i for 1 6 i < j 6 n.

Although the two arrangements look rather different, they have the same number of
regions and the same characteristic polynomial, among many other striking similarities.
However, it is evident as early as n = 3 that they do not have the same number of faces
(in R3 there are 43 Shi faces and 45 Ish faces). There is still much to be understood about
the faces of these arrangements.
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