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Abstract

Let L be a Desarguesian 2-spread in the Grassmann graph Jq(n, 2). We prove
that the collection of the 4-subspaces, which do not contain subspaces from L is
a completely regular code in Jq(n, 4). Similarly, we construct a completely regular
code in the Johnson graph J(n, 6) from the Steiner quadruple system of the extended
Hamming code. We obtain several new completely regular codes with covering
radius 1 in the Grassmann graph J2(6, 3) using binary linear programming.

Mathematics Subject Classifications: 05B25, 05B30

1 Introduction

The notion of a completely regular code was introduced by Delsarte in [14] as a gen-
eralization of a perfect code. It is known that all perfect codes in Grassmann graphs
[10] are trivial and their nonexistence in Johnson graphs is proven for a large number of
cases [15], [19]. Therefore the completely regular codes in these graphs are of interest as
they are related to designs and some geometrical objects.

During the years, researchers used several different names for the completely regular
codes with covering radius 1. These objects could be equivalently defined in terms of:
equitable 2-partitions [30], [32], perfect 2-colorings [1], [5], [13], [17],r [28], intriguing
sets [12] and others.

We refer to Ph.D. thesis of Martin [26] for an introduction on completely regular codes
in Johnson graphs and a survey of Borges, Rifa and Zinoviev [6] on a recent progress in
the study of completely regular codes in Hamming and Johnson graphs.

∗The study was carried out within the framework of the state contract of the Sobolev Institute of
Mathematics (project no. FWNF-2022-0017).

the electronic journal of combinatorics 29(2) (2022), #P2.57 https://doi.org/10.37236/10083

https://doi.org/10.37236/10083


In [14] Delsarte noted interrelations of the completely regular codes in Hamming and
Johnson graphs with orthogonal arrays and t-designs respectively. In order to emphasize
this connection Martin [24] suggested the term “a completely regular design of strength
t”. He studied several well-known classes of designs from the point of view of complete
regularity and showed that (k−1)-(n, k, λ)-designs are completely regular. This also holds
for q-ary designs, therefore 2-spreads and 2-ary Steiner triple system [7] are completely
regular. In [1] it was shown that if D is a (k − 1)-(n, k, 1)-design, then the code of the
(k+ 1)-subsets that does not contain any block of D is completely regular in the Johnson
graph J(n, k + 1). The integer necessary conditions for the existence of t-designs were
exploited for showing the nonexistence of constant weight perfect codes [15], [19] and
completely regular codes with covering radius 1 [28].

The completely regular designs of strength 0 in Hamming and Johnson graphs were
characterized by Meyerowitz in [27] and have a rather simple structure. The completely
regular codes of zero strength in the strongly regular Grassmann graphs are known as
the Cameron-Liebler line classes [9]. Contrary to the ordinary designs of strength 0 [27],
the complete classification of these objects is still open. Several approaches for studying
completely regular codes in Johnson graphs were applied to Cameron-Liebler line classes
in [18].

The completely regular codes of strength 0 with covering radius 1 in Grassmann graph
Jq(n, k) for k > 3 could be considered as a generalization of Cameron-Liebler line classes.
Somewhat trivial examples of these codes are the subspaces containing a point; the sub-
spaces contained in a hyperplane; the subspaces contained in a hyperplane or containing a
point for a non-incident point-hyperplane pair. There are not known any other examples
of such codes in Jq(n, k) for k > 3. In [16] Filmus and Ihringer suggested a reductive
concept for classification of completely regular codes of strength 0 and covering radius 1
if once has the classification of these codes for k = 2. In particular, for q = 2, 3, 4, 5 they
showed that such codes in Jq(n, k) are only those described above.

The completely regular codes in Johnson graphs of strength 1 were characterized in the
following cases: codes with the minimum distance at least 3 by Martin in [25] and covering
radius 1 in J(n,w) for w > 4 recently by Vorob’ev [32]. De Winter and Metsch in [13]
considered completely regular codes with covering radius 1 and strength 1 in Grassmann
graphs of diameter 3. They found two new series of examples of such codes: for a given
2-spread the 3-subspaces that do not contain a space of the 2-spread and the code arising
from symplectic polar space. The first series is similar to a construction from [1] for
completely regular codes in Johnson graphs J(n, 4) and J(n, 5) from Steiner triple and
quadruples systems.

In Section 2 we give basic definitions and review the theory developed by Delsarte and
Martin in the q-analog case. In Section 3 we consider the completely regular codes with
covering radii 2 in regular graphs. We provide a sufficient condition for existence of such
codes in terms of eigenvectors of these graphs. In Section 4 we discuss a spectral property
of the inclusion matrix of t-subspaces vs k-subspaces. We show that the code of (k + 1)-
subspaces not containing subspaces of (k−1)-(n, k, 1)q-design is completely regular in the
Grassmann graph of (k + 1)-subspaces. This generalizes a series of completely regular
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codes from [1] and [13]. In Sections 5 and 6 we go further by applying this idea to the
most symmetric cases, i.e. when a (k−1)-(n, k, 1)q-design is the Desarguesian 2-spread or
the Steiner quadruple system of extended Hamming code. For these designs, the code of
(k+ 2)-subspaces (subsets), which do not contain subspaces (subsets) of (k−1)-(n, k, 1)q-
design is completely regular in the Grassmann (Johnson) graph.

The linear programming approach is a popular method for constructing and classifying
codes. Binary versions of linear programming earlier showed promising results for settling
the nonexistence of completely regular codes [4] as well as finding these objects [22].
In Section 7 we obtain several new completely regular designs of strength 1 and covering
radius 1 in the Grassmann graph J2(6, 3) by binary integer programming with a prescribed
subgroup of its automorphism group. We outline the known results on the completely
regular codes with ρ = 1 in this graph in a parameter table.

2 Definitions and Basic theory

2.1 The eigenspaces of Johnson and Grassmann graphs

In what follows we abbreviate k-element subset and k-dimensional subspace to k-subset
and k-subspace respectively. The vertices of the Johnson graph J(n, k) are k-subsets of
the set {1, . . . , n} and the edges are pairs of subsets meeting in a (k − 1)-subset. The
vertices of the Grassmann graph Jq(n, k) are k-subspaces of Fnq and the edges are pairs of
subspaces meeting in a (k− 1)-subspace. These graphs are well-known series of distance-
regular graphs. We also denote the Johnson graph J(n, k) by J1(n, k) to emphasize that
a result holds for Johnson and Grassmann graphs simultaneously. Below we consider
k 6 n/2 as the graphs Jq(n, k) and Jq(n, n − k) are isomorphic for all q > 1. We use
the notations

[
n
k

]
q

for q-binomial coefficient and
[
n
k

]
1

for its limit value, i.e. the ordinary

binomial coefficient.
A vector v is called an eigenvector of a graph Γ with eigenvalue θ if it is an eigenvector

of the adjacency matrix of Γ with eigenvalue θ. The following representation for the
eigenspaces of Johnson and Grassmann graphs can be found in [23], see also [14, Section
4.2]. We arrange the eigenvalues of Jq(n, k), q > 1 in descending order starting from zeroth
and denote them by θi,q(n, k), i ∈ {0, . . . , k}. For i-subspace (i-subset if q = 1) X let us
consider the characteristic vectors of all k-subspaces of Fnq (k-subsets) containing X. Let
Ti(k) be the linear span of these vectors over real field whereX runs through all i-subspaces
(i-subsets) of Fnq (the set {1, . . . , n}). Let T⊥ denote the orthogonal completement of a
subspace T .

Theorem 1. [23, Theorem 4.16] For any i, 0 6 i 6 k, Ui = Ti(k) ∩ T⊥i−1(k) is the
eigenspace of Jq(n, k), q > 1, with eigenvalue

θi,q(n, k) = qi+1
[
n−k−i

1

]
q

[
k−i
1

]
q
−
[
i
1

]
q
.

Below we omit the index q in θi,q(n, k) when we speak of the eigenvalues of Johnson
graphs.
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2.2 Completely regular codes and q-ary designs

Let C be a code in a regular graph Γ. A vertex x is in Ci if the minimum of the distances
between x and the vertices of C is i. The maximum of these distances is called the
covering radius of C and is denoted by ρ. The d istance partition of the vertices of Γ with
respect to C0 = C is {Ci : i ∈ {0, . . . , ρ}}.

A code C is called completely regular [31] if there are numbers α0, . . . , αρ, β0, . . . , βρ−1,
γ1, . . . , γρ such that any vertex of Ci is adjacent to exactly αi, βi and γi vertices of Ci−1,
Ci and Ci+1 respectively. Note that α0, . . . , αρ can be found from the remaining numbers
and the valency of the graph. The set {β0, . . . , βρ−1; γ1, . . . , γρ} is called the intersection
array of the completely regular code C.

For a completely regular code C consider the (ρ+ 1)× (ρ+ 1) matrix A such that Ai,j
equals the number of vertices of Cj adjacent to a fixed vertex of Ci. The eigenvalues of
the matrix A are called the eigenvalues of the completely regular code C.

Theorem 2. [11, Theorem 4.5] (Lloyd’s theorem) The eigenvalues of a completely regular
code in a graph Γ are eigenvalues of Γ.

The eigenvalues of a completely regular code with covering radius 1 are easy to find,
see e.g. [30, Proposition 1].

Proposition 3. Let C be a completely regular code in a m-regular graph Γ with ρ = 1 and
intersection array {β0; γ1}. Then the size of C is |V (Γ)|γ1/(γ1 + β0) and the eigenvalues
of C are m and m− β0 − γ1.

In the rest of the section we consider codes in Johnson or Grassmann graphs. A
collection D of k-subspaces (k-subsets when q = 1) of Fnq (of {1, . . . , n}) is a t-(n, k, λ)q-
design, if any t-subspace of Fnq (t-subset of {1, . . . , n}) is contained in exactly λ elements
of D. In throughout of what follows we consider only designs without repeated blocks.
The strength of D is the maximum t such that D is a t-design. When q > 2, a 1-(n, k, 1)q-
design is called a k-spread. It is well-known that k-spreads exist if and only if k divides
n.

Let χC be the characteristic vector of a code C in the graph Jq(n, k). Consider the
decomposition of χC over the eigenspaces U0, . . . , Uk of Jq(n, k):

χC = u0 + ui1 + · · ·+ uis , (1)

where u0 ∈ U0 and uij ∈ Uij , j = 1, . . . , s. The number s in the decomposition (1) is
called the dual degree of the code C [14].

We make use of several results that were stated for the completely regular codes in
Johnson graphs by Delsarte [14] and Martin [24]. The arguments of the proofs for the q-ary
generalization of these results could be obtained by replacing “subset” with “subspace”
and follow from the description of the eigenspaces of Jq(n, k) in Section 2.1.

Theorem 4. Let C be a code in Jq(n, k), q > 1 such that the decomposition (1) holds.
Then we have the following:
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1. [14, Theorem 4.2] The strength of C as q-ary design is equal to min{ij : j ∈
{1, . . . , s}} − 1.

2. [14, Theorem 5.13] If the minimum distance of C is greater or equal to 2s− 1 then
C is completely regular.

3. [14, Theorem 5.10] The covering radius of C is not greater than s.
4. [24, Corollary 3.4] If C is completely regular then its strength is equal to

min{i > 0 : θi,q(n, k) is an eigenvalue of C} − 1.

The following statement for Johnson graphs could be found in [28, Corollary 1].

Corollary 5. Let C be a completely regular code in Jq(n, k), q > 1 with covering radius
1 and intersection array {β0; γ1}. Then we have the following:

1. The code C is of size
[
n
k

]
q
γ1/(γ1 + β0) and its eigenvalues are numbers

[
n−k
1

]
q

[
k
1

]
q

and
[
n−k
1

]
q

[
k
1

]
q
− γ1 − β0.

2. The strength of C is t where

θt+1,q(n, k) =
[
n−k
1

]
q

[
k
1

]
q
− γ1 − β0.

Moreover, the numbers [n−ik−i ]qγ1/(γ1 + β0) are integers for any i ∈ {0, . . . , t}.

Proof. The eigenvalues of C and the expression |C| =
[
n
k

]
q
γ1/(γ1 +β0) follow from Propo-

sition 3 and the strength of C is by the fourth Statement of Theorem 4. The integer
necessary conditions for t-design imply that for any i ∈ {0, . . . , t} the number of the
subspaces in C containing an i-subspace is

[
n−i
k−i

]
q
γ1/(γ1 + β0).

Corollary 6. 1. [24, Corollary 3.5], [3, Corollary 8] For q > 1 any (k−1)-(n, k, λ)q-design
is a completely regular code in Jq(n, k) with eigenvalue θk,q(n, k) and covering radius 1.

2. Any 3-spread is a completely regular code in the Grassmann graph Jq(n, 3) with
covering radius 2.

Proof. We follow the considerations from [24, Corollary 3.5]. By Statement 1 of Theorem 4
we see that the dual degrees of a (k − 1)-(n, k, λ)q-design and a 3-spread are 1 and s
respectively, where s 6 2. Since the covering radius of 3-spread is 2, its dual degree
is also 2 by Statement 3 of Theorem 4. Note that the minimum distance of (k − 1)-
(n, k, λ)q-design in J(n, k) is 2 while that of 3-spread in J(n, 3) is 3. The result follows
from Statement 2 of Theorem 4.

3 Auxilary statements

Let the positions of a vector u be indexed by the vertices of a graph Γ. If the set of the
pairwise different values of u is {a0, . . . , ar}, denote by Ci the set of the vertices of Γ such
that ux = ai, i ∈ {0, . . . , r}. The partition {C0, . . . , Cr} is called the partition associated
to the vector u. We see that the eigenvectors taking two or three values are tightly related
with the completely regular codes with covering radii 1 and 2.
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Theorem 7. 1. A code C is completely regular in a m-regular graph Γ with covering
radius 1 and eigenvalue θ, θ 6= m if and only if {C,C} is the partition associated to an
eigenvector of Γ with eigenvalue θ.

2. Let Γ be a m-regular graph Γ, {C0, C1, C2} be the partition associated to an eigen-
vector u of Γ. If there are no edges between C0 and C2 and any vertex of C1 is adjacent
to exactly β1 vertices of C2 then C0 is a completely regular code in Γ with covering radius
2.

Proof. 1. The result could be found in [12, Proposition 3.2] or [1, Proposition 1].
2. Let a0, a1 and a2 be the values of u on C0, C1 and C2 respectively. Let a vertex x

of C0 be adjacent to α0(x) vertices of C0. Since there are no edges between the vertices
C0 and C2, the vertex x is adjacent to β0(x) = m − α0(x) vertices of C1. Consider the
sum of the values of u on the neighbors of x. Since u is an eigenvector with eigenvalue θ
we have the following:

θa0 = (m− β0(x))a0 + β0(x)a1. (2)

This implies that α0(x) and β0(x) do not depend on x. The same argument on C1 and
C2 implies that x ∈ C2 has exactly γ2 and α2 neighbors in C1 and C2 respectively. This
follows from α2 + γ2 = m and the equation

θa2 = (m− α2)a1 + α2a2. (3)

Let a vertex x of C1 be adjacent to γ1(x), α1(x) and β1 vertices of C0, C1 and C2

respectively. Note that β1 does not depend on x by the condition of the theorem. Taking
into account that α1(x) + β1 + γ1(x) = m, the sum of the values of u on the neighbors of
x is

θa1 = γ1(x)a0 + (m− γ1(x)− β1)a1 + β1a2, (4)

The above implies that α1(x) and γ1(x) do not depend on x and C0 is a completely
regular code by the definition.

4 Inducing map and completely regular codes

For q > 1 and l > k consider the matrix Il,k whose rows and columns are indexed by the
vertices of Jq(n, l) and those of Jq(n, k) respectively, Il,k(x, y) is 1 if y is contained in x
and 0 otherwise. Kantor in [20] proved that Il,k is a full rank matrix. Moreover, it is clear
that the left multiplication by Il,k maps the column-vectors of the subspace Ti(k) to those
of Ti(l) (see Section 2.1 for their definitions). Therefore, Il,k establishes isomorphism from
the eigenspace Ui,q(n, k) to Ui,q(n, l) for any i ∈ {0, . . . , k}.

Theorem 8. Let u be an eigenvector of the graph Jq(n, k) with eigenvalue θi,q(n, k), q > 1.
Then for any l > k the vector Il,ku is an eigenvector of the graph Jq(n, l) with eigenvalue
θi,q(n, l).

We make use of the theorem above for obtaining a series of completely regular designs.
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Theorem 9. 1. [1, Proposition 4] Let D be a (k − 1)-(n, k, 1)-design. Then

{U : U ⊂ {1, . . . , n}, |U | = k + 1, |{V ∈ D : V ⊂ U}| = 0}

is a completely regular code in the Johnson graph J(n, k + 1) with covering radius 1.
2. Let D be a (k − 1)-(n, k, 1)q-design. Then

{U : U < Fnq , dim(U) = k + 1, |{V ∈ D : V < U}| = 0}

is a completely regular code in the Grassmann graph Jq(n, k + 1) with covering radius 1.

Proof. 2. We use the approach of work [1] based on the inclusion matrix. The code
D is completely regular with covering radius 1 by Corollary 6. By the first statement
of Theorem 7 there is an eigenvector u of Jq(n, k) with associated partition {D,D}. A
(k + 1)-subspace of Fnq contains either 0 or 1 subspaces of D. These two facts combined
imply that Ik+1,ku takes only two values. Moreover, the partition associated to the vector
Ik+1,ku is the partition into the codes

{U : U < Fnq , dim(U) = k + 1, |{V ∈ D : V < U}| = 0} and

{U : U < Fnq , dim(U) = k + 1, |{V ∈ D : V < U}| = 1}.

By the first statement of Theorem 8 we see that Ik+1,ku is an eigenvector of Jq(n, k + 1).
By the first statement of Theorem 7 we obtain the required.

Remark 10. A combinatorial proof for the statement above in case when k is 2 (i.e.
2-spreads) for the Grassmann graphs could be found in [13, Lemma 12]. Apart from
2-spreads the only known example of (k − 1)-(n, k, 1)q-design, q > 2 is the 2-ary Steiner
triple system constructed in [7]. This implies the existence of a completely regular code
in J2(13, 4) by Theorem 9.

In the sections below we proceed further with the idea described in Theorem 9 and
show that the Steiner quadruple systems of the extended Hamming code and the Desar-
guesian 2-spreads produce completely regular codes in the Johnson graph J(n, 6) and the
Grassmann graph Jq(n, 4) respectively.

5 Completely regular code in the Johnson graph J(n, 6) from
the SQS of the extended Hamming code

We use the traditional point-block terms throughout the section. A 3-(n, 4, 1)-design
is called a S teiner quadruple system of order n. By B∆B′ we denote the symmetric
difference of subsets B and B′.

If Q is any Steiner quadruple system of order n then Q in J(n, 4) and {x : x ⊂
{1, . . . , n}, |x| = 5, |{B ∈ Q, B ⊂ x}| = 0} in J(n, 5) are completely regular codes respec-
tively by Corollary 6 and Theorem 9. We now describe a case where Steiner quadruple
system yields a completely regular code in J(n, 6).
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Theorem 11. Let Q be a Steiner quadruple system of order n such that for any distinct
B, B′ ∈ Q: |B∩B′| = 2 we have B∆B′ ∈ Q. The code {x : x ⊂ {1, . . . , n}, |x| = 6, |{B ∈
Q, B ⊂ x}| = 0} is completely regular in J(n, 6) with covering radius 2.

Proof. Let B and B′ be two blocks of Q, |B ∩ B′| = 2. By condition of the theorem,
the symmetric difference B∆B′ is also a block of Q. Therefore any 6-subset of {1, . . . , n}
contains 0, 1 or 3 blocks of Q. We consider the following codes:

C0 = {x : x ⊂ {1, . . . , n}, |x| = 6, |{B ∈ Q : B ⊂ x}| = 0},

C1 = {x : x ⊂ {1, . . . , n}, |x| = 6, |{B ∈ Q : B ⊂ x}| = 1},

C2 = {x : x ⊂ {1, . . . , n}, |x| = 6, |{B ∈ Q : B ⊂ x}| = 3}

that partition the vertices of J(n, 6).
We are now to show that C0 is a completely regular code and {C0, C1, C2} is the

distance partition. In view of the second statement of Theorem 7 we prove that the
vertices of C0 and C2 are disjoint and a vertex of C1 is adjacent to exactly 6 vertices
of C2. We finish the proof by noting that {C0, C1, C2} is the partition associated to an
eigenvector.

A 6-subset from C2 contains three blocks of Q. Moreover, by condition of the theorem,
the symmetric difference of any two of these blocks is the third block. We see that the
following holds:

for any x ∈ C2 and any i ∈ x, there is B ∈ Q, i /∈ B,B ⊂ x. (5)

From (5) we conclude that the vertices of C0 and C2 are nonadjacent in the Johnson
graph J(n, 6).

Let y be a vertex of C1 and B be a unique block of Q such that B ⊂ y. Let x ∈ C2

be a vertex that is adjacent to y in J(n, 6), so x = (y \ {i}) ∪ {j} for some i ∈ y, j /∈ y.
Suppose that i is in B. Then by property (5) there is a block B′ of Q that is a subset

of x \ {j}. We see that B′ ⊂ x \ {j} ⊂ y. Moreover B′ is not B, because i ∈ B, i /∈ x and
B′ ⊂ x. We have that distinct blocks B′ and B from Q are subsets of y, which contradicts
y ∈ C1.

We have that i ∈ y \ B. Since x ∈ C2, let the following blocks of Q be the subsets
of x: B, {s, t, l, j} and B∆{s, t, l, j} for some s, t ∈ B, {l} = x \ (B ∪ {j}). On the
other hand, given the 2-subset {s, t} of B and the point l from y \ B the point j could
be reconstructed. Indeed, the block {s, t, l, j} is a unique block in 3-(n, 4, 1)-design Q
containing {s, t, l}. Since {s, t, l, j} and B∆{s, t, l, j} are contained in the same x from
C2, we conclude that there are exactly

[
4
2

]
1
· 2/2 = 6 neighbors of y in C2.

We show that the partition {C0, C1, C2} is the partition associated to an eigenvector of
J(n, 6). The Steiner quadruple system Q is a completely regular code with covering radius
1 and eigenvalue θ4(n, 4) by Corollary 6. Then by the first statement of Theorem 7 there
is an eigenvector v with eigenvalue θ4(n, 4) such that {Q,Q} is the partition associated
to v. By Theorem 8 the vector I6,4v is an eigenvector of J(n, 6) with eigenvalue θ4(n, 6).
The definitions of the inclusion matrix I6,4 and the codes C0, C1, C2 imply that these
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codes form the partition associated to I6,4v. By the second statement of Theorem 7 we
conclude that C0 is completely regular.

Remark 12. One might obtain the intersection array {60, 6; 4(n − 15), 6(n − 8)} of the
code from Theorem 11 by combinatorial arguments or following the proof of Theorem 7
from equations (2)-(4).

Consider the extended Hamming code of length n. It is well-known that the set of
the supports of the codewords of weight 4 of this code form a Steiner quadruple system
of order n. Since the extended Hamming code is linear, the symmetric difference of two
blocks of its Steiner quadruple system meeting in exactly 2 points is also a block of the
Steiner quadruple system. Thus we obtain the following.

Corollary 13. Let Q be the Steiner quadruple system of the extended Hamming code of
length n. Then the code {x : x ⊂ {1, . . . , n}, |x| = 6, |{B ∈ Q, B ⊂ x}| = 0} is completely
regular in J(n, 6) with ρ = 2.

Corollary 14. The set of the codewords of weight 6 of the extended Hamming code of
length 16 is a completely regular code in J(16, 6) with ρ = 2.

Proof. Since the minimum distance of the extended Hamming code is 4, any of its code-
word of weight 6 is at Hamming distance at least 4 from a codeword of weight 4. This
implies that the support of any codeword of the extended Hamming code of weight 6 is
always contained in C = {x : x ⊂ {1, . . . , n}, |x| = 6, |{B ∈ Q, B ⊂ x}| = 0}. The
definition of a completely regular code and the double counting of edges between Ci and
Ci+1 imply the following:

|C|β0 = |C1|γ1, |C1|β0 = |C2|γ1, |C|+ |C1|+ |C2| =
[
n
6

]
1
.

The intersection array of C was obtained in Remark 12, so for n = 16 we have

|C|+ |C|60

4
+ |C| 6

48
=

[
16
6

]
1

= 8008

and therefore |C| is 448. Note that there are exactly 448 codewords of weight 6 in extended
Hamming code of length 16. We conclude that they coincide with C, which is a completely
regular code in J(16, 6) by Theorem 11.

6 Completely regular code in Jq(n, 4) from Desarguesian 2-
spread

Let F′ be the subfield of the field Fqn of order q2. The elements of the multiplicative group
of Fqn are parted into the cosets of that of F′. We treat Fqn as the vector space Fnq and
any multiplicative coset of F′corresponds to a 2-subspace of Fnq . The collection of such
subspaces is a 2-spread, which is called Desarguesian. A subspace is called F′-closed if its
vectors (threated as elements of Fqn) are closed under the multiplication by the elements
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of F′. In particular, the subspaces of a Desarguesian 2-spread are F′-closed. For a subset
of Fnq the minimal inclusion-wise F′-closed subspace that contains the subset is called its
F′-closure.

Any 2-spread L and all 3-subspaces of Fnq that do not contain any subspace from
L are completely regular codes in Jq(n, 2) and Jq(n, 3) respectively by Corollary 6 and
Theorem 9. In case when L is a Desarguesian spread we will show that the code {U :
U < Fnq , dim(U) = 4, |{X ∈ L : X < U}| = 0} is a completely regular code in Jq(n, 4).

Consider a 4-subspace U of Fnq . It can contain 0, 1 or at least 2 subspaces from L.
Suppose X and X ′ are 2-subspaces from L that are contained in U . Because X and X ′

meet only in a zero vector, all vectors of U are linear combinations of the vectors of X
and X ′. Moreover, since X and X ′ are F′-closed, so is U . In other words, the nonzero
vectors of U are parted by nonzero vectors from q2 + 1 subspaces from L. We have the
following partition of the vertices of Jq(n, 4):

C0 = {U : U < Fnq , dim(U) = 4, |{V ∈ L : V < U}| = 0},
C1 = {U : U < Fnq , dim(U) = 4, |{V ∈ L : V < U}| = 1},
C2 = {U : U < Fnq , dim(U) = 4, |{V ∈ L : V < U}| = q2 + 1}.

We now show some structural properties of these codes.

Lemma 15. Any 3-subspace of U , U ∈ C2 contains exactly one subspace from L. In
particular, the subspaces from C0 and C2 are nonadjacent in Jq(n, 4).

Proof. Let W be a 3-subspace of U that does not contain subspaces from L. Since
Fq < F′ we see that the F′-closure of any of nonzero vectors of W meets W in exactly
q−1 nonzero vectors. We see that the F′-closure of W has at least (q3−1)(q+ 1) vectors,
so its dimension is at least 5. We found a subspace W of F′-closed 4-subspace U whose
F′-closure has dimension 5, a contradiction.

This contradicts that the subspace U is F′-closed and that W is a subspace of U .

In view of Lemma 15 one might consider C2 to be the F′-closure of all 3-subspaces
that contain exactly one subspace from L. Indeed any such 3-subspace is spanned by a
subspace X (which is F′-closed) from L and a 1-subspace and the F′-closure of the latter
one has dimension 2.

Lemma 16. Any subspace U , U ∈ C1 is adjacent to exactly q + 1 subspaces from C2 in
Jq(n, 4).

Proof. Let X ∈ L be that such that X < U . Let V ∈ C2 be adjacent to U , i.e. dim(U ∩
V ) = 3. By Lemma 15 the subspace U ∩ V of U must contain X. There are exactly q+ 1
3-subspaces of the 4-subspace U that contain the given 2-subspace X. Their F′-closures
are in C2 and we obtain the required.

Theorem 17. Let L be a Desarguesian 2-spread. The code {U : U < Fnq , dim(U) =
4, |{V ∈ L : V < U}| = 0} is completely regular in Jq(n, 4).
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Proof. The vertex set of Jq(n, 4) is parted into the codes C0, C1 and C2. By Lemmas 15
and 16 there are no edges between C0 and C2 and any vertex from C1 is adjacent to
exactly 6 subspaces from C2.

Since L is a completely regular code with covering radius 1, we see that {L,L} is
the partition associated to an eigenvector v of Jq(n, 2) with eigenvalue θ2,q(n, 2). By
Theorem 8 the vector I4,2v is an eigenvector of Jq(n, 4) with eigenvalue θ2,q(n, 4). The
definition of the inclusion matrix I4,2 and the definition of the codes C0, C1, C2 imply that
these codes form the partition associated to I6,4v. The result follows from Theorem 7.

We note that following the proof of Theorem 7 one can obtain that the code given in
Theorem 17 has the intersection array

{
[
4
1

]
q

[
3
1

]
q
, q + 1; q5(q + 1)

[
n−6
1

]
q
,
[
4
1

]
q

[
n−4
1

]
q
q}.

7 Completely regular codes with ρ = 1 in J2(6, 3)

We start this section with formulating the existence problem of completely regular codes
with prescribed automorphism group as a binary linear programming problem. This ap-
proach showed good results for codes in Grassmann, halved cube and Star
graphs [4], [22], [29].

Throughout this section by the automorphism group of a code (subset of the vertices)
in a graph we mean the setwise stabilizer of the code in the automorphism group of the
graph. Let G be a subgroup of the automorphism group of a m-regular graph Γ. Let
O1, . . . , Or be the orbits of the action of G on the vertex set of Γ. Because O1, . . . , Or are
orbits we see that given any i, j ∈ {1, . . . , r} any vertex x of Oi is adjacent to exactly Aij
vertices of Oj and Aij does not depend on x.

Let A be the matrix {Aij}i,j∈{1,...,r}. Suppose the automorphism group of a code C has
a subgroup G. We consider the characteristic vector χC,G of C in the orbits O1, . . . , Or,
i.e. (χC,G)i = 1 if and only if Oi ⊆ C and zero otherwise. If 1 is the all-one vector then
1− χC,G is the characteristic vector of the complement of C. The notations above imply
that

AχC,G = (m− β0)χC,G + γ1(1− χC,G) (6)

holds if and only if C is a completely regular code in Γ with covering radius 1, intersection
array {β0; γ1} and G is a subgroup of its automorphism group.

As χC,G is a binary vector one might consider (6) to be a binary linear programming
problem with the binary variable vector χC,G. From this perspective with the help of
computer we show the existence of completely regular codes in the Grassmann graph
J2(6, 3).

Let a be a primitive element of F26 . We set G21 to be the group generated by the
multiplication of the vectors of F6

2 (treated as the elements of F26) by a21. The vertices of
J2(6, 3) are parted into 465 orbits of the group G21.

Let C be a completely regular code in the graph J2(6, 3) with intersection array
{β0; γ1}. Due to Corollary 5 the eigenvalues of C are the valency of J2(6, 3) which is
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98 and
98− β0 − γ1 = θi,2(6, 3), (7)

where i− 1 is the strength of C as a design.
Let the eigenvalue 98− β0 − γ1 be θ2,2(6, 3), i.e. C is a q-ary 1-design. In this case a

binary linear programming solver found solutions of system (6) for 8 different values of
γ1. Two of the constructed codes (with γ1 = 9 and 21) were previously obtained in [13].
With exception of these two codes, all other constructed codes have G21 as their full
automorphism group. This fact makes a further generalization of these codes to other
Grassmann graphs difficult as each code consist of at least 60 orbits, each of size 3.

Theorem 18. There are completely regular codes in J2(6, 3) with covering radius 1, in-
tersection array {93 − γ1; γ1} for any γ1 ∈ {12, 15, 18, 24, 27, 30} such that G21 is their
automorphism group.

From (7) we see that the intersection array {β0; γ1} of any completely regular code
could be found from the strength of the code and γ1. We summarize the information on
the intersection arrays of the completely regular codes in J2(6, 3) with ρ = 1 in Table 1.
By integer conditions in the table we mean the integer necessary existence conditions for
designs imposed by the second statement of Corollary 5.

Eigen- Design Integer Nonexis-, Existence, Open cases,
value strength conditions tence, γ1 γ1 γ1
35 0 γ1 mod 7 = 0 21F , 28F 7H , 14HP

5 1 γ1 mod 3 = 0 3M
′′

9M , 21M
′
, 3l, l ∈ {2}∪

3l, l = 4, 5, 6 {10, . . . , 15}
8, 9, 10A

−7 2 γ1 mod 21 = 0 21B, 42B

Table 1: Completely regular codes in J2(6, 3) with ρ = 1. The intersection array {β0; γ1}
of any completely regular code is obtained from its strength and γ1 using (7).

F completely regular codes with covering radius 1 and strength 0 in J2(n, k) were classified
in [16];
H subspaces belonging to a hyperplane;
HP subspaces are in a hyperplane H or contain a vector v, where v /∈ H;
A exists by Theorem 18;
B correspond to 2-(6, 3, 3)2- and 2-(6, 3, 6)2-designs, which exist by [8];
M totally isotropic subspaces of a symplectic polarity [13, Example 6];
M ′

3-subspaces that do not contain subspaces from a 2-spread;
[13, Example 5], see also Theorem 9;
M ′′

nonexistence follows from [13, Lemma 21].
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Remark 19. Apart from the integer necessary conditions there are other techniques for
proving the nonexistence of a completely regular code with ρ = 1 given a putative inter-
section array. One of them is a method based on the finding weight distribution of the
code [2, Theorem 1] (see also [21]). In the case of Johnson and Hamming graphs some
completely regular codes have intersection arrays feasible by integer necessary conditions
but infeasible by the weight distribution method [5], [21]. However, in the particular
instance of the graph J2(6, 3) this approach is not stronger than the integer necessary
conditions. Another techniques could be also used, like counting argument in [13, Lemma
21] that implies the nonexistence of the completely regular codes with strength 1 and
γ1 = 3 in this graph.

The only known completely regular codes in J2(6, 3) with ρ = 2 are the code of the
subspaces containing a fixed 2-space and 3-spread in J2(6, 3) (Corollary 6).
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