Saturation number of $t K_{l, l, l}$ in the complete tripartite graph

Zhen He Mei Lu *
Department of Mathematical Sciences
Tsinghua University
Beijing, China
hz18@mails.tsinghua.edu.cn lumei@mail.tsinghua.edu.cn

Submitted: Dec 23, 2020; Accepted: Sep 8, 2021; Published: Nov 5, 2021
(C) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

For fixed graphs F and H, a graph $G \subseteq F$ is H-saturated if there is no copy of H in G, but for any edge $e \in E(F) \backslash E(G)$, there is a copy of H in $G+e$. The saturation number of H in F, denoted $\operatorname{sat}(F, H)$, is the minimum number of edges in an H-saturated subgraph of F. In this paper, we study saturation numbers of $t K_{l, l, l}$ in complete tripartite graph $K_{n_{1}, n_{2}, n_{3}}$. For $t \geqslant 1, l \geqslant 1$ and n_{1}, n_{2} and n_{3} sufficiently large, we determine $\operatorname{sat}\left(K_{n_{1}, n_{2}, n_{3}}, t K_{l, l, l}\right)$ exactly.

Mathematics Subject Classifications: 05C35

1 Introduction

In this paper, we only consider finite, simple and undirected graphs. Let $G=(V, E)$ be a graph, where V is the vertex set and E is the edge set of G. For a subset S of $V, G[S]$ is a subgraph of G induced by S. Let H be a graph. We will use $t H$ to denote t pairwise disjoint copies of H. Let $K_{n_{1}, n_{2}, n_{3}}$ be a complete tripartite graph with n_{i} vertices in the $i^{\text {th }}$ partite, where $1 \leqslant i \leqslant 3$.

A graph G is said to be H-saturated if it does not contain H as a subgraph, but the addition of any new edge from $E(\bar{G})$ forms a copy of H, where \bar{G} is the complement of G. Let $\operatorname{sat}(n, H)$ denote the minimal size of an H-saturated n-vertex graph. Erdős, Hajnal and Moon [5] initiated the study of saturation numbers by determining $\operatorname{sat}\left(n, K_{r}\right)=$ $(k-2) n-\binom{k-1}{2}$. Since then, there are plentiful results in this field. Kászonyi and Tuza [6] gave a general upper bound for $\operatorname{sat}(n, H)$ and determined $\operatorname{sat}\left(n, P_{k}\right)$, $\operatorname{sat}\left(n, K_{1, k}\right)$ and

[^0]sat $\left(n, k P_{2}\right)$. Cycle saturation numbers were studied in [17, 4, 10]. See Faudree, Faudree, and Schmitt [8] for an abundant survey. Among these results, almost all of the considered graphs are connected graphs; only a few unconnected graphs are considered, including matchings [6] and vertex-disjoint cliques [7].

Generalizing further, a subgraph G of host graph F is H-saturated relative to F if G does not contain H as a subgraph but adding any edge of $E(F) \backslash E(G)$ to G forms a copy of H. The saturation number of F in H is the minimum number of edges in an F-saturated subgraph of H, and is denoted by $\operatorname{sat}(F, H)$. With this notation, $\operatorname{sat}(n, H)=\operatorname{sat}\left(K_{n}, H\right)$. The first result on saturation numbers in host graphs that are not complete is from a related problem in bipartite graphs. Bollobás $[2,3]$ and Wessel $[18,19]$ independently determined the saturation number $\operatorname{sat}\left(K_{a, b}, K_{c, d}\right)$. Results about the saturation number when the host graphs are not complete can be foud in [1], [11]-[15]. In [16], Sullivan and Wenger studied saturation numbers in tripartite graphs and determined $\operatorname{sat}\left(K_{n_{1}, n_{2}, n_{3}}, K_{l, l, l}\right)$. In this paper, we generalize Sullivan and Wenger's result and determine $\operatorname{sat}\left(K_{n_{1}, n_{2}, n_{3}}, t K_{l, l, l}\right)$ exactly for $t \geqslant 1$.

Throughout this paper, we assume $n_{1} \geqslant n_{2} \geqslant n_{3}$ and the partite sets of $K_{n_{1}, n_{2}, n_{3}}$ are V_{1}, V_{2} and V_{3} with $\left|V_{i}\right|=n_{i}$. When G is a subgraph of $K_{n_{1}, n_{2}, n_{3}}$, let $\delta_{i}(G)$ denote the minimum degree of the vertices of V_{i} in G. When the graph is clear we simply write δ_{i}. For a vertex $v \in V(G)$, we let $N_{i}(v)=N(v) \cap V_{i}$. Let $S_{1} \subseteq V(G)$ and $S_{2} \subseteq V(G)$. Denote $\left[S_{1}, S_{2}\right]=\left\{u v \in E(G) \mid u \in S_{1}, v \in S_{2}\right\}$. Then $\left[S_{1}, S_{2}\right]=\left[S_{2}, S_{1}\right]$. If $S_{1}=\{u\}$, we will denote $\left[\{u\}, S_{2}\right]$ by $\left[u, S_{2}\right]$. In the following sections, all subscripts are modulo 3 .

2 The construction of $\boldsymbol{t} K_{l, l, l}$-saturated graph of $\boldsymbol{K}_{n_{1}, n_{2}, n_{3}}$

In this Section, we construct a $t K_{l, l, l}$-saturated graph of $K_{n_{1}, n_{2}, n_{3}}$. We use $[k]$ to denote the set $\{1,2, \ldots, k\}$. We label the vertices in the partite sets V_{i} of $K_{n_{1}, n_{2}, n_{3}}$ as $V_{i}=$ $\left\{v_{i}^{1}, v_{i}^{2}, \ldots, v_{i}^{n_{i}}\right\}, i \in[3]$. For $0 \leqslant j \leqslant t-1$ and $i \in[3], V_{i}^{j}$ are t pairwise disjoint subsets of V_{i} with $\left|V_{i}^{j}\right|=l$. We label the vertices in V_{i}^{j} as $\left\{v_{i}^{l j+1}, v_{i}^{l j+2}, \ldots, v_{i}^{(j+1) l}\right\}$. We begin our construction of a $t K_{l, l, l}$-saturated graph, denoted by H, of $K_{n_{1}, n_{2}, n_{3}}$.

Construction Let t, l, n_{1}, n_{2} and n_{3} be positive integers such that $n_{1} \geqslant n_{2} \geqslant n_{3} \geqslant$ $t l+1$. Let $V(H)=V_{1} \cup V_{2} \cup V_{3}$ and

$$
\begin{aligned}
E(H)= & \left(\cup_{j=0}^{t-1} \cup_{i=1}^{3}\left\{u v \mid u \in V_{i}^{j}, v \in V_{i+1}^{j}\right\}\right) \backslash\left\{v_{1}^{1} v_{2}^{1}, v_{2}^{1} v_{3}^{1}, v_{1}^{1} v_{3}^{1}\right\} \\
& \cup \cup_{i=1}^{3}\left\{u v \mid u \in V_{i}^{0}, v \in\left(V_{i+1} \cup V_{i+2}\right) \backslash\left(V_{i+1}^{0} \cup V_{i+2}^{0}\right)\right\} .
\end{aligned}
$$

Obviously, H is a subgraph of $K_{n_{1}, n_{2}, n_{3}}$ and $|E(H)|=2 l\left(n_{1}+n_{2}+n_{3}\right)-3+3(t-2) l^{2}$. Our construction is illustrated in Figure 1. Let $U=\cup_{i=1}^{t-1}\left(V_{1}^{i} \cup V_{2}^{i} \cup V_{3}^{i}\right)$ and $V^{0}=V_{1}^{0} \cup V_{2}^{0} \cup V_{3}^{0}$. About the properties of H, we have the following results.

Property $1 H$ is $t K_{l, l, l}-$ free.
Proof of Property 1 Suppose K_{1}, \ldots, K_{t} are pairwise disjoint copies of $K_{l, l, l}$ in H. If there is $v \in \cup_{i=1}^{t} V\left(K_{i}\right) \backslash\left(U \cup V^{0}\right)$, say $v \in V\left(K_{1}\right) \cap V_{1}$, then $N(v)=V_{2}^{0} \cup V_{3}^{0}$ by Construction. Since $v_{2}^{1} v_{3}^{1} \notin E(H)$, we have $v_{2}^{1} \notin V\left(K_{1}\right)$ or $v_{3}^{1} \notin V\left(K_{1}\right)$, a contradiction. Hence $\cup_{i=1}^{t} V\left(K_{i}\right)=U \cup V^{0}$. Then $v_{1}^{1} \in V\left(K_{j}\right)$, say $V\left(K_{1}\right)$. Then $v_{2}^{1}, v_{3}^{1} \notin V\left(K_{1}\right)$ by

Figure 1: A $t K_{l, l, l}$-saturated subgraph of $K_{n_{1}, n_{2}, n_{3}}$. Solid lines denote complete joins between sets, and dotted lines denote edges that have been removed.
$v_{1}^{1} v_{2}^{1}, v_{1}^{1} v_{3}^{1} \notin E(H)$. So there are $a \in V_{2}^{i}$ and $b \in V_{3}^{i}$, say $i=1$, such that $a, b \in V\left(K_{1}\right)$. By Construction, $V\left(K_{1}\right) \cap V_{i} \subseteq V_{i}^{0} \cup V_{i}^{1}$ for $i \in[3]$. Since $v_{1}^{1} \in V\left(K_{1}\right) \cap V_{1}^{0}$, there is $c \in V_{1}^{1} \backslash V\left(K_{1}\right)$. Assume $c \in V\left(K_{2}\right)$. Then $V\left(K_{2}\right) \cap V_{i} \subseteq V_{i}^{0} \cup V_{i}^{1}$ for $i=2,3$. Thus $\left(V\left(K_{1}\right) \cup V\left(K_{2}\right)\right) \cap V_{i}=V_{i}^{0} \cup V_{i}^{1}$ for $i=2$, 3. Since $v_{2}^{1} v_{3}^{1} \notin E(H), V\left(K_{2}\right) \cap\left(V_{2} \cup V_{3}\right) \neq V_{2}^{0} \cup V_{3}^{0}$ which implies $\left(V\left(K_{1}\right) \cup V\left(K_{2}\right)\right) \cap V_{1}=V_{1}^{0} \cup V_{1}^{1}$. Thus $V\left(K_{1}\right) \cup V\left(K_{2}\right)=V^{0} \cup\left(\cup_{i=1}^{3} V_{i}^{1}\right)$. Since $v_{1}^{1} v_{2}^{1}, v_{2}^{1} v_{3}^{1}, v_{1}^{1} v_{3}^{1} \notin E(H)$, we have a contradiction.

Property $2 H$ is a $t K_{l, l, l}$-saturated graph of $K_{n_{2}, n_{2}, n_{3}}$.
Proof of Property 2 Let $u v \in E\left(K_{n_{2}, n_{2}, n_{3}}\right) \backslash E(H)$. We will show that $H+u v$ contains $t K_{l, l, l}$ by considering the following four cases.

Case $1 u v \in\left\{v_{1}^{1} v_{2}^{1}, v_{2}^{1} v_{3}^{1}, v_{1}^{1} v_{3}^{1}\right\}$.
Assume, without loss of generality, that $u v=v_{1}^{1} v_{2}^{1}$. By Construction and $n_{3} \geqslant t l+1$, there is $w \in V_{3} \backslash \cup_{j=0}^{t-1} V_{3}^{j}$ such that $x w \in E(H)$ for all $x \in V_{1}^{0} \cup V_{2}^{0}$. Now $H\left[V_{1}^{i} \cup V_{2}^{i} \cup V_{3}^{i}\right]$ for all $i \in[t-1]$ and $H\left[V_{1}^{0} \cup V_{2}^{0} \cup\left(V_{3}^{0} \backslash\left\{v_{3}^{1}\right\}\right) \cup\{w\}\right]+u v$ form $t K_{l, l, l}$ in $H+u v$.

Case $2 u, v \in U$.
Assume, without loss of generality, that $u \in V_{1}^{1}$ and $v \in V_{2}^{j}$, where $2 \leqslant j \leqslant t-1$. Then $V_{1}^{1} \cup V_{2}^{1} \cup V_{3}^{1} \cup\left\{v_{1}^{1}\right\} \backslash\{u\}, V_{1}^{j} \cup V_{2}^{j} \cup V_{3}^{j} \cup\left\{v_{2}^{1}\right\} \backslash\{v\}$ and $V^{0} \cup\{u, v\} \backslash\left\{v_{1}^{1}, v_{2}^{1}\right\}$ induce three pairwise disjoint copies of $K_{l, l, l}$ in $H+u v$, together with $t-3$ pairwise disjoint copies of $K_{l, l, l}$ induced by $\cup_{i=2}^{t-1}\left(V_{1}^{i} \cup V_{2}^{i} \cup V_{3}^{i}\right) \backslash\left(V_{1}^{j} \cup V_{2}^{j} \cup V_{3}^{j}\right)$, we get $t K_{l, l, l}$ in $H+u v$.

Case $3 u \in U$ and $v \in V(H) \backslash\left(U \cup V^{0}\right)$.
Assume, without loss of generality, that $u \in V_{1}^{1}$ and $v \in V_{2} \backslash\left(U \cup V^{0}\right)$. Then $V_{1}^{1} \cup V_{2}^{1} \cup$ $V_{3}^{1} \cup\left\{v_{1}^{1}\right\} \backslash\{u\}$ and $V^{0} \cup\{u, v\} \backslash\left\{v_{1}^{1}, v_{2}^{1}\right\}$ induce two disjoint copies of $K_{l, l, l}$ in $H+u v$. Together with $t-2$ pairwise disjoint copies of $K_{l, l, l}$ induced by $U \backslash\left(V_{1}^{1} \cup V_{2}^{1} \cup V_{3}^{1}\right)$, we get $t K_{l, l, l}$ in $H+u v$.

Case $4 u, v \in V(H) \backslash\left(U \cup V^{0}\right)$.

Assume, without loss of generality, that $u \in V_{1} \backslash\left(U \cup V^{0}\right)$ and $v \in V_{2} \backslash\left(U \cup V^{0}\right)$. Then $V^{0} \cup\{u, v\} \backslash\left\{v_{1}^{1}, v_{2}^{1}\right\}$ induces a $K_{l, l, l}$ in $H+u v$. Together with the $t-1$ pairwise disjoint copies of $K_{l, l, l}$ induced by U, we get $t K_{l, l, l}$ in $H+u v$.

By Properties 1 and 2, we have our first main result in this Section.
Theorem 1. Let $n_{1} \geqslant n_{2} \geqslant n_{3} \geqslant t l+1$. For all $t \geqslant 1$ and $l \geqslant 1$,

$$
\operatorname{sat}\left(K_{n_{1}, n_{2}, n_{3}}, t K_{l, l, l}\right) \leqslant 2 l\left(n_{1}+n_{2}+n_{3}\right)-3+3(t-2) l^{2}
$$

3 The saturation number of $t K_{l, l, l}$ in tripartite graphs

In this Section, we prove our main result on saturation number in tripartite graphs.
Theorem 2. Let $n_{1} \geqslant n_{2} \geqslant n_{3} \geqslant 24 l^{3}+44 l^{2}+12 l+3(t-1) l^{2}$. For all $t \geqslant 1$ and $l \geqslant 1$,

$$
\operatorname{sat}\left(K_{n_{1}, n_{2}, n_{3}}, t K_{l, l, l}\right)=2 l\left(n_{1}+n_{2}+n_{3}\right)-3+3(t-2) l^{2} .
$$

Since we already have Theorem 1, we just need to prove the lower bound. Before that, we need some lemmas. The idea of the proofs of the following two lemmas comes from [16]. Let

$$
k=2 l\left(n_{1}+n_{2}+n_{3}\right)-3+3(t-2) l^{2}
$$

for short. In the following, we will show that if G is a $t K_{l, l, l}$-saturated subgraph of $K_{n_{1}, n_{2}, n_{3}}$, then $|E(G)| \geqslant k$. Note that if G is a $t K_{l, l, l}$-saturated subgraph of $K_{n_{1}, n_{2}, n_{3}}$, then there is a new $K_{l, l, l}$ containing e in $G+e$, where $e \in E\left(K_{n_{1}, n_{2}, n_{3}}\right) \backslash E(G)$.

Lemma 3. Let $i \in[3]$ and assume that $n_{i} \geqslant(3 l+1)\left(\delta_{i+1}+\delta_{i+2}\right)+(3 t-3) l^{2}$. If G is a $t K_{l, l, l}$-saturated subgraph of $K_{n_{1}, n_{2}, n_{3}}$ such that $\delta_{i}>2 l$, then $|E(G)| \geqslant k$.

Proof. For each $i \in[3]$, let v_{i} be a vertex of degree δ_{i} in V_{i}, respectively. Since $G+e$ forms a new $K_{l, l, l}$ contained e for any edge $e \in E\left(K_{n_{1}, n_{2}, n_{3}}\right) \backslash E(G),\left|N\left(v_{i}\right) \cap N(x)\right| \geqslant l$ for any $x \in V_{i+1} \cup V_{i+2}$ with $x v_{i} \notin E(G)$. Therefore there are at least $l\left(n_{i+1}+n_{i+2}-\delta_{i}\right)$ edges joining V_{i+1} and V_{i+2}. Similarly there are at least $l\left(n_{i+1}-\delta_{i+2}\right)$ edges joining V_{i+1} and $N_{i}\left(v_{i+2}\right)$ and at least $l\left(n_{i+2}-\delta_{i+1}\right)$ edges joining V_{i+2} and $N_{i}\left(v_{i+1}\right)$. Finally, for the other vertices in V_{i}, there are at least $\delta_{i}\left(n_{i}-\delta_{i+1}-\delta_{i+2}\right)$ edges incident to $V_{i} \backslash\left(N_{i}\left(v_{i+1}\right) \cup N_{i}\left(v_{i+2}\right)\right)$. Sum these edges, and we have

$$
|E(G)| \geqslant l\left(2 n_{i+1}+2 n_{i+2}-\delta_{i+1}-\delta_{i+2}\right)+\delta_{i}\left(n_{i}-\delta_{i+1}-\delta_{i+2}-l\right)
$$

Note that $n_{i}>\delta_{i+1}+\delta_{i+2}+l$. With $\delta_{i}>2 l$, we have

$$
\begin{aligned}
|E(G)| & \geqslant l\left(2 n_{i+1}+2 n_{i+2}-\delta_{i+1}-\delta_{i+2}\right)+(2 l+1)\left(n_{i}-\delta_{i+1}-\delta_{i+2}-l\right) \\
& =2 l\left(n_{1}+n_{2}+n_{3}\right)+n_{i}-\left[(3 l+1)\left(\delta_{i+1}+\delta_{i+2}\right)+2 l^{2}+l\right] \geqslant k .
\end{aligned}
$$

Lemma 4. Let $n_{1} \geqslant n_{2} \geqslant n_{3} \geqslant 24 l^{3}+44 l^{2}+12 l+(3 t-3) l^{2}$. If G is a $t K_{l, l, l}$-saturated subgraph of $K_{n_{1}, n_{2}, n_{3}}$ such that $\delta_{i}>2 l$ for some $i \in\{1,2,3\}$, then $|E(G)| \geqslant k$.

Proof. Since G is a $t K_{l, l, l}$-saturated subgraph of $K_{n_{1}, n_{2}, n_{3}}, G+e$ forms a new $K_{l, l, l}$ contained e for any edge $e \in E\left(K_{n_{1}, n_{2}, n_{3}}\right) \backslash E(G)$ which implies each vertex in V_{i} has at least l neighbors in both V_{i+1} and V_{i+2} or is completely joined to V_{i+1} or V_{i+2}. Thus $\delta(G) \geqslant 2 l$. We distinguish two cases.

Case $1 n_{1}<(4 l+1) n_{2}$.
If $\delta_{1} \geqslant 6 l+1$, then $|E(G)| \geqslant(6 l+1) n_{1} \geqslant 2 l\left(n_{1}+n_{2}+n_{3}\right)+n_{1}>k$ and we are done. So we assume that $\delta_{1}<6 l+1$. If $\delta_{2} \geqslant 8 l^{2}+6 l+1$, then $|E(G)| \geqslant\left(8 l^{2}+6 l+1\right) n_{2} \geqslant$ $2 l\left(n_{1}+n_{2}+n_{3}\right)+n_{2}>k$ and we are done, so we assume that $\delta_{2}<8 l^{2}+6 l+1$. Since $n_{3} \geqslant 24 l^{3}+44 l^{2}+12 l+(3 t-3) l^{2} \geqslant(3 l+1)\left(\delta_{1}+\delta_{2}\right)+(3 t-3) l^{2}$, Lemma 3 implies that if $\delta_{3}>2 l$, then $|E(G)| \geqslant k$ and we are done, so we assume $\delta_{3}=2 l$. Lemma 3 implies that if $\delta_{1}>2 l$ or $\delta_{2}>2 l$, then $|E(G)| \geqslant k$.

Case $2 n_{1} \geqslant(4 l+1) n_{2}$.
If $\delta_{1}>2 l$, then $|E(G)| \geqslant(2 l+1) n_{1} \geqslant 2 l\left(n_{1}+n_{2}+n_{3}\right)+n_{2}>k$, so we assume $\delta_{1}=2 l$. Let $R=\left\{v \in V_{1} \mid d(v)=2 l\right\}$. If $\left|V_{1}-R\right| \geqslant 2 l\left(n_{2}+n_{3}\right)+(3 t-3) l^{2}$, then $|E(G)| \geqslant k$, so we assume $\left|V_{1}-R\right|<2 l\left(n_{2}+n_{3}\right)+(3 t-3) l^{2}$.

If $v \in R$, then each vertex in $N_{2}(v)$ is adjacent to every vertex in $V_{3} \backslash N_{3}(v)$. Thus each vertex in $N_{2}(R)$ has at least $n_{3}-l$ neighbors in V_{3}. If $\left|N_{2}(R)\right| \geqslant \frac{(4 l+1) n_{2}}{n_{3}-l}$, there are at least $(4 l+1) n_{2}$ edges joining V_{2} and V_{3}, then $|E(G)| \geqslant k$ and we are done, so we assume $\left|N_{2}(R)\right|<\frac{(4 l+1) n_{2}}{n_{3}-l}$.

There are at least $\delta_{2}\left(n_{2}-\frac{(4 l+1) n_{2}}{n_{3}-l}\right)$ edges incident to $V_{2}-N_{2}(R)$. There are at least $2 l\left(n_{1}-2 l\left(n_{2}+n_{3}\right)-(3 t-3) l^{2}\right)$ edges incident to R. When $\delta_{2} \geqslant 8 l^{2}+8 l+1$,

$$
\delta_{2}\left(n_{2}-\frac{(4 l+1) n_{2}}{n_{3}-l}\right) \geqslant n_{2}\left(8 l^{2}+8 l+1\right)\left(1-\frac{4 l+1}{24 l^{3}+44 l^{2}+11 l}\right) \geqslant n_{2}\left(8 l^{2}+6 l+1\right) .
$$

Then we have

$$
\begin{aligned}
|E(G)| & \geqslant \delta_{2}\left(n_{2}-\frac{(4 l+1) n_{2}}{n_{3}-l}\right)+2 l\left[n_{1}-2 l\left(n_{2}+n_{3}\right)-(3 t-3) l^{2}\right] \\
& \geqslant\left(8 l^{2}+6 l+1\right) n_{2}+2 l n_{1}-4 l^{2}\left(n_{2}+n_{3}\right)-2(3 t-3) l^{3} \\
& \geqslant 2 l\left(n_{1}+n_{2}+n_{3}\right)+(3 t-3) l^{2} \geqslant k
\end{aligned}
$$

and we are done. So we assume $\delta_{2} \leqslant 8 l^{2}+8 l$. Since $\delta_{1}=2 l, \delta_{2} \leqslant 8 l^{2}+8 l$, and $n_{3} \geqslant 24 l^{3}+44 l^{2}+12 l+(3 t-3) l^{2}>(3 l+1)\left(\delta_{1}+\delta_{2}\right)+(3 t-3) l^{2}$, Lemma 3 implies that if $\delta_{3}>2 l$, then $|E(G)| \geqslant k$ and we are done, so we assume that $\delta_{3}=2 l$. By Lemma 3 we know if $\delta_{2}>2 l$, then $|E(G)| \geqslant k$.
Lemma 5. Let $S \subseteq V\left(K_{l, l, l}\right)$ and $\bar{S}=V\left(K_{l, l, l}\right) \backslash S$. If $|S|,|\bar{S}| \geqslant 1$, then $|[S, \bar{S}]| \geqslant 2 l$.
Proof. Let $V\left(K_{l, l, l}\right)=U_{1} \cup U_{2} \cup U_{3}, S_{i}=S \cap U_{i}$ and $\overline{S_{i}}=\bar{S} \cap U_{i}$. Let $\left|S_{i}\right|=a_{i}$ for $i \in[3]$. Then $\left|\overline{S_{i}}\right|=l-a_{i}$. Assume $a_{1} \geqslant a_{2} \geqslant a_{3}$. Then

$$
\begin{aligned}
|[S, \bar{S}]| & =a_{1}\left(2 l-a_{2}-a_{3}\right)+a_{2}\left(2 l-a_{1}-a_{3}\right)+a_{3}\left(2 l-a_{1}-a_{2}\right) \\
& =2\left(a_{1} l+a_{2} l+a_{3} l-a_{1} a_{2}-a_{2} a_{3}-a_{1} a_{3}\right) \\
& =2\left(a_{1}\left(l-a_{2}-a_{3}\right)+a_{2} l+a_{3} l-a_{2} a_{3}\right) .
\end{aligned}
$$

When $a_{2}+a_{3}>l$, the lower bound of $|[S, \bar{S}]|$ is decreases as a_{1} increases. Since $a_{1} \leqslant l$, we have $|[S, \bar{S}]| \geqslant 2\left(l\left(l-a_{2}-a_{3}\right)+a_{2} l+a_{3} l-a_{2} a_{3}\right)=2\left(l^{2}-a_{2} a_{3}\right)$. Note that $a_{3} \leqslant l-1$. Thus $|[S, \bar{S}]| \geqslant 2 l$.

Suppose $a_{2}+a_{3} \leqslant l$. If $a_{2}=a_{3}=0$, then $|[S, \bar{S}]|=2 a_{1} l \geqslant 2 l$. If $a_{2} \geqslant 1$, the lower bound of $|[S, \bar{S}]|$ is increases as a_{1} increases. So

$$
\begin{aligned}
|[S, \bar{S}]| & \geqslant 2\left(2 a_{2} l+a_{3} l-a_{2}^{2}-2 a_{2} a_{3}\right) \\
& =2\left(-\left(a_{2}+\left(a_{3}-l\right)\right)^{2}+a_{3} l+\left(a_{3}-l\right)^{2}\right) \\
& \geqslant 2\left(-\left(1+\left(a_{3}-l\right)\right)^{2}+a_{3} l+\left(a_{3}-l\right)^{2}\right) \\
& =2\left(2 l-1+a_{3}(l-2)\right) \geqslant 4 l-2 \geqslant 2 l .
\end{aligned}
$$

Now we are going to prove Theorem 2. Let G be a $t K_{l, l, l}$-saturated graph of $K_{n_{1}, n_{2}, n_{3}}$. We will show that $|E(G)| \geqslant k=2 l\left(n_{1}+n_{2}+n_{3}\right)-3+3(t-2) l^{2}$. From Lemma 4, we assume that $\delta_{1}=\delta_{2}=\delta_{3}=2 l$.

For $i \in[3]$, let $v_{i} \in V_{i}$ such that $d\left(v_{i}\right)=\delta_{i}=2 l$. Thus $\left|N_{i+1}\left(v_{i}\right)\right|=\left|N_{i+2}\left(v_{i}\right)\right|=l$ and G contains all edges joining $N_{i+1}\left(v_{i}\right)$ to $V_{i+2} \backslash N_{i+2}\left(v_{i}\right)$ and all edges joining $N_{i+2}\left(v_{i}\right)$ to $V_{i+1} \backslash N_{i+1}\left(v_{i}\right)$. Therefore, the vertices of degree $2 l$ in G form an independent set. Let $V^{0}=N\left(v_{1}\right) \cup N\left(v_{2}\right) \cup N\left(v_{3}\right)$ and let $V_{i}^{0}=V^{0} \cap V_{i}$. Since $\left|N\left(v_{i+1}\right) \cap N\left(v_{i+2}\right)\right|=$ l, we conclude that $N_{i}\left(v_{i+1}\right)=N_{i}\left(v_{i+2}\right)$ and therefore $V_{i}^{0}=N_{i}\left(v_{i+1}\right)=N_{i}\left(v_{i+2}\right)$ and $\left|V_{i}^{0}\right|=l$. Denote $G_{0}=G\left[V^{0}\right], E_{i}=\left[V_{i}^{0}, V_{i+1} \backslash V_{i+1}^{0}\right]$ and $E_{i}^{\prime}=\left[V_{i}^{0}, V_{i+2} \backslash V_{i+2}^{0}\right]$ for $i \in[3]$. Then $\left|E_{i}\right|=l\left(n_{i+1}-l\right)$ and $\left|E_{i}^{\prime}\right|=l\left(n_{i+2}-l\right)$. Let $\bar{E}_{1}=\cup_{i=1}^{3}\left(E_{i} \cup E_{i}^{\prime}\right)$. Then $\left|\bar{E}_{1}\right|=2 l\left(n_{1}+n_{2}+n_{3}\right)-6 l^{2}$. Since $G+v_{i} x$ completes a copy of $K_{l, l, l}$ containing v_{i} for any $x \in V_{i+1} \backslash N\left(v_{i}\right)$, there is a complete bipartite graph joining $l-1$ vertices in V_{i+1}^{0} and l vertices in V_{i+2}^{0}. Also there is a complete bipartite graph joining $l-1$ vertices in V_{i+2}^{0} and l vertices in V_{i+1}^{0}. Thus G_{0} is a complete tripartite graph minus at most three edges, implying that $\left|E\left(G_{0}\right)\right| \geqslant 3 l^{2}-3$.

Proof of Theorem 2 (in the case $\boldsymbol{l}=1$) In this case, $K_{1,1,1}=K_{3}$ and $k=$ $2\left(n_{1}+n_{2}+n_{3}\right)+3 t-9$. Denote $V_{i}^{0}=\left\{x_{i}\right\}$ for $i \in[3]$. Let $G^{\prime}=G\left[V \backslash\left\{x_{1}, x_{2}, x_{3}\right\}\right]$ and K_{1}, \ldots, K_{s} be all pairwise disjoint copies of K_{3} in G^{\prime}. Since G contains $t-1$ pairwise disjoint copies of $K_{3}, t-4 \leqslant s \leqslant t-1$. Note that $N\left(v_{1}\right)=\left\{x_{2}, x_{3}\right\}, N\left(v_{2}\right)=\left\{x_{1}, x_{3}\right\}$ and $N\left(v_{3}\right)=\left\{x_{1}, x_{2}\right\}$. So $v_{1}, v_{2}, v_{3} \notin \cup_{i=1}^{s} V\left(K_{i}\right)$. Then $\left|E_{i}\right|=n_{i+1}-1,\left|E_{i}^{\prime}\right|=n_{i+2}-1$ and $\left|\bar{E}_{1}\right|=2\left(n_{1}+n_{2}+n_{3}\right)-6$. If $s=t-1$, then $|E(G)| \geqslant\left|\bar{E}_{1}\right|+3(t-1)=2\left(n_{1}+n_{2}+\right.$ $\left.n_{3}\right)+3 t-9=k$ and we are done. If $s=t-4, G+v_{1} v_{2}$ contains at most $t-1$ pairwise disjoint copies of K_{3}, a contradiction with G being $t K_{3}$-saturated. So we just consider the following two cases.

Case $1 s=t-3$.
If there is i, say $i=1$, such that $x_{1} x_{2} \notin E(G)$, then there are at most $(t-3)+2$ pairwise disjoint copies of K_{3} in $G+x_{1} x_{2}$, a contradiction. Hence $\left|E\left(G_{0}\right)\right|=3$ and then $|E(G)| \geqslant\left|\bar{E}_{1}\right|+\left|E\left(G_{0}\right)\right|+3(t-3)=k-3$. Since there are t pairwise disjoint copies of K_{3} in $G+v_{2} v_{3}$, we can assume there are $u_{1}, u_{1}^{\prime} \in V_{1} \backslash\left(\cup_{i=1}^{t-3} V\left(K_{i}\right) \cup\left\{x_{1}\right\}\right)$ with $u_{1} \neq u_{1}^{\prime}, u_{2} \in V_{2} \backslash\left(\cup_{i=1}^{t-3} V\left(K_{i}\right) \cup\left\{x_{2}\right\}\right)$ and $u_{3} \in V_{3} \backslash\left(\cup_{i=1}^{t-3} V\left(K_{i}\right) \cup\left\{x_{3}\right\}\right)$ such that $x_{2} u_{1}, x_{2} u_{3}, u_{1} u_{3} \in E(G)$ and $x_{3} u_{1}^{\prime}, x_{3} u_{2}, u_{1}^{\prime} u_{2} \in E(G)$. So $|E(G)| \geqslant k-1$. If
$|E(G)|=k-1$, then $G+v_{1} v_{3}$ contains at most $t-1$ pairwise disjoint copies of K_{3}, a contradiction.

Case $2 s=t-2$.
In this case, we have

$$
\begin{aligned}
|E(G)| & \geqslant\left|\bar{E}_{1}\right|+\left|E\left(G_{0}\right)\right|+3(t-2) \\
& =2\left(n_{1}+n_{2}+n_{3}\right)-6+\left|E\left(G_{0}\right)\right|+3(t-2)=k+\left|E\left(G_{0}\right)\right|-3 .
\end{aligned}
$$

So we can assume $\left|E\left(G_{0}\right)\right| \leqslant 2$. Denote $\bar{E}_{2}=\cup_{i=1}^{t-2} E\left(K_{i}\right)$ and $V^{\prime}=\cup_{i=1}^{t-2} V\left(K_{i}\right)$. Then $\left|V^{\prime}\right|=3 t-6$. We first consider the case $\left|E\left(G_{0}\right)\right|=2$. Then $|E(G)| \geqslant k-1$. Assume $x_{1} x_{2}, x_{1} x_{3} \in E(G)$. If $|E(G)|=k-1$, then

$$
E(G)=\bar{E}_{1} \cup \bar{E}_{2} \cup\left\{x_{1} x_{2}, x_{1} x_{3}\right\} .
$$

But $G+v_{2} v_{3}$ contains at most $t-1$ pairwise disjoint copies of K_{3}, a contradiction.
Suppose $\left|E\left(G_{0}\right)\right|=1$, say $x_{1} x_{2} \in E(G)$. Then $|E(G)| \geqslant k-2$. Suppose $|E(G)|=k-2$. Let $G^{\prime}=G+x_{1} x_{3}$. Then $\left|E\left(G^{\prime}\right)\right|=k-1$. By the discussion above, G^{\prime} contains at most $t-1$ pairwise disjoint copies of K_{3}, a contradiction. Hence $|E(G)| \geqslant k-1$. Suppose $|E(G)|=$ $k-1$. Then there is $e \notin \bar{E}_{1} \cup \bar{E}_{2} \cup\left\{x_{1} x_{2}\right\}$ such that $E(G)=\bar{E}_{1} \cup \bar{E}_{2} \cup\left\{x_{1} x_{2}, e\right\}$. Let $e=u v$. Suppose $\{u, v\} \subseteq V^{\prime}$. Since G is a $t K_{3}$-saturated graph, there are t pairwise disjoint copies of K_{3}, say $K_{0}^{v_{1} v_{3}}, \ldots, K_{t-1}^{v_{1} v_{3}}$, in $G+v_{1} v_{3}$. Denote $V^{v_{1} v_{3}}=\cup_{i=0}^{t-1} V\left(K_{i}^{v_{1} v_{3}}\right)$. Then $V^{v_{1} v_{3}} \subseteq V^{\prime} \cup\left\{x_{1}, x_{2}, x_{3}, v_{1}, v_{3}\right\}$ which implies $\left|V^{v_{1} v_{3}}\right| \leqslant 3 t-1$, a contradiction. Suppose $u \in V^{\prime}$ and $v \in V \backslash\left(V^{\prime} \cup\left\{x_{1}, x_{2}, x_{3}, v_{1}, v_{2}, v_{3}\right\}\right)$. Then $N(v) \subseteq\left\{x_{1}, x_{2}, x_{3}, u\right\}$ which implies $G+v_{1} v_{3}$ (resp. $G+v_{2} v_{3}$) contains at most $t-1$ pairwise disjoint copies of K_{3} if $v \in V_{1} \cup V_{3}$ (resp. $v \in V_{2}$), a contradiction. Suppose $u, v \in V \backslash\left(V^{\prime} \cup\left\{x_{1}, x_{2}, x_{3}, v_{1}, v_{2}, v_{3}\right\}\right)$. Then $N(u) \cup N(v) \subseteq\left\{u, v, x_{1}, x_{2}, x_{3}\right\}$. If $u, v \notin V_{3}$, then $x_{1} x_{2} v_{3} x_{1}, u x_{3} v u, K_{1}, \ldots, K_{t-2}$ form $t K_{3}$ of G, a contradiction. So we assume $u \in V_{3}$. Then $G+v_{1} v_{3}$ (resp. $G+v_{2} v_{3}$) contains at most $t-1$ pairwise disjoint copies of K_{3} if $v \in V_{1}$ (resp. $v \in V_{2}$), a contradiction.

Suppose $\left|E\left(G_{0}\right)\right|=0$. Then $|E(G)| \geqslant k-3$. If $|E(G)|=k-3$, then $G+x_{1} x_{2}$ contains at most $t-1$ pairwise disjoint copies of K_{3}, a contradiction. Suppose $|E(G)|=k-2$. Then there is $e \notin \bar{E}_{1} \cup \bar{E}_{2}$ such that $E(G)=\bar{E}_{1} \cup \bar{E}_{2} \cup\{e\}$. Let $e=u v$. Since there are t pairwise disjoint copies of K_{3} in $G+x_{1} x_{2}$, by the discussion in the case $\left|E\left(G_{0}\right)\right|=1$, we have $u, v \in V \backslash\left(V^{\prime} \cup\left\{x_{1}, x_{2}, x_{3}, v_{1}, v_{2}, v_{3}\right\}\right)$ and $u, v \notin V_{3}$. Assume $u \in V_{1}$ and $v \in V_{2}$. Since $n_{3} \geqslant 3(t-1)+80$, there is a vertex $w \in V_{3} \backslash\left(V^{\prime} \cup\left\{x_{3}, v_{3}\right\}\right)$. But $G+u w$ contains at most $t-1$ pairwise disjoint copies of K_{3}, a contradiction. Hence $|E(G)| \geqslant k-1$. Suppose $|E(G)|=k-1$. Then there are $e_{1}, e_{2} \notin \bar{E}_{1} \cup \bar{E}_{2}$ such that $E(G)=\bar{E}_{1} \cup \bar{E}_{2} \cup\left\{e_{1}, e_{2}\right\}$. Let $e_{i}=u_{i} w_{i}, i=1,2$. Suppose $u_{1}, w_{1} \in V^{\prime}$, say $u_{1} \in V\left(K_{1}\right)$ and $w_{1} \in V\left(K_{2}\right)$. Then there are $q_{1} \in V\left(K_{1}\right)$ and $q_{2} \in V\left(K_{2}\right)$ such that $q_{1} q_{2} \notin E(G)$. Thus, there are t pairwise disjoint copies of K_{3}, say $K_{0}^{q_{1} q_{2}}, \ldots, K_{t-1}^{q_{1} q_{2}}$, in $G+q_{1} q_{2}$. Denote $V^{q_{1} q_{2}}=\cup_{i=0}^{t-1} V\left(K_{i}^{q_{1} q_{2}}\right)$. Then $V^{q_{1} q_{2}} \subseteq V^{\prime} \cup\left\{x_{1}, x_{2}, x_{3}, u_{2}, w_{2}\right\}$ which implies $\left|V^{q_{1} q_{2}}\right| \leqslant 3 t-1$, a contradiction. So we can assume $w_{1}, w_{2} \in V \backslash\left(V^{\prime} \cup\left\{x_{1}, x_{2}, x_{3}, v_{1}, v_{2}, v_{3}\right\}\right)$. Suppose $u_{1}, u_{2} \in V^{\prime}$. Then $G+x_{1} x_{2}$ contains at most $t-1$ pairwise disjoint copies of K_{3} by $N\left(w_{i}\right) \subseteq\left\{u_{i}, x_{1}, x_{2}, x_{3}\right\}$ for $i=1,2$, a contradiction. Suppose $u_{1}, u_{2} \in V \backslash\left(V^{\prime} \cup\left\{x_{1}, x_{2}, x_{3}, v_{1}, v_{2}, v_{3}\right\}\right)$. Assume that $u_{1}, u_{2} \in V_{1}$. If $w_{1}, w_{2} \in V_{i}$, then $i \neq 1$ and $G+v_{1} v_{i}$ contains at most $t-1$ pairwise
disjoint copies of K_{3}, a contradiction. Now we assume that $w_{1} \in V_{2}$ and $w_{2} \in V_{3}$. In this case, we claim that $u_{1}=u_{2}$; otherwise $w_{1} u_{1} x_{3} w_{1}, w_{2} u_{2} x_{2} w_{2}, K_{1}, \ldots, K_{t-2}$ form $t K_{3}$ of G, a contradiction. When $u_{1}=u_{2}, G+w_{1} w_{2}$ contains at most $t-1$ pairwise disjoint copies of K_{3}, a contradiction. Suppose $u_{1} \in V \backslash\left(V^{\prime} \cup\left\{x_{1}, x_{2}, x_{3}, v_{1}, v_{2}, v_{3}\right\}\right)$ and $u_{2} \in V^{\prime}$, say $u_{2} \in V\left(K_{1}\right)$. Let $V\left(K_{1}\right)=\left\{q_{1}, q_{2}, q_{3}\right\}$, where $q_{i} \in V_{i}$ for $i \in[3]$. Assume that $u_{1} \in V_{1}$ and $w_{1} \in V_{2}$. Then $N\left(u_{1}\right)=\left\{w_{1}, x_{2}, x_{3}\right\}$ and $N\left(w_{1}\right)=\left\{u_{1}, x_{1}, x_{3}\right\}$. If $u_{2}=q_{3}$ (resp. $u_{2} \in\left\{q_{1}, q_{2}\right\}$ and $w_{2} \in V_{1} \cap V_{2}$), then $N\left(q_{1}\right) \cap N\left(q_{2}\right) \cap V\left(G_{0}\right)=\left\{x_{3}\right\}$ (resp. $\left.N\left(u_{2}\right) \cap N\left(w_{2}\right) \cap V\left(G_{0}\right)=\left\{x_{3}\right\}\right)$. In these cases, $G+x_{1} x_{3}$ contains at most $t-1$ pairwise disjoint copies of K_{3}, a contradiction. If $u_{2} \in\left\{q_{1}, q_{2}\right\}$ and $w_{2} \in V_{3}$, say $u_{2}=q_{1}$, then $u_{2} w_{2} x_{2} u_{2}, u_{1} w_{1} x_{3} u_{1}, q_{2} q_{3} x_{1} q_{2}, K_{2}, \ldots, K_{t-2}$ form $t K_{3}$ of G, a contradiction.

Proof of Theorem 2 (in the case $\boldsymbol{l} \geqslant 2$) Now we are going to prove Theorem 2 where $l \geqslant 2$. Recall that for $i \in[3], d\left(v_{i}\right)=\delta_{i}=2 l$, where $v_{i} \in V_{i}$. Denote $V^{0}=N\left(v_{1}\right) \cup$ $N\left(v_{2}\right) \cup N\left(v_{3}\right), V_{i}^{0}=V^{0} \cap V_{i}, G_{0}=G\left[V^{0}\right], E_{i}=\left[V_{i}^{0}, V_{i+1} \backslash V_{i+1}^{0}\right]$ and $E_{i}^{\prime}=\left[V_{i}^{0}, V_{i+2} \backslash V_{i+2}^{0}\right]$ for $i \in[3]$. Then $\left|E_{i}\right|=l\left(n_{i+1}-l\right)$ and $\left|E_{i}^{\prime}\right|=l\left(n_{i+2}-l\right)$. Let $\bar{E}_{1}=\cup_{i=1}^{3}\left(E_{i} \cup E_{i}^{\prime}\right)$. Then $\left|\bar{E}_{1}\right|=2 l\left(n_{1}+n_{2}+n_{3}\right)-6 l^{2}$ and $\left|E\left(G_{0}\right)\right| \geqslant 3 l^{2}-3$. We first have the following claim.

Claim 1 Let $x_{i}, y_{i} \in V_{i}^{0}$ for $i \in[3]$ such that $x_{1} x_{2}, y_{2} y_{3}, x_{3} y_{1} \notin E\left(G_{0}\right)$. Then there is $i \in[3]$ such that $x_{i}=y_{i}$ and $x_{i+1}=y_{i+1}$.

Proof of Claim 1 Suppose $x_{1} \neq y_{1}$ and $x_{2} \neq y_{2}$. Then there is no copy of $K_{l, l, l}$ in $G+v_{1} v_{2}$ containing $v_{1} v_{2}$, a contradiction with G being a $t K_{l, l, l}$-saturated graph of $K_{n_{1}, n_{2}, n_{3}}$. Now we suppose $x_{1}=y_{1}$, but $x_{2} \neq y_{2}$ and $x_{3} \neq y_{3}$. Then there is no copy of $K_{l, l, l}$ in $G+v_{2} v_{3}$ containing $v_{2} v_{3}$, a contradiction.

Since G is a $t K_{l, l, l}$-saturated graph and $v_{i} v_{i+1} \notin E(G)$ for all $i \in[3]$, there are t pairwise disjoint copies of $K_{l, l, l}$ in $G+v_{i} v_{i+1}$ and one of them, denote by $K_{0}^{v_{i} v_{i+1}}$, contains $v_{i} v_{i+1}$. Since $V_{i}^{0}=N_{i}\left(v_{i+1}\right)=N_{i}\left(v_{i+2}\right)$ for $i \in[3], V\left(K_{0}^{v_{i} v_{i+1}}\right)=\left(V^{0} \cup\left\{v_{i}, v_{i+1}\right\}\right) \backslash\left\{x_{v_{i} v_{i+1}}, y_{v_{i} v_{i+1}}\right\}$, where $x_{v_{i} v_{i+1}} \in V_{i}^{0}$ and $y_{v_{i} v_{i+1}} \in V_{i+1}^{0}$. Let $K_{1}^{v_{i} v_{i+1}}, K_{2}^{v_{i} v_{i+1}}, \ldots, K_{t-1}^{v_{i} v_{i+1}}$ be the other $t-1$ copies of $K_{l, l, l}$ in $G+v_{i} v_{i+1}$. Then $\left(\cup_{j=1}^{t-1} V\left(K_{j}^{v_{i} v_{i+1}}\right)\right) \cap V^{0} \subseteq\left\{x_{v_{i} v_{i+1}}, y_{v_{i} v_{i+1}}\right\}$. In each case, we choose $K_{1}^{v_{i} v_{i+1}}, K_{2}^{v_{i} v_{i+1}}, \ldots, K_{t-1}^{v_{i} v_{i+1}}$ such that $\left|\left(\cup_{j=1}^{t-1} V\left(K_{j}^{v_{i} v_{i+1}}\right)\right) \cap\left\{x_{v_{i} v_{i+1}}, y_{v_{i} v_{i+1}}\right\}\right|$ is as small as possible. If there is i, say $i=1$, such that $\left|\left(\cup_{j=1}^{t-1} V\left(K_{j}^{v_{1} v_{2}}\right)\right) \cap\left\{x_{v_{1} v_{2}}, y_{v_{1} v_{2}}\right\}\right|=0$, then

$$
\begin{aligned}
|E(G)| & \geqslant\left|\bar{E}_{1}\right|+\left|E\left(G_{0}\right)\right|+\sum_{i=1}^{t-1}\left|E\left(K_{i}^{v_{1} v_{2}}\right)\right| \\
& \geqslant 2 l\left(n_{1}+n_{2}+n_{3}\right)-3 l^{2}-3+3(t-1) l^{2}=k
\end{aligned}
$$

and we are done. So we will assume that $\left|\left(\cup_{j=1}^{t-1} V\left(K_{j}^{v_{i} v_{i+1}}\right)\right) \cap\left\{x_{v_{i} v_{i+1}}, y_{v_{i} v_{i+1}}\right\}\right| \geqslant 1$ for all $i \in[3]$.

In the following, we will denote $V^{v_{i} v_{i+1}}=\cup_{j=1}^{t-1} V\left(K_{j}^{v_{i} v_{i+1}}\right) \backslash\left\{x_{v_{i} v_{i+1}}, y_{v_{i} v_{i+1}}\right\}, i \in[3]$. Let $u \in V$. Denote $N_{j}^{v_{i} v_{i+1}}(u)=\left(N(u) \cap V\left(K_{j}^{v_{i} v_{i+1}}\right)\right) \backslash V^{0}$ and $\tau_{j}^{v_{i} v_{i+1}}(u)=\left[u, N_{j}^{v_{i} v_{i+1}}(u)\right]$, where $i \in[3]$ and $j \in[t-1]$. Let \uplus denote the disjoint union of sets. We consider the following three cases.

Case 1 There is i, say $i=1$, such that $\left|\left(\cup_{j=1}^{t-1} V\left(K_{j}^{v_{1} v_{2}}\right)\right) \cap\left\{x_{v_{1} v_{2}}, y_{v_{1} v_{2}}\right\}\right|=1$.
Assume, without loss of generality, that $x_{v_{1} v_{2}} \in V\left(K_{1}^{v_{1} v_{2}}\right)$. Set $K_{1}=G\left[V\left(K_{1}^{v_{1} v_{2}}\right) \backslash\right.$ $\left.\left\{x_{v_{1} v_{2}}\right\}\right]$. Then $\left|E\left(K_{1}\right)\right|=3 l^{2}-2 l$. Since $x_{v_{1} v_{2}} \in V\left(K_{1}^{v_{1} v_{2}}\right) \cap V_{1}^{0}$ and $V_{1}^{0} \subseteq V\left(K_{0}^{v_{2} v_{3}}\right)$ in $G+v_{2} v_{3},\left|V^{v_{1} v_{2}} \cap V_{1}\right|<\left|V^{v_{2} v_{3}} \cap V_{1}\right|$ which implies there is $u \in V_{1} \backslash V_{1}^{0}$ such that
$u \in V^{v_{2} v_{3}} \backslash V^{v_{1} v_{2}}$. Then $\left|N(u) \backslash V^{0}\right| \geqslant 2 l-2$. If $\left|E\left(G_{0}\right)\right| \geqslant 3 l^{2}-1$, then

$$
\begin{aligned}
|E(G)| & \geqslant\left|\bar{E}_{1}\right|+\left|E\left(G_{0}\right)\right|+\left|E\left(K_{1}\right)\right|+\sum_{i=2}^{t-1}\left|E\left(K_{i}^{v_{1} v_{2}}\right)\right|+\left|N(u) \backslash V^{0}\right| \\
& \geqslant 2 l\left(n_{1}+n_{2}+n_{3}\right)-6 l^{2}+3 l^{2}-1+3(t-1) l^{2}-2 l+(2 l-2) \\
& \geqslant 2 l\left(n_{1}+n_{2}+n_{3}\right)-3 l^{2}-3+3(t-1) l^{2}=k,
\end{aligned}
$$

and we are done. If $\left|N(u) \backslash V^{0}\right| \geqslant 2 l$, then

$$
\begin{aligned}
|E(G)| & \geqslant\left|\bar{E}_{1}\right|+\left|E\left(G_{0}\right)\right|+\left|E\left(K_{1}\right)\right|+\sum_{i=2}^{t-1}\left|E\left(K_{i}^{v_{1} v_{2}}\right)\right|+2 l \\
& \geqslant 2 l\left(n_{1}+n_{2}+n_{3}\right)-3 l^{2}-3+3(t-1) l^{2}=k,
\end{aligned}
$$

and we are done. So we will assume $3 l^{2}-3 \leqslant\left|E\left(G_{0}\right)\right| \leqslant 3 l^{2}-2,2 l-2 \leqslant\left|N(u) \backslash V^{0}\right| \leqslant 2 l-1$ and consider the following two subcases.

Case $1.1\left|E\left(G_{0}\right)\right|=3 l^{2}-2$.
In this case, if $\left|N(u) \backslash V^{0}\right|=2 l-1$, then

$$
\begin{aligned}
|E(G)| & \geqslant\left|\bar{E}_{1}\right|+\left|E\left(G_{0}\right)\right|+\left|E\left(K_{1}\right)\right|+\sum_{i=2}^{t-1}\left|E\left(K_{i}^{v_{1} v_{2}}\right)\right|+\left|N(u) \backslash V^{0}\right| \\
& \geqslant 2 l\left(n_{1}+n_{2}+n_{3}\right)-6 l^{2}+\left|E\left(G_{0}\right)\right|+3(t-1) l^{2}-2 l+(2 l-1) \\
& =2 l\left(n_{1}+n_{2}+n_{3}\right)-3 l^{2}-3+3(t-1) l^{2}=k,
\end{aligned}
$$

and we are done. So we assume $\left|N(u) \backslash V^{0}\right|=2 l-2$ and $u \in V\left(K_{1}^{v_{2} v_{3}}\right)$. Since $V^{0} \backslash$ $\left\{x_{v_{2} v_{3}}, y_{v_{2} v_{3}}\right\} \subseteq V\left(K_{0}^{v_{2} v_{3}}\right)$ and $\left|N(u) \backslash V^{0}\right|=2 l-2$, we have $x_{v_{2} v_{3}}, y_{v_{2} v_{3}} \in V\left(K_{1}^{v_{2} v_{3}}\right)$. Now we have

$$
\begin{aligned}
|E(G)| & \geqslant\left|\bar{E}_{1}\right|+\left|E\left(G_{0}\right)\right|+\left|E\left(K_{1}\right)\right|+\sum_{i=2}^{t-1}\left|E\left(K_{i}^{v_{1} v_{2}}\right)\right|+(2 l-2) \\
& =2 l\left(n_{1}+n_{2}+n_{3}\right)-3 l^{2}-4+3(t-1) l^{2}=k-1 .
\end{aligned}
$$

If $|E(G)|=k-1$, then all inequalities given above are tight. So $N(u) \backslash V^{0}=N_{1}^{v_{2} v_{3}}(u)=$ $V\left(K_{1}^{v_{2} v_{3}}\right) \backslash\left(V_{1} \cup\left\{x_{v_{2} v_{3}}, y_{v_{2} v_{3}}\right\}\right)$ and

$$
E(G)=\bar{E}_{1} \uplus E\left(G_{0}\right) \uplus E\left(K_{1}\right) \uplus\left(\uplus_{i=2}^{t-1} E\left(K_{i}^{v_{1} v_{2}}\right)\right) \uplus \tau_{1}^{v_{2}^{2} v_{3}}(u),
$$

which implies $\uplus_{i=2}^{t-1} E\left(K_{i}^{v_{2} v_{3}}\right) \uplus\left(E\left(K_{1}^{v_{2} v_{3}}\right) \backslash\left(\tau_{1}^{v_{2} v_{3}}(u) \cup \tau_{1}^{v_{2} v_{3}}\left(x_{v_{2} v_{3}}\right) \cup \tau_{1}^{v_{2} v_{3}}\left(y_{v_{2} v_{3}}\right) \cup\left\{x_{v_{2} v_{3}} y_{v_{2} v_{3}}\right\}\right)\right.$ $\subseteq E\left(K_{1}\right) \uplus \uplus_{i=2}^{t-1} E\left(K_{i}^{v_{1} v_{2}}\right)$. Thus $V\left(K_{1}^{v_{2} v_{3}}\right) \backslash\left\{u, x_{v_{2} v_{3}}, y_{v_{2} v_{3}}\right\} \subseteq V\left(K_{1}\right)$. Since $l \geqslant 2$, there are $b_{2}, b_{3} \in V\left(K_{1}\right) \backslash V^{v_{2} v_{3}}$ such that $b_{2} \in V_{2}$ and $b_{3} \in V_{3}$. Then $G\left[\left(V\left(K_{0}^{v_{2} v_{3}}\right) \cup\left\{b_{2}, b_{3}\right\}\right) \backslash\left\{v_{2}, v_{3}\right\}\right]$ and $K_{i}^{v_{2} v_{3}}$ for $1 \leqslant i \leqslant t-1$ form $t K_{l, l, l}$ in G, a contradiction.

Case $1.2\left|E\left(G_{0}\right)\right|=3 l^{2}-3$.
By Claim 1, we assume there are $x, x^{\prime}, y, z \in V^{0}$ such that $x y, x^{\prime} z, y z \notin E(G)$ (possibly $\left.x=x^{\prime}\right)$. If $x, x^{\prime} \in V_{1}^{0}$, then $x_{v_{2} v_{3}}=y$ and $y_{v_{2} v_{3}}=z$, where we assume $y \in V_{2}^{0}$ and $z \in V_{3}^{0}$. Assume $u \in V\left(K_{1}^{v_{2} v_{3}}\right)$. Since $y z \notin E(G)$ and $2 l-2 \leqslant\left|N(u) \backslash V^{0}\right| \leqslant 2 l-1$, we can assume $y \in V\left(K_{1}^{v_{2} v_{3}}\right)$ but $z \notin V\left(K_{1}^{v_{2} v_{3}}\right)$. Thus we have

$$
\begin{aligned}
|E(G)| & \geqslant\left|\bar{E}_{1}\right|+\left|E\left(G_{0}\right)\right|+\left|E\left(K_{1}\right)\right|+\sum_{i=2}^{t-1}\left|E\left(K_{i}^{v_{1} v_{2}}\right)\right|+\left|N_{1}^{v_{2} v_{3}}(u)\right| \\
& \geqslant 2 l\left(n_{1}+n_{2}+n_{3}\right)-6 l^{2}+\left|E\left(G_{0}\right)\right|+3(t-1) l^{2}-2 l+(2 l-1) \\
& =2 l\left(n_{1}+n_{2}+n_{3}\right)-3 l^{2}-4+3(t-1) l^{2}=k-1 .
\end{aligned}
$$

If $|E(G)|=k-1$, then all inequalities given above are tight. So $N(u) \backslash V^{0}=N_{1}^{v_{2} v_{3}}(u)=$ $V\left(K_{1}^{v_{2} v_{3}}\right) \backslash\left(V_{1} \cup\{y\}\right)$ and

$$
E(G)=\bar{E}_{1} \uplus E\left(G_{0}\right) \uplus E\left(K_{1}\right) \uplus \uplus_{i=2}^{t-1} E\left(K_{i}^{v_{1} v_{2}}\right) \uplus \tau_{1}^{v_{2} v_{3}}(u) .
$$

By the same argument as above, we have $V\left(K_{1}^{v_{2} v_{3}}\right) \backslash\{u, y\} \subseteq V\left(K_{1}\right)$. Since $l \geqslant 2$, there are $b_{2} \in\left(V\left(K_{1}\right) \cap V_{2}\right) \backslash V\left(K_{1}^{v_{2} v_{3}}\right)$ and $b_{1} \in V\left(K_{1}\right) \cap V_{1} \cap V\left(K_{1}^{v_{2} v_{3}}\right)$. But $G\left[\left(V_{0} \cup\left\{b_{1}, b_{2}\right\}\right) \backslash\left\{y, x^{\prime}\right\}\right]$, $G\left[\left(V\left(K_{1}^{v_{2} v_{3}}\right) \cup\left\{x^{\prime}\right\}\right) \backslash\left\{b_{1}\right\}\right]$ and $K_{i}^{v_{1} v_{2}}$ for $2 \leqslant i \leqslant t-1$ form $t K_{l, l, l}$ in G, a contradiction.

Now we will assume $x, x^{\prime} \in V_{2}^{0} \cup V_{3}^{0}$, say $x, x^{\prime} \in V_{2}^{0}$. Suppose $y \in V_{3}^{0}$ and $z \in V_{1}^{0}$. Then $x_{v_{2} v_{3}}=x^{\prime}$ and $y_{v_{2} v_{3}}=y$. As the discussion above, we assume $\left|N_{1}^{v_{2} v_{3}}(u)\right|=2 l-2$ and $u, x^{\prime}, y \in V\left(K_{1}^{v_{2} v_{3}}\right)$. Then

$$
\begin{aligned}
|E(G)| & \geqslant\left|\bar{E}_{1}\right|+\left|E\left(G_{0}\right)\right|+\left|E\left(K_{1}\right)\right|+\sum_{i=2}^{t-1}\left|E\left(K_{i}^{v_{1} v_{2}}\right)\right|+\left|N_{1}^{v_{2} v_{3}}(u)\right| \\
& \geqslant 2 l\left(n_{1}+n_{2}+n_{3}\right)-6 l^{2}+\left|E\left(G_{0}\right)\right|+3(t-1) l^{2}-2 l+(2 l-2) \\
& =2 l\left(n_{1}+n_{2}+n_{3}\right)-3 l^{2}-5+3(t-1) l^{2}=k-2 .
\end{aligned}
$$

If there is $u^{\prime} \in V^{v_{2} v_{3}} \backslash V^{v_{1} v_{2}}$ and $u \neq u^{\prime}$, then $\left|N\left(u^{\prime}\right) \backslash V^{0}\right| \geqslant 2 l-2$. So $|E(G)| \geqslant$ $k-2+(2 l-2) \geqslant k$ and we are done. If there is no $j(1 \leqslant j \leqslant t-1)$ such that $V\left(K_{1}^{v_{2} v_{3}}\right) \backslash\left\{u, x^{\prime}, y\right\} \subseteq V\left(K_{j}^{v_{1} v_{2}}\right)$, then $|E(G)| \geqslant k-2+(2 l-2) \geqslant k$ by Lemma 5 and we are done. So we assume there is $j(1 \leqslant j \leqslant t-1)$ such that $V\left(K_{1}^{v_{2} v_{3}}\right) \backslash\left\{u, x^{\prime}, y\right\} \subseteq V\left(K_{j}^{v_{1} v_{2}}\right)$. By the same argument, there is $j_{i}\left(1 \leqslant j_{i} \leqslant t-1\right)$ such that $V\left(K_{i}^{v_{2} v_{3}}\right) \subseteq V\left(K_{j_{i}}^{v_{1} v_{2}}\right)$ for all $2 \leqslant i \leqslant t-1$. Since $l \geqslant 2$, we have $V\left(K_{1}^{v_{2} v_{3}}\right) \backslash\left\{u, x^{\prime}, y\right\} \subseteq V\left(K_{1}\right)$. Then there are $b_{2}, b_{3} \in V\left(K_{1}\right) \backslash V\left(K_{1}^{v_{2} v_{3}}\right)$ such that $b_{2} \in V_{2}$ and $b_{3} \in V_{3}$. Thus $G\left[\left(V^{0} \cup\left\{b_{2}, b_{3}\right\}\right) \backslash\left\{x^{\prime}, y\right\}\right]$, $K_{1}^{v_{2} v_{3}}$ and $K_{i}^{v_{1} v_{2}}$ for $2 \leqslant i \leqslant t-1$ form $t K_{l, l, l}$ in G, a contradiction.

By Case 1, we assume that $\left|\left(\cup_{j=1}^{t-1} V\left(K_{j}^{v_{i} v_{i+1}}\right)\right) \cap\left\{x_{v_{i} v_{i+1}}, y_{v_{i} v_{i+1}}\right\}\right|=2$ for all $i \in[3]$.
Case 2 There is i, say $i=1$, such that $x_{v_{1} v_{2}}, y_{v_{1} v_{2}} \in V\left(K_{j}^{v_{1} v_{2}}\right)$, where $1 \leqslant j \leqslant t-1$.
Assume that $j=1$, that is $x_{v_{1} v_{2}}, y_{v_{1} v_{2}} \in V\left(K_{1}^{v_{1} v_{2}}\right)$. Recall that $x_{v_{1} v_{2}} \in V_{1}^{0}$ and $y_{v_{1} v_{2}} \in V_{2}^{0}$. Since $V_{i}^{0} \subseteq V\left(K_{0}^{v_{i+1} v_{i+2}}\right)$ in $G+v_{i+1} v_{i+2}$ for $i=1,2$, there is $u_{v_{i+1} v_{i+2}} \in$ $V_{i} \backslash V_{i}^{0}$ such that $u_{v_{i+1} v_{i+2}} \in V^{v_{i+1} v_{i+2}} \backslash V^{v_{1} v_{2}}$. If $u_{v_{2} v_{3}} u_{v_{3} v_{1}} \in E(G)$, then $G\left[\left(V\left(K_{0}^{v_{1} v_{2}}\right) \cup\right.\right.$ $\left.\left.\left\{u_{v_{2} v_{3}}, u_{v_{3} v_{1}}\right\}\right) \backslash\left\{v_{1}, v_{2}\right\}\right]$ and $K_{i}^{v_{1} v_{2}}$ for $1 \leqslant i \leqslant t-1$ form $t K_{l, l, l}$ in G, a contradiction. Thus $u_{v_{2} v_{3}} u_{v_{3} v_{1}} \notin E(G)$. In the following, we assume $u_{v_{i+1} v_{i+2}} \in V\left(K_{1}^{v_{i+1} v_{i+2}}\right)$ for $i=1,2$. Let $K_{1}=G\left[V\left(K_{1}^{v_{1} v_{2}}\right) \backslash\left\{x_{v_{1} v_{2}}, y_{v_{1} v_{2}}\right\}\right]$. Then $\left|E\left(K_{1}\right)\right|=3 l^{2}-(4 l-1)$. If $\left|N_{1}^{v_{2} v_{3}}\left(u_{v_{2} v_{3}}\right)\right|=2 l$ or $\left|N_{1}^{v_{3} v_{1}}\left(u_{v_{3} v_{1}}\right)\right|=2 l$, say $\left|N_{1}^{v_{2} v_{3}}\left(u_{v_{2} v_{3}}\right)\right|=2 l$, then

$$
\begin{aligned}
|E(G)| & \geqslant\left|\bar{E}_{1}\right|+\left|E\left(G_{0}\right)\right|+\left|E\left(K_{1}\right)\right|+\sum_{i=2}^{t-1}\left|E\left(K_{i}^{v_{1} v_{2}}\right)\right|+\left|N_{1}^{v_{2} v_{3}}\left(u_{v_{2} v_{3}}\right)\right|+\left|N_{1}^{v_{3} v_{1}}\left(u_{v_{3} v_{1}}\right)\right| \\
& \geqslant 2 l\left(n_{1}+n_{2}+n_{3}\right)-6 l^{2}+\left|E\left(G_{0}\right)\right|+3(t-1) l^{2}-(4 l-1)+2 l+(2 l-2) \\
& \geqslant 2 l\left(n_{1}+n_{2}+n_{3}\right)-3 l^{2}-3+3(t-1) l^{2}=k-1 .
\end{aligned}
$$

If $|E(G)|=k-1$, then all inequalities given above are tight. So $N\left(u_{v_{2} v_{3}}\right) \backslash V^{0}=$ $N_{1}^{v_{2} v_{3}}\left(u_{v_{2} v_{3}}\right)=V\left(K_{1}^{v_{2} v_{3}}\right) \backslash V_{1}$ which implies $y_{v_{1} v_{2}} \notin V\left(K_{1}^{v_{2} v_{3}}\right)$. Also $N\left(u_{v_{3} v_{1}}\right) \backslash V^{0}=$ $N_{1}^{v_{3} v_{1}}\left(u_{v_{3} v_{1}}\right)=V\left(K_{1}^{v_{3} v_{1}}\right) \backslash\left(V_{2} \cup\left\{x_{v_{3} v_{1}}, y_{v_{3} v_{1}}\right\}\right)$ and

$$
E(G)=\bar{E}_{1} \uplus E\left(G_{0}\right) \uplus E\left(K_{1}\right) \uplus_{i=1}^{t-1} E\left(K_{i}^{v_{1} v_{2}}\right) \uplus \tau_{1}^{v_{2} v_{3}}\left(u_{v_{2} v_{3}}\right) \uplus \tau_{1}^{v_{3} v_{1}}\left(u_{v_{3} v_{1}}\right) .
$$

Hence there is $i_{0}, 1 \leqslant i_{0} \leqslant t-1$ such that $V\left(K_{1}^{v_{2} v_{3}}\right) \backslash\left\{u_{v_{2} v_{3}}\right\} \subseteq V\left(K_{i_{0}}^{v_{1} v_{2}}\right)$. Since $y_{v_{1} v_{2}} \in V\left(K_{1}^{v_{1} v_{2}}\right)$ but $y_{v_{1} v_{2}} \notin V\left(K_{1}^{v_{2} v_{3}}\right), i_{0} \neq 1$, say $i_{0}=2$. Thus there is $u \in V\left(K_{2}^{v_{1} v_{2}}\right) \cap V_{1}$ and $u \notin V^{v_{2} v_{3}}$. Since $N_{2}^{v_{1} v_{2}}(u)=V\left(K_{2}^{v_{1} v_{2}}\right) \backslash V_{1}$ and $x_{v_{1} v_{2}} \in\left(V\left(K_{1}^{v_{1} v_{2}}\right) \cap V_{1}^{0}\right) \backslash \cup_{i=1}^{t-1} V\left(K_{i}^{v_{2} v_{3}}\right)$, we have a contradiction with $\cup_{i=2}^{t-1} E\left(K_{i}^{v_{2} v_{3}}\right) \subseteq \cup_{i=1}^{t-1} E\left(K_{i}^{v_{1} v_{2}}\right)$. So we have $\mid\left\{x_{v_{2} v_{3}}, y_{v_{2} v_{3}}\right\} \cap$ $V\left(K_{1}^{v_{2} v_{3}}\right) \mid \geqslant 1$ and $\left|\left\{x_{v_{3} v_{1}}, y_{v_{3} v_{1}}\right\} \cap V\left(K_{1}^{v_{3} v_{1}}\right)\right| \geqslant 1$. We first have the following claim.

Claim 2 For any $i \in\{2,3\}, x_{v_{i} v_{i+1}}, y_{v_{i} v_{i+1}} \in V\left(K_{1}^{v_{i} v_{i+1}}\right)$.
Proof of Claim 2 Suppose $\left|\left\{x_{v_{2} v_{3}}, y_{v_{2} v_{3}}\right\} \cap V\left(K_{1}^{v_{2} v_{3}}\right)\right|=1$. Then

$$
\begin{aligned}
|E(G)| & \geqslant\left|\bar{E}_{1}\right|+\left|E\left(G_{0}\right)\right|+\left|E\left(K_{1}\right)+\sum_{i=2}^{t-1}\right| E\left(K_{i}^{v_{1} v_{2}}\right)\left|+\left|N_{1}^{v_{2} v_{3}}\left(u_{v_{2} v_{3}}\right)\right|+\left|N_{1}^{v_{3} v_{1}}\left(u_{v_{3} v_{1}}\right)\right|\right. \\
& \geqslant 2 l\left(n_{1}+n_{2}+n_{3}\right)-6 l^{2}+\left|E\left(G_{0}\right)\right|+3(t-1) l^{2}-(4 l-1)+2 l-1+2 l-2 \\
& \geqslant 2 l\left(n_{1}+n_{2}+n_{3}\right)-3 l^{2}-5+3(t-1) l^{2}=k-2 .
\end{aligned}
$$

If there is $u^{\prime} \in V^{v_{2} v_{3}} \backslash\left(V^{v_{1} v_{2}} \cup\left\{u_{v_{2} v_{3}}, u_{v_{3} v_{1}}\right\}\right)$, then $|E(G)| \geqslant k-2+(2 l-2) \geqslant k$ and we are done. If there is no $j(1 \leqslant j \leqslant t-1)$ such that $V\left(K_{i}^{v_{2} v_{3}}\right) \backslash\left\{u_{v_{2} v_{3}}, x_{v_{2} v_{3}}, y_{v_{2} v_{3}}, u_{v_{3} v_{1}}\right\} \subseteq$ $V\left(K_{j}^{v_{1} v_{2}}\right)$ for some $i \in[t-1]$, then $|E(G)| \geqslant k-2+(2 l-2) \geqslant k$ by Lemma 5 and we are done. So we assume that there is $j_{i}\left(1 \leqslant j_{i} \leqslant t-1\right)$ such that $V\left(K_{1}^{v_{2} v_{3}}\right) \backslash$ $\left\{u_{v_{2} v_{3}}, x_{v_{2} v_{3}}, y_{v_{2} v_{3}}\right\} \subseteq V\left(K_{j_{1}}^{v_{1} v_{2}}\right)$ and $V\left(K_{i}^{v_{2} v_{3}}\right) \backslash\left\{u_{v_{3} v_{1}}, x_{v_{2} v_{3}}, y_{v_{2} v_{3}}\right\} \subseteq V\left(K_{j_{i}}^{v_{1} v_{2}}\right)$ for $2 \leqslant$ $i \leqslant t-1$. Hence $j_{1}=1$, which implies $x_{v_{2} v_{3}} \in V\left(K_{1}^{v_{2} v_{3}}\right)$ by $y_{v_{1} v_{2}} \in V\left(K_{1}^{v_{1} v_{2}}\right)$. Let $K_{1}^{\prime}=G\left[V\left(K_{1}\right) \cup\left\{u_{v_{2} v_{3}}, y_{v_{1} v_{2}}\right\}\right]$. Then $K_{1}^{\prime}, K_{2}^{v_{1} v_{2}}, \ldots, K_{t-1}^{v_{1} v_{2}}$ are $t-1$ pairwise disjoint copies of $K_{l, l, l}$ in $G+v_{1} v_{2}$ such that $\left|\left(V\left(K_{1}^{\prime}\right) \cup \cup_{j=2}^{t-1} V\left(K_{j}^{v_{1} v_{2}}\right)\right) \cap\left\{x_{v_{1} v_{2}}, y_{v_{1} v_{2}}\right\}\right|<\mid\left(\cup_{j=1}^{t-1} V\left(K_{j}^{v_{1} v_{2}}\right)\right) \cap$ $\left\{x_{v_{1} v_{2}}, y_{v_{1} v_{2}}\right\} \mid$, a contradiction.

By Claim 2, we have that $x_{v_{i} v_{i+1}}, y_{v_{i} v_{i+1}} \in V\left(K_{1}^{v_{i} v_{i+1}}\right)$ for $i \in[3]$.
Claim $3\left|E\left(G_{0}\right)\right| \geqslant 3 l^{2}-2$.
Proof of Claim 3 Recall that $\left|E\left(G_{0}\right)\right| \geqslant 3 l^{2}-3$. Suppose $\left|E\left(G_{0}\right)\right|=3 l^{2}-3$. By Claim 1, there are $x, x^{\prime}, y, z \in V^{0}$ such that $x y, x^{\prime} z, y z \notin E(G)$. Assume, without loss of generality, that $y \in V_{2}^{0}$ and $z \in V_{3}^{0}$. Then $x_{v_{2} v_{3}}=y$ and $y_{v_{2} v_{3}}=z$. Since $y z \notin E(G)$, $\left|\left\{x_{v_{2} v_{3}}, y_{v_{2} v_{3}}\right\} \cap V\left(K_{1}^{v_{2} v_{3}}\right)\right| \leqslant 1$, a contradiction.

By Claim 3 and $l \geqslant 2$, we easily have the following claim.
Claim 4 For any $i \in[3]$, there are $a_{i} \in V_{i}^{0}$ and $a_{i+1} \in V_{i+1}^{0}$ such that $a_{i} a_{i+1} \in E(G)$ and $G\left[V^{0} \backslash\left\{a_{i}, a_{i+1}\right\}\right]$ is a complete tripartite graph.

Note that $\left|N_{1}^{v_{i} v_{i+1}}\left(u_{v_{i} v_{i+1}}\right)\right|=2 l-2$ for $i=2,3$. So we have

$$
\begin{align*}
|E(G)| & \geqslant\left|\bar{E}_{1}\right|+\left|E\left(G_{0}\right)\right|+\left|E\left(K_{1}\right)\right|+\sum_{i=2}^{t-1}\left|E\left(K_{i}^{v_{1} v_{2}}\right)\right|+\left|N_{1}^{v_{2} v_{3}}\left(u_{v_{2} v_{3}}\right)\right|+\left|N_{1}^{v_{3} v_{1}}\left(u_{v_{3} v_{1}}\right)\right| \\
& =2 l\left(n_{1}+n_{2}+n_{3}\right)-6 l^{2}+\left|E\left(G_{0}\right)\right|+3(t-1) l^{2}-(4 l-1)+2(2 l-2) \\
& =k+\left|E\left(G_{0}\right)\right|-3 l^{2} . \tag{*}
\end{align*}
$$

If $\left|E\left(G_{0}\right)\right|=3 l^{2}$, then we have $|E(G)| \geqslant k$ and we are done. So we assume $\left|E\left(G_{0}\right)\right| \leqslant 3 l^{2}-$ 1 and then $3 l^{2}-2 \leqslant\left|E\left(G_{0}\right)\right| \leqslant 3 l^{2}-1$ by Claim 3. If there is $u \in V^{v_{i} v_{i+1}} \backslash\left\{u_{v_{i} v_{i+1}}, u_{v_{i+1} v_{i+2}}\right\}$ for some $i \in\{2,3\}$ such that $u \notin V^{v_{1} v_{2}}$, then $|E(G)| \geqslant k-2+2 l-2 \geqslant k$ and we are done. So we assume

$$
V^{v_{i} v_{i+1}} \backslash\left\{u_{v_{i} v_{i+1}}, u_{v_{i+1} v_{i+2}}\right\} \subseteq V^{v_{1} v_{2}} \quad \text { for } i=2,3
$$

By Lemma 5 and the same argument as above, we have $V\left(K_{1}^{v_{i} v_{i+1}}\right) \backslash\left\{u_{v_{i} v_{i+1}}, x_{v_{i} v_{i+1}}, y_{v_{i} v_{i+1}}\right\}$ $\subseteq V\left(K_{1}\right)$ for $i=2,3$. Since $V\left(K_{1}^{v_{1} v_{2}}\right) \cap V_{3}^{0}=\emptyset$ and $\left|V\left(K_{1}^{v_{2} v_{3}}\right) \cap V_{3}^{0}\right|=1$ (resp. $\mid V\left(K_{1}^{v_{3} v_{1}}\right) \cap$ $V_{3}^{0} \mid=1$), there is a unique vertex $b \in V\left(K_{1}\right) \cap V_{3}$ (resp. $b^{\prime} \in V\left(K_{1}\right) \cap V_{3}$) such that $b \notin V\left(K_{1}^{v_{2} v_{3}}\right)$ (resp. $b^{\prime} \notin V\left(K_{1}^{v_{3} v_{1}}\right)$). If $u_{v_{2} v_{3}} b \in E(G)$ (resp. $u_{v_{3} v_{1}} b^{\prime} \in E(G)$), then $G\left[\left(V\left(K_{1}^{v_{1} v_{2}}\right) \backslash\left\{x_{v_{1} v_{2}}\right\}\right) \cup\left\{u_{v_{2} v_{3}}\right\}\right]$ (resp. $\left.G\left[\left(V\left(K_{1}^{v_{1} v_{2}}\right) \backslash\left\{y_{v_{1} v_{2}}\right\}\right) \cup\left\{u_{v_{3} v_{1}}\right\}\right]\right), K_{2}^{v_{1} v_{2}}, \ldots, K_{t-1}^{v_{1} v_{2}}$ would be a contradiction with the choice of $K_{1}^{v_{1} v_{2}}, K_{2}^{v_{1} v_{2}}, \ldots, K_{t-1}^{v_{1} v_{2}}$. So we have $u_{v_{2} v_{3}} b \notin$ $E(G)$ and $u_{v_{3} v_{1}} b^{\prime} \notin E(G)$.

Suppose $b \neq b^{\prime}$. By Claim 4, there are $a_{1} \in V_{1}^{0}, a_{3} \in V_{3}^{0}$ and $a_{1} a_{3} \in E(G)$ such that $G\left[V^{0} \backslash\left\{a_{1}, a_{3}\right\}\right]$ is a complete tripartite graph. But $G\left[\left(V^{0} \backslash\left\{a_{1}, a_{3}\right\}\right) \cup\left\{u_{v_{2} v_{3}}, b^{\prime}\right\}\right]$, $G\left[\left(V\left(K_{1}^{v_{1} v_{2}}\right) \backslash\left\{x_{v_{1} v_{2}}, y_{v_{1} v_{2}}, b^{\prime}\right\}\right) \cup\left\{a_{1}, a_{3}, u_{v_{3} v_{1}}\right\}\right], K_{2}^{v_{1} v_{2}}, \ldots, K_{t-1}^{v_{1} v_{2}}$ form $t K_{l, l, l}$ in G, a contradiction. Hence we have $b=b^{\prime}$.

Now we complete the proof of Case 2. Note that $N_{1}^{v_{2} v_{3}}\left(u_{v_{2} v_{3}}\right)=V\left(K_{1}\right) \backslash\left(V_{1} \cup\{b\}\right)$ and $N_{1}^{v_{3} v_{1}}\left(u_{v_{3} v_{1}}\right)=V\left(K_{1}\right) \backslash\left(V_{2} \cup\{b\}\right)$. Denote

$$
E^{\prime}=\bar{E}_{1} \uplus E\left(G_{0}\right) \uplus E\left(K_{1}\right) \uplus_{i=2}^{t-1} E\left(K_{i}^{v_{1} v_{2}}\right) .
$$

Suppose $\left|E\left(G_{0}\right)\right|=3 l^{2}-1$. Then $|E(G)| \geqslant k-1$ by $\left(^{*}\right)$. If $|E(G)|=k-1$, then $E(G)=E^{\prime} \uplus \tau_{1}^{v_{2} v_{3}}\left(u_{v_{2} v_{3}}\right) \uplus \tau_{1}^{v_{3} v_{1}}\left(u_{v_{3} v_{1}}\right)$. So $N(w) \backslash V_{0}=\emptyset$ for any $w \in V \backslash\left(V^{v_{1} v_{2}} \cup\right.$ $\left.V^{0} \cup\left\{u_{v_{2} v_{3}}, u_{v_{3} v_{1}}\right\}\right)$. Since $\left|E\left(G_{0}\right)\right|=3 l^{2}-1$, there are $q_{1} \in V_{i}^{0}$ and $q_{2} \in V_{i+1}^{0}$ such that $q_{1} q_{2} \notin E(G)$ for some $i \in[3]$. Since G is a $t K_{l, l, l}$-saturated graph, there are t pairwise disjoint copies of $K_{l, l, l}$, say $K_{0}^{q_{1} q_{2}}, \ldots, K_{t-1}^{q_{1} q_{2}}$, in $G+q_{1} q_{2}$. Assume $q_{1} q_{2} \in E\left(K_{0}^{q_{1} q_{2}}\right)$. If there is $w \in V \backslash\left(V^{v_{1} v_{2}} \cup V^{0} \cup\left\{u_{v_{2} v_{3}}, u_{v_{3} v_{1}}\right\}\right)$ such that $w \in V\left(K_{0}^{q_{1} q_{2}}\right)$, then we have $V_{2}^{0} \subseteq V\left(K_{0}^{q_{1} q_{2}}\right)$ or $V_{3}^{0} \subseteq V\left(K_{0}^{q_{1} q_{2}}\right)$. Thus there are at most $t-1$ pairwise disjoint copies of $K_{l, l, l}$ in $G+q_{1} q_{2}$ by $b u_{v_{3} v_{1}}, b u_{v_{2} v_{3}} \notin E(G)$, a contradiction. Thus $\cup_{i=0}^{t-1} V\left(K_{i}^{q_{1} q_{2}}\right)=$ $\left(\cup_{j=0}^{t-1} V\left(K_{j}^{v_{1} v_{2}}\right) \backslash\left\{v_{1}, v_{2}\right\}\right) \cup\left\{u_{v_{2} v_{3}}, u_{v_{3} v_{1}}\right\}$. But there are at most $t-1$ pairwise disjoint copies of of $K_{l, l, l}$ in $G+q_{1} q_{2}$ by $u_{v_{2} v_{3}} u_{v_{3} v_{1}}, u_{v_{2} v_{3}} b, b u_{v_{3} v_{1}} \notin E(G)$, a contradiction.

Suppose $\left|E\left(G_{0}\right)\right|=3 l^{2}-2$. Then $|E(G)| \geqslant k-2$ by $\left(^{*}\right)$. By the same argument as above, we can assume $|E(G)| \geqslant k-1$.

Suppose $|E(G)|=k-1$. Then there is $e \notin E^{\prime} \uplus \tau_{1}^{v_{2} v_{3}}\left(u_{v_{2} v_{3}}\right) \uplus \tau_{1}^{v_{3} v_{1}}\left(u_{v_{3} v_{1}}\right)$ such that $e \in E(G)$. Let $e=u v$. Then $\{u, v\} \cap V^{0}=\emptyset$.

Claim $5\{u, v\} \cap V^{v_{1} v_{2}} \neq \emptyset$.
Proof of Claim 5 Suppose $\{u, v\} \cap V^{v_{1} v_{2}}=\emptyset$. Assume $u \in V_{i}$ and $v \in V_{i+1}$, and a is the vertex in $\left\{u_{v_{2} v_{3}}, u_{v_{3} v_{1}}, b\right\}$ such that $a \in V_{i+2}, i \in[3]$. By Claim 4, there are $a_{i} \in V_{i}^{0}$, $a_{i+1} \in V_{i+1}^{0}$ and $a_{i} a_{i+1} \in E(G)$ such that $G\left[V^{0} \backslash\left\{a_{i}, a_{i+1}\right\}\right]$ is a complete tripartite graph. Then $G\left[\left(V\left(K_{0}^{v_{1} v_{2}}\right) \cup\left\{x_{v_{1} v_{2}}, y_{v_{1} v_{2}}, u, v\right\}\right) \backslash\left\{v_{1}, v_{2}, a_{i}, a_{i+1}\right\}\right], G\left[\left(V\left(K_{1}\right) \backslash\{b\}\right) \cup\left\{a, a_{i}, a_{i+1}\right\}\right]$ and $K_{j}^{v_{1} v_{2}}$ for $2 \leqslant j \leqslant t-1$ form $t K_{l, l, l}$ in G, a contradiction.

By Claim 5, we assume $u \in V^{v_{1} v_{2}}$. If $u=b$, then $v \notin\left\{u_{v_{2} v_{3}}, u_{v_{3} v_{1}}\right\}$ and we claim that $v \in V^{v_{1} v_{2}}$. Otherwise, assume $v \in V_{1}$. Since $l \geqslant 2$, there is $x_{b} \in V_{3}^{0}$ such that $x_{b} x_{v_{1} v_{2}} \in E(G)$. Then $G\left[\left(V^{0} \cup\{b, v\}\right) \backslash\left\{x_{b}, x_{v_{1} v_{2}}\right\}\right], G\left[\left(V\left(K_{1}^{v_{1} v_{2}}\right) \backslash\left\{y_{v_{1} v_{2}}, b\right\}\right) \cup\left\{u_{v_{3} v_{1}}, x_{b}\right\}\right]$ and $K_{i}^{v_{1} v_{2}}(2 \leqslant i \leqslant t-1)$ form $t K_{l, l, l}$ in G, a contradiction.

Since $\left|E\left(G_{0}\right)\right|=3 l^{2}-2$, there are $q_{1} \in V_{i}^{0}$ and $q_{2} \in V_{i+1}^{0}$ such that $q_{1} q_{2} \notin E(G)$ for some $i \in[3]$. Since G is a $t K_{l, l, l}$-saturated graph, there are t pairwise disjoint copies of $K_{l, l, l}$ in $G+q_{1} q_{2}$ and one of them, denote by $K_{0}^{q_{1} q_{2}}$, contains $q_{1} q_{2}$. If $e \notin E\left(K_{0}^{q_{1} q_{2}}\right)$ or $e \in E\left(K_{0}^{q_{1} q_{2}}\right)$ but $v \in V^{v_{1} v_{2}} \cup\left\{u_{v_{2} v_{3}}, u_{v_{3} v_{1}}\right\}$, then there are at most $t-1$ copies of $K_{l, l, l}$
in $G+q_{1} q_{2}$ by $u_{v_{2} v_{3}} u_{v_{3} v_{1}}, u_{v_{2} v_{3}} b, b u_{v_{3} v_{1}} \notin E(G)$, a contradiction. Suppose $e \in E\left(K_{0}^{q_{1} q_{2}}\right)$ and $v \notin V^{v_{1} v_{2}} \cup\left\{u_{v_{2} v_{3}}, u_{v_{3} v_{1}}\right\}$. Then $N(v) \backslash V_{0}=\{u\}$ and $u \neq b$. If $u \in V_{3}$ or $v \in V_{3}$, say $u \in V_{3}$, then $V_{1}^{0} \subseteq V\left(K_{0}^{q_{1} q_{2}}\right)$ when $v \in V_{2}$ (resp. $V_{2}^{0} \subseteq V\left(K_{0}^{q_{1} q_{2}}\right)$ when $\left.v \in V_{1}\right)$. Thus there are at most $t-1$ copies of $K_{l, l, l}$ in $G+q_{1} q_{2}$ by $u_{v_{2} v_{3}} b \notin E(G)$ when $v \in V_{2}$ (resp. $b u_{v_{3} v_{1}} \notin E(G)$ when $\left.v \in V_{1}\right)$, a contradiction. Now we consider the case $u \in V_{1}$ and $v \in V_{2}$ or $u \in V_{2}$ and $v \in V_{1}$, say $u \in V_{1}$ and $v \in V_{2}$. Then $\left(V\left(K_{0}^{q_{1} q_{2}}\right) \cap V_{1}\right) \backslash V_{1}^{0}=\{u\}$ and $V_{3}^{0} \subseteq V\left(K_{0}^{q_{1} q_{2}}\right)$. Thus there are at most $t-1$ copies of $K_{l, l, l}$ in $G+q_{1} q_{2}$ by $u_{v_{2} v_{3}} b \notin E(G)$, a contradiction.

Case 3 For any $i \in[3]$, we can assume $x_{v_{i} v_{i+1}} \in V\left(K_{1}^{v_{i} v_{i+1}}\right)$ and $y_{v_{i} v_{i+1}} \in V\left(K_{2}^{v_{i} v_{i+1}}\right)$.
By the same argument as that of Case 2 , there is $u_{v_{i+1} v_{i+2}} \in V_{i} \backslash V_{i}^{0}$ such that $u_{v_{i+1} v_{i+2}} \in$ $V^{v_{i+1} v_{i+2}} \backslash V^{v_{1} v_{2}}$ for $i=1,2$ and $u_{v_{2} v_{3}} u_{v_{3} v_{1}} \notin E(G)$. Then $\left|N\left(u_{v_{2} v_{3}}\right) \backslash V_{0}\right| \geqslant 2 l-1$ and $\left|N\left(u_{v_{3} v_{1}}\right) \backslash V_{0}\right| \geqslant 2 l-1$. Let $K_{1}=G\left[V\left(K_{1}^{v_{1} v_{2}}\right) \backslash\left\{x_{v_{1} v_{2}}\right\}\right]$ and $K_{2}=G\left[V\left(K_{2}^{v_{1} v_{2}}\right) \backslash\left\{y_{v_{1} v_{2}}\right\}\right]$. Then $\left|E\left(K_{1}\right)\right|=\left|E\left(K_{2}\right)\right|=3 l^{2}-2 l$. If $\left|E\left(G_{0}\right)\right| \geqslant 3 l^{2}-1$, then

$$
\begin{aligned}
|E(G)| \geqslant & \left|\bar{E}_{1}\right|+\left|E\left(G_{0}\right)\right|+\left|E\left(K_{1}\right)\right|+\left|E\left(K_{2}\right)\right|+\sum_{i=3}^{t-1}\left|E\left(K_{i}^{v_{1} v_{2}}\right)\right|+\left|N\left(u_{v_{2} v_{3}}\right) \backslash V_{0}\right| \\
& +\left|N\left(u_{v_{3} v_{1}}\right) \backslash V_{0}\right| \\
\geqslant & 2 l\left(n_{1}+n_{2}+n_{3}\right)-6 l^{2}+\left|E\left(G_{0}\right)\right|+3(t-1) l^{2}-4 l+(2 l-1)+(2 l-1) \\
\geqslant & 2 l\left(n_{1}+n_{2}+n_{3}\right)-3 l^{2}-3+3(t-1) l^{2}=k,
\end{aligned}
$$

and we are done. So we assume $3 l^{2}-3 \leqslant\left|E\left(G_{0}\right)\right| \leqslant 3 l^{2}-2$. If $\left|N\left(u_{v_{2} v_{3}}\right) \backslash V_{0}\right| \geqslant 2 l$ and $\left|N\left(u_{v_{3} v_{1}}\right) \backslash V_{0}\right| \geqslant 2 l$, then we have $|E(G)| \geqslant k$ and we are done. So we assume that $u_{v_{3} v_{1}} \in V\left(K_{1}^{v_{3} v_{1}}\right) \cup V\left(K_{2}^{v_{3} v_{1}}\right)$. Suppose $\left|N\left(u_{v_{2} v_{3}}\right) \backslash V_{0}\right| \geqslant 2 l$. Assume, without loss of generality, that $u_{v_{3} v_{1}} \in V\left(K_{1}^{v_{3} v_{1}}\right)$ and $u_{v_{2} v_{3}} \in V\left(K_{3}^{v_{2} v_{3}}\right)$. Then

$$
\begin{aligned}
|E(G)| \geqslant & \left|\bar{E}_{1}\right|+\left|E\left(G_{0}\right)\right|+\left|E\left(K_{1}\right)\right|+\left|E\left(K_{2}\right)\right|+\sum_{i=3}^{t-1}\left|E\left(K_{i}^{v_{1} v_{2}}\right)\right|+\left|N\left(u_{v_{3} v_{1}}\right) \backslash V_{0}\right| \\
& +\left|N\left(u_{v_{2} v_{3}}\right) \backslash V_{0}\right| \\
\geqslant & 2 l\left(n_{1}+n_{2}+n_{3}\right)-6 l^{2}+\left|E\left(G_{0}\right)\right|+3(t-1) l^{2}-4 l+(2 l-1)+2 l \\
\geqslant & 2 l\left(n_{1}+n_{2}+n_{3}\right)-3 l^{2}-4+3(t-1) l^{2}=k-1 .
\end{aligned}
$$

If $|E(G)|=k-1$, then all inequalities given above are tight. So $N\left(u_{v_{3} v_{1}}\right) \backslash V^{0}=$ $N_{1}^{v_{3} v_{1}}\left(u_{v_{3} v_{1}}\right)=V\left(K_{1}^{v_{3} v_{1}}\right) \backslash\left(V_{2} \cup\left\{x_{v_{3} v_{1}}\right\}\right), N\left(u_{v_{2} v_{3}}\right) \backslash V^{0}=N_{3}^{v_{2} v_{3}}\left(u_{v_{2} v_{3}}\right)=V\left(K_{3}^{v_{2} v_{3}}\right) \backslash V_{1}$ and

$$
E(G)=\bar{E}_{1} \uplus E\left(G_{0}\right) \uplus E\left(K_{1}\right) \uplus E\left(K_{2}\right) \uplus_{i=3}^{t-1} E\left(K_{i}^{v_{1} v_{2}}\right) \uplus \tau_{1}^{v_{3} v_{1}}\left(u_{v_{3} v_{1}}\right) \uplus \tau_{3}^{v_{2} v_{3}}\left(u_{v_{2} v_{3}}\right),
$$

which implies $V\left(K_{3}^{v_{2} v_{3}}\right) \backslash\left\{u_{v_{2} v_{3}}\right\} \subseteq V\left(K_{1}\right)$. Let $K_{1}^{\prime}=G\left[V\left(K_{1}\right) \cup\left\{u_{v_{2} v_{3}}\right\}\right]$. Then K_{1}^{\prime} and $K_{i}^{v_{1} v_{2}}$ for $2 \leqslant i \leqslant t-1$ are $t-1$ copies of $K_{l, l, l}$ in $G+v_{1} v_{2}$ such that $\mid\left(V\left(K_{1}\right) \cup\right.$ $\left.\cup_{j=2}^{t-1} V\left(K_{j}^{v_{1} v_{2}}\right)\right) \cap\left\{x_{v_{1} v_{2}}, y_{v_{1} v_{2}}\right\}\left|<\left|\left(\cup_{j=1}^{t-1} V\left(K_{j}^{v_{1} v_{2}}\right)\right) \cap\left\{x_{v_{1} v_{2}}, y_{v_{1} v_{2}}\right\}\right|\right.$, a contradiction. Hence we can assume $u_{v_{2} v_{3}} \in V\left(K_{1}^{v_{2} v_{3}}\right) \cup V\left(K_{2}^{v_{2} v_{3}}\right)$. Now we have

$$
\begin{aligned}
|E(G)| \geqslant & \left|\bar{E}_{1}\right|+\left|E\left(G_{0}\right)\right|+\left|E\left(K_{1}\right)\right|+\left|E\left(K_{2}\right)\right|+\sum_{i=3}^{t-1}\left|E\left(K_{i}^{v_{1} v_{2}}\right)\right|+\left|N\left(u_{v_{2} v_{3}}\right) \backslash V_{0}\right| \\
& +\left|N\left(u_{v_{3} v_{1}}\right) \backslash V_{0}\right| \\
\geqslant & 2 l\left(n_{1}+n_{2}+n_{3}\right)-6 l^{2}+\left|E\left(G_{0}\right)\right|+3(t-1) l^{2}-4 l+(2 l-1)+(2 l-1) \\
\geqslant & 2 l\left(n_{1}+n_{2}+n_{3}\right)-3 l^{2}-5+3(t-1) l^{2}=k-2 .
\end{aligned}
$$

By the same argument as that of Case 2, we can assume that $V^{v_{2} v_{3}} \backslash\left\{u_{v_{2} v_{3}}, u_{v_{3} v_{1}}\right\} \subseteq V^{v_{1} v_{2}}$, and $V\left(K_{1}^{v_{2} v_{3}}\right) \backslash\left\{u_{v_{2} v_{3}}, x_{v_{2} v_{3}}\right\} \subseteq V\left(K_{1}\right)$ if $u_{v_{2} v_{3}} \in V\left(K_{1}^{v_{2} v_{3}}\right)$ (resp. $V\left(K_{2}^{v_{2} v_{3}}\right) \backslash\left\{u_{v_{2} v_{3}}, y_{v_{2} v_{3}}\right\} \subseteq$ $V\left(K_{1}\right)$ if $\left.u_{v_{2} v_{3}} \in V\left(K_{2}^{v_{2} v_{3}}\right)\right)$.

Assume without loss of generality that $u_{v_{2} v_{3}} \in V\left(K_{1}^{v_{2} v_{3}}\right)$. Then $V\left(K_{1}^{v_{2} v_{3}}\right) \backslash\left\{u_{v_{2} v_{3}}, x_{v_{2} v_{3}}\right\}$ $\subseteq V\left(K_{1}\right)$. Since $u_{v_{2} v_{3}} u_{v_{3} v_{1}} \notin E(G), u_{v_{3} v_{1}} \notin V\left(K_{1}\right)$. Since $y_{v_{1} v_{2}} \in V\left(K_{2}^{v_{1} v_{2}}\right) \cap V_{2}^{0}$ and $\cup_{j=2}^{t-1} V\left(K_{j}^{v_{2} v_{3}}\right) \backslash\left\{y_{v_{2} v_{3}}, u_{v_{3} v_{1}}\right\} \subseteq \cup_{j=2}^{t-1} V\left(K_{j}^{v_{1} v_{2}}\right)$, we have $u_{v_{3} v_{1}} \in \cup_{j=2}^{t-1} V\left(K_{j}^{v_{2} v_{3}}\right)$. If $u_{v_{3} v_{1}} \notin$ $V\left(K_{2}^{v_{2} v_{3}}\right)$, say $u_{v_{3} v_{1}} \in V\left(K_{3}^{v_{2} v_{3}}\right)$, then $V\left(K_{3}^{v_{2} v_{3}}\right) \backslash\left\{u_{v_{3} v_{1}}\right\} \subseteq V\left(K_{2}\right)$. Thus $K_{1}^{v_{1} v_{2}}, G\left[V\left(K_{2}\right) \cup\right.$ $\left.\left\{u_{v_{3} v_{1}}\right\}\right], \ldots, K_{t-1}^{v_{1} v_{2}}$ would contradict with the choice of $K_{i}^{v_{1} v_{2}}, 1 \leqslant i \leqslant t-1$. Hence we have $u_{v_{3} v_{1}} \in V\left(K_{2}^{v_{2} v_{3}}\right)$ and then $V\left(K_{2}^{v_{2} v_{3}}\right) \backslash\left\{u_{v_{3} v_{1}}, y_{v_{2} v_{3}}\right\} \subseteq V\left(K_{2}\right)$. Since $x_{v_{2} v_{3}} \in V\left(K_{1}^{v_{2} v_{3}}\right) \cap V_{2}^{0}$ (resp. $y_{v_{2} v_{3}} \in V\left(K_{2}^{v_{2} v_{3}}\right) \cap V_{3}^{0}$) and $l \geqslant 2$, there is a unique vertex $a_{2} \in V\left(K_{1}\right) \cap V_{2}$ (resp. $\left.a_{3} \in V\left(K_{2}\right) \cap V_{3}\right)$ such that $a_{2} \notin V\left(K_{1}^{v_{2} v_{3}}\right)$ (resp. $\left.a_{3} \notin V\left(K_{2}^{v_{2} v_{3}}\right)\right)$. If $u_{v_{2} v_{3}} a_{2} \in E(G)$, then $G\left[V\left(K_{1}\right) \cup\left\{u_{v_{2} v_{3}}\right\}\right], K_{2}^{v_{1} v_{2}}, \ldots, K_{t-1}^{v_{1} v_{2}}$ will be a contradiction with the choice of $K_{i}^{v_{1} v_{2}}$, $1 \leqslant i \leqslant t-1$. Hence $u_{v_{2} v_{3}} a_{2} \notin E(G)$. Similarly, $u_{v_{3} v_{1}} a_{3} \notin E(G)$.

Now we have $N_{1}^{v_{2} v_{3}}\left(u_{v_{2} v_{3}}\right)=V\left(K_{1}\right) \backslash\left(V_{1} \cup\left\{a_{2}\right\}\right)$ and $N_{2}^{v_{2} v_{3}}\left(u_{v_{3} v_{1}}\right)=V\left(K_{2}\right) \backslash\left(V_{2} \cup\left\{a_{3}\right\}\right)$. Let

$$
E^{\prime}=\bar{E}_{1} \uplus E\left(G_{0}\right) \uplus E\left(K_{1}\right) \uplus E\left(K_{2}\right) \uplus_{i=3}^{t-1} E\left(K_{i}^{v_{1} v_{2}}\right) \uplus \tau_{1}^{v_{2} v_{3}}\left(u_{v_{2} v_{3}}\right) \uplus \tau_{2}^{v_{2} v_{3}}\left(u_{v_{3} v_{1}}\right) .
$$

Then $|E(G)| \geqslant\left|E^{\prime}\right|=k-3 l^{2}+1+\left|E\left(G_{0}\right)\right|$.
We will complete the proof by considering the following two subcases.
Case $3.1\left|E\left(G_{0}\right)\right|=3 l^{2}-2$.
In this case, we have $|E(G)| \geqslant k-1$. Suppose $|E(G)|=k-1$. Then $E(G)=E^{\prime}$. If $G\left[V_{1}^{0} \cup V_{3}^{0}\right]$ is a complete bipartite graph, then we can choose $k_{1}, k_{2} \in V_{2}^{0}$ such that $G\left[V^{0} \backslash\left\{k_{1}, k_{2}\right\}\right]$ is a complete tripartite graph. By $n_{2} \geqslant 24 l^{3}+44 l^{2}+12 l+3(t-1) l^{2}$, we can choose $w_{1}, w_{2} \in V_{2} \backslash\left(V^{v_{1} v_{2}} \cup V_{2}^{0} \cup\left\{u_{v_{3} v_{1}}\right\}\right)$. But $G\left[V_{0} \cup\left\{w_{1}, w_{2}\right\} \backslash\left\{k_{1}, k_{2}\right\}\right], G\left[\left(V\left(K_{1}\right) \cup\right.\right.$ $\left.\left.\left\{k_{1}, u_{v_{2} v_{3}}\right\}\right) \backslash\left\{a_{2}\right\}\right], G\left[V\left(K_{2}\right) \cup\left\{k_{2}\right\}\right]$ and $\cup_{i=3}^{t-1} K_{i}^{v_{1} v_{2}}$ form $t K_{l, l, l}$ in G, a contradiction. Hence there are $q_{1} \in V_{1}^{0}$ and $q_{3}^{\prime} \in V_{3}^{0}$ such that $q_{1} q_{3}^{\prime} \notin E(G)$. Since $\left|E\left(G_{0}\right)\right|=3 l^{2}-2$, we can assume there is $q_{2} \in V_{2}^{0}$ and $q_{3} \in V_{3}^{0}$ such that $q_{2} q_{3} \notin E(G)$.

Since G is a $t K_{l, l, l}$-saturated graph, there are t pairwise disjoint copies of $K_{l, l, l}$, say $K_{0}^{q_{2} q_{3}}, \ldots, K_{t-1}^{q_{2} q_{3}}$, in $G+q_{2} q_{3}$. If there is $v \in\left(V_{i} \cap V\left(K_{j}^{q_{2} q_{3}}\right)\right) \backslash\left(V^{v_{1} v_{2}} \cup V^{0} \cup\left\{u_{v_{2} v_{3}}, u_{v_{3} v_{1}}\right\}\right)$ for some $i \in[3]$ and $0 \leqslant j \leqslant t-1$, then $V_{i+1}^{0}, V_{i+2}^{0} \subseteq V\left(K_{j}^{q_{2} q_{3}}\right)$ and then there are at most $t-1$ pairwise disjoint $K_{l, l, l}$ in $G+q_{2} q_{3}$ by $u_{v_{2} v_{3}} a_{2}, u_{v_{3} v_{1}} a_{3} \notin E(G)$, a contradiction. Hence $\cup_{i=0}^{t-1} V\left(K_{i}^{q_{2} q_{3}}\right)=V^{v_{1} v_{2}} \cup V^{0} \cup\left\{u_{v_{2} v_{3}}, u_{v_{3} v_{1}}\right\}$. Assume $q_{2} q_{3} \in E\left(K_{0}^{q_{2} q_{3}}\right)$. Note that there is $u^{\prime} \in V\left(K_{0}^{q_{2} q_{3}}\right) \backslash V^{0}$ such that $u^{\prime} \in V_{1} \cup V_{3}$ by $q_{1} q_{3}^{\prime} \notin E(G)$. Since $u_{v_{3} v_{1}} \in V_{2}, u^{\prime} \neq u_{v_{3} v_{1}}$. If $u^{\prime} \in V^{v_{1} v_{2}}$, say $u^{\prime} \in V\left(K_{i}^{v_{1} v_{2}}\right)$, then $V\left(K_{0}^{q_{2} q_{3}}\right) \cap V_{2} \subseteq V_{2}^{0} \cup V\left(K_{i}^{v_{1} v_{2}}\right)$. Thus $G+q_{2} q_{3}$ has at most $t-1$ pairwise disjoint copies of $K_{l, l, l}$ by $u_{v_{2} v_{3}} a_{2}, u_{v_{3} v_{1}} a_{3} \notin E(G)$, a contradiction. If $u^{\prime}=u_{v_{2} v_{3}}$, then $V\left(K_{0}^{q_{2} q_{3}}\right) \cap V_{2} \subseteq V_{2}^{0} \cup V\left(K_{1}\right)$ and $V\left(K_{0}^{q_{2} q_{3}}\right) \cap V_{3} \subseteq V_{3}^{0} \cup V\left(K_{1}\right)$. So $G+q_{2} q_{3}$ has at most $t-1$ pairwise disjoint copies of $K_{l, l, l}$ by $u_{v_{3} v_{1}} a_{3} \notin E(G)$, a contradiction.

Case $3.2\left|E\left(G_{0}\right)\right|=3 l^{2}-3$.
In this case, we have $|E(G)| \geqslant k-2$. If $|E(G)|=k-2$, let $G^{\prime}=G+q_{1} q_{2}$, where $q_{1} \in V_{1}^{0}, q_{2} \in V_{2}^{0}$ with $q_{1} q_{2} \notin E\left(G_{0}\right)$. Then $\left|E\left(G^{\prime}\right)\right|=k-1$. By Case 3.1, G^{\prime} has at most $t-1$ pairwise disjoint copies of $K_{l, l, l}$, a contradiction. So $|E(G)| \geqslant k-1$. Suppose $|E(G)|=k-1$. Then there is $e=u v \in E(G)$ but $e \notin E^{\prime}$, that is $E(G)=E^{\prime} \cup\{e\}$. Then $\{u, v\} \cap V^{0}=\emptyset$. By Claim 1, we easily have the following claim.

Claim 6 For any $i \in[3]$, there are $b_{i} \in V_{i}^{0}$ and $b_{i+1} \in V_{i+1}^{0}$ such that $G\left[V^{0} \backslash\left\{b_{i}, b_{i+1}\right\}\right]$ is a complete tripartite graph.

Let $V^{1}=V\left(K_{1}\right) \cup\left\{u_{v_{2} v_{3}}\right\}, V^{2}=V\left(K_{2}\right) \cup\left\{u_{v_{3} v_{1}}\right\}$ and $V^{i}=V\left(K_{i}^{v_{1} v_{2}}\right)$ for $3 \leqslant i \leqslant t-1$ for short. Denote $V_{j}^{i}=V^{i} \cap V_{j}$, where $i \in[t-1]$ and $j \in[3]$. We have the following claim.

Claim $7\{u, v\} \cap\left(\cup_{i=1}^{t-1} V^{i}\right) \neq \emptyset$.
Proof of Claim 7 Suppose $\{u, v\} \cap\left(\cup_{i=1}^{t-1} V^{i}\right)=\emptyset$. We first consider the case $u, v \notin V_{1}$, say $u \in V_{2}$ and $v \in V_{3}$. By Claim 6, there are $b_{2} \in V_{2}^{0}$ and $b_{3} \in V_{3}^{0}$ such that $G\left[V^{0} \backslash\left\{b_{2}, b_{3}\right\}\right]$ is a complete tripartite graph. Then $G\left[\left(V^{0} \cup\{u, v\}\right) \backslash\left\{b_{2}, b_{3}\right\}\right], G\left[\left(V^{1} \cup\left\{b_{2}\right\}\right) \backslash\left\{a_{2}\right\}\right]$, $G\left[\left(V^{2} \cup\left\{b_{3}\right\}\right) \backslash\left\{a_{3}\right\}\right]$ and $K_{i}^{v_{1} v_{2}}$ for $3 \leqslant i \leqslant t-1$ form $t K_{l, l, l}$ in G, a contradiction. Now we assume $u \in V_{1}$. By Claim 6, there are $b_{1} \in V_{1}^{0}$ and $b_{2} \in V_{2}^{0}$ if $v \in V_{2}$ (resp. $b_{3} \in V_{3}$ if $v \in V_{3}$) such that $G\left[V^{0} \backslash\left\{b_{1}, b_{2}\right\}\right]$ (resp. $G\left[V^{0} \backslash\left\{b_{1}, b_{3}\right\}\right]$) is a complete tripartite graph. Then $G\left[\left(V^{0} \cup\{u, v\}\right) \backslash\left\{b_{1}, b_{2}\right\}\right]$ (resp. $\left.G\left[\left(V^{0} \cup\{u, v\}\right) \backslash\left\{b_{1}, b_{3}\right\}\right]\right), G\left[\left(V^{1} \cup\left\{b_{1}\right\}\right) \backslash\left\{u_{v_{2} v_{3}}\right\}\right]$, $G\left[\left(V^{2} \cup\left\{b_{2}\right\}\right) \backslash\left\{u_{v_{3} v_{1}}\right\}\right]$ (resp. $\left.G\left[\left(V^{2} \cup\left\{b_{3}\right\}\right) \backslash\left\{a_{3}\right\}\right]\right)$ and $K_{i}^{v_{1} v_{2}}$ for $3 \leqslant i \leqslant t-1$ form $t K_{l, l, l}$ in G, a contradiction.

By Claim 7 and $\{u, v\} \cap V^{0}=\emptyset$, we assume $u \in \cup_{i=1}^{t-1} V^{i}$. Since $\left|E\left(G_{0}\right)\right|=3 l^{2}-3$, there are $q_{1} \in V_{1}^{0}$ and $q_{2} \in V_{2}^{0}$ such that $q_{1} q_{2} \notin E(G)$. Since G is a $t K_{l, l, l}$-saturated graph, there are t pairwise disjoint copies of $K_{l, l, l}$, say $K_{0}^{q_{1} q_{2}}, \ldots, K_{t-1}^{q_{1} q_{2}}$ in $G+q_{1} q_{2}$. By Case 3.1, we know there are at most $t-1$ pairwise disjoint $K_{l, l, l}$ in $G+q_{1} q_{2}-u v$. So $u v \in \cup_{i=0}^{k-1} E\left(K_{i}^{q_{1} q_{2}}\right)$.

Claim $8 \cup_{i=0}^{t-1} V\left(K_{i}^{q_{1} q_{2}}\right) \subseteq \cup_{i=0}^{t-1} V^{i} \cup\{v\}$.
Proof of Claim 8 Suppose there is $w \in \cup_{i=0}^{t-1} V\left(K_{i}^{q_{1} q_{2}}\right) \backslash\left(\cup_{i=0}^{t-1} V^{i} \cup\{v\}\right)$, say $w \in$ $V_{i} \cap V\left(K_{j}^{q_{1} q_{2}}\right)$, where $i \in[3]$ and $0 \leqslant j \leqslant t-1$. Then $d(w)=2 l$, which implies $V_{i+1}^{0} \cup V_{i+2}^{0} \subseteq$ $V\left(K_{j}^{q_{1} q_{2}}\right)$. Since $\left|E\left(G_{0}\right)\right|=3 l^{2}-3$ and $q_{1} \in V_{1}^{0}, q_{2} \in V_{2}^{0}$, we have $i=3$ and then $\left|\cup_{i=0}^{t-1} V\left(K_{i}^{q_{1} q_{2}}\right) \backslash\left(\cup_{i=0}^{t-1} V^{i} \cup\{v\}\right)\right| \leqslant l$. Since $u_{v_{2} v_{3}} a_{2} \notin E(G),\left(V_{1}^{1} \cup V_{2}^{1}\right) \cap\left(\cup_{i=0}^{t-1} V\left(K_{i}^{q_{1} q_{2}}\right)\right)=\emptyset$. Then

$$
\begin{aligned}
\left|\cup_{i=0}^{t-1} V\left(K_{i}^{q_{1} q_{2}}\right)\right| & \leqslant\left|\left(\cup_{i=0}^{t-1} V^{i} \cup\{v\}\right) \backslash\left(V_{1}^{1} \cup V_{2}^{1}\right)\right|+\left|\cup_{i=0}^{t-1} V\left(K_{i}^{q_{1} q_{2}}\right) \backslash\left(\cup_{i=0}^{t-1} V^{i} \cup\{v\}\right)\right| \\
& \leqslant 3 t l-l+1,
\end{aligned}
$$

a contradiction with $\left|\cup_{i=0}^{t-1} V\left(K_{i}^{q_{1} q_{2}}\right)\right|=3 t l$ and $l \geqslant 2$.
Claim $9 \quad e \neq a_{2} a_{3}$ and $e \neq u_{v_{2} v_{3}} a_{3}$.
Proof of Claim 9 Suppose $e=a_{2} a_{3}$. By Claim 6, there are $b_{2} \in V_{2}^{0}$ and $b_{3} \in V_{3}^{0}$ such that $G\left[V^{0} \backslash\left\{b_{2}, b_{3}\right\}\right]$ is a complete tripartite graph. But $G\left[\left(V^{0} \backslash\left\{b_{2}, b_{3}\right\}\right) \cup\left\{a_{2}, a_{3}\right\}\right], G\left[\left(V^{1} \backslash\right.\right.$ $\left.\left.\left\{a_{2}\right\}\right) \cup\left\{b_{2}\right\}\right], G\left[\left(V^{2} \backslash\left\{a_{3}\right\}\right) \cup\left\{b_{3}\right\}\right], \ldots, K_{t-1}^{v_{1} v_{2}}$ form $t K_{l, l, l}$ in G, a contradiction.

Suppose $e=u_{v_{2} v_{3}} a_{3}$. By Claim 6, there are $b_{1} \in V_{1}^{0}$ and $b_{3} \in V_{3}^{0}$ such that $G\left[V^{0} \backslash\right.$ $\left.\left\{b_{1}, b_{3}\right\}\right]$ is a complete tripartite graph. But $G\left[\left(V^{0} \backslash\left\{b_{1}, b_{3}\right\}\right) \cup\left\{u_{v_{2} v_{3}}, a_{3}\right\}\right], G\left[\left(V^{1} \cup\left\{b_{1}\right\}\right) \backslash\right.$ $\left.\left\{u_{v_{2} v_{3}}\right\}\right], G\left[\left(V^{2} \cup\left\{b_{3}\right\}\right) \backslash\left\{a_{3}\right\}\right], \ldots, K_{t-1}^{v_{1} v_{2}}$ form $t K_{l, l, l}$ in G, a contradiction.

Claim $10 v \notin \cup_{i=1}^{t-1} V^{i}$.
Proof of Claim 10 Suppose $v \in \cup_{i=1}^{t-1} V^{i}$. By Claim 8, $\cup_{i=0}^{t-1} V\left(K_{i}^{q_{1} q_{2}}\right)=\cup_{i=0}^{t-1} V^{i}$. Assume $u v \in E\left(K_{0}^{q_{1} q_{2}}\right), u \in V_{j_{u}}^{i_{u}}$ and $v \in V_{j_{v}}^{i_{v}}$, where $i_{u}, i_{v} \in[t-1], j_{u}, j_{v} \in[3], i_{u} \neq i_{v}$ and $j_{u} \neq j_{v}$. Let $j=\{1,2,3\} \backslash\left\{j_{u}, j_{v}\right\}$. Then $V_{j}^{0} \subseteq V\left(K_{0}^{q_{1} q_{2}}\right)$. By $\cup_{i=0}^{t-1} V\left(K_{i}^{q_{1} q_{2}}\right)=\cup_{i=0}^{t-1} V^{i}$, we can assume there are $u_{1} \in V_{j}^{i_{u}} \cap V\left(K_{1}^{q_{1} q_{2}}\right)$ and $v_{1} \in V_{j}^{i_{v}} \cap V\left(K_{2}^{q_{1} q_{2}}\right)$. Then $\cup_{i=0}^{2} V\left(K_{i}^{q_{1} q_{2}}\right)=$ $V^{i_{u}} \cup V^{i_{v}} \cup V^{0}$. Since $u_{v_{2} v_{3}} a_{2}, u_{v_{3} v_{1}} a_{3} \notin E(G)$, we have $\left\{i_{u}, i_{v}\right\}=\{1,2\}$. Then there is
$i \in\{0,1,2\}$ such that $\left|\left\{a_{2}, a_{3}, u_{v_{2} v_{3}}, u_{v_{3} v_{1}}\right\} \cap V\left(K_{i}^{q_{1} q_{1}}\right)\right| \geqslant 2$. Since $u_{v_{2} v_{3}} u_{v_{3} v_{1}} \notin E(G)$, we have $u v=a_{2} a_{3}$ or $u_{v_{2} v_{3}} a_{3}$, a contradiction with Claim 9.

By Claims 8 and 10 , we have $\cup_{i=0}^{t-1} V\left(K_{i}^{q_{1} q_{2}}\right) \subset \cup_{i=0}^{t-1} V^{i} \cup\{v\}$. Assume $u v \in E\left(K_{0}^{q_{1} q_{2}}\right)$, $u \in V_{j_{u}}^{i_{u}}$ and $v \in V_{j_{v}}$, where $i_{u} \in[t-1], j_{u}, j_{v} \in[3]$ and $j_{u} \neq j_{v}$. Let $j=\{1,2,3\} \backslash\left\{j_{u}, j_{v}\right\}$. Since $N(v)=V^{0} \cup\{u\}$, we have $V\left(K_{0}^{q_{1} q_{2}}\right) \cap V_{j}=V_{j}^{0},\left(V_{j_{v}} \cap V\left(K_{0}^{q_{1} q_{2}}\right)\right) \backslash\{v\} \subseteq V_{j_{v}}^{0} \cup V_{j_{v}}^{i_{u}}$ and $V\left(K_{0}^{q_{1} q_{2}}\right) \cap V_{j_{u}}=\left(V_{j_{u}}^{0} \cup\{u\}\right) \backslash\left\{w_{j_{u}}\right\}$, where $w_{j_{u}} \in V_{j_{u}}^{0}$. Since $\cup_{i=0}^{t-1} V\left(K_{i}^{q_{1} q_{2}}\right) \subset$ $\cup_{i=0}^{t-1} V^{i} \cup\{v\}$, there is $u_{1} \in V_{j}^{i_{u}} \cap V\left(K_{i}^{q_{1} q_{2}}\right)$ for some $i \neq 0$, say $i=1$. Then $V\left(K_{1}^{q_{1} q_{2}}\right) \cap$ $V_{j_{u}}=\left(V_{j_{u}}^{i_{u}} \cup\left\{w_{j_{u}}\right\}\right) \backslash\{u\}, V\left(K_{1}^{q_{1} q_{2}}\right) \cap V_{j}=V_{j}^{i_{u}}$ and $V\left(K_{1}^{q_{1} q_{2}}\right) \cap V_{j_{v}} \subset V_{j_{v}}^{0} \cup V_{j_{v}}^{i_{u}}$. So $\left(V\left(K_{0}^{q_{1} q_{2}}\right) \cup V\left(K_{1}^{q_{1} q_{2}}\right)\right) \backslash\{v\} \subset V^{0} \cup V^{i_{u}}$. Since $u_{v_{2} v_{3}} a_{2}, u_{v_{3} v_{1}} a_{3} \notin E(G)$, we have $i_{u} \in\{1,2\}$ and there is a unique vertex $w_{j_{v}} \in V_{j_{v}}^{0}$ such that $w_{j_{v}} \in \cup_{i=2}^{t-1} V\left(K_{i}^{q_{1} q_{2}}\right)$.

Claim $11 V\left(K_{1}^{q_{1} q_{2}}\right) \cap V_{j_{v}}^{0} \neq \emptyset$.
Proof of Claim 11 Suppose $V\left(K_{1}^{q_{1} q_{2}}\right) \cap V_{j_{v}}^{0}=\emptyset$. Then $V\left(K_{1}^{q_{1} q_{2}}\right) \cap V^{0}=\left\{w_{j_{u}}\right\}$ and $V\left(K_{0}^{q_{1} q_{2}}\right)=\left(V^{0} \cup\{u, v\}\right) \backslash\left\{w_{j_{u}}, w_{j_{v}}\right\}$. By Claim 6, there are $b_{j_{u}} \in V_{j_{u}}^{0}$ and $b_{j_{v}} \in V_{j_{v}}^{0}$ such that $G\left[V^{0} \backslash\left\{b_{j_{u}}, b_{j_{v}}\right\}\right]$ is a complete tripartite graph. But $G\left[\left(V\left(K_{0}^{q_{1} q_{2}}\right) \cup\left\{w_{j_{u}}, w_{j_{v}}\right\}\right) \backslash\right.$ $\left.\left\{b_{j_{u}}, b_{j_{v}}\right\}\right], G\left[\left(V\left(K_{1}^{q_{1} q_{2}}\right) \backslash\left\{w_{j_{u}}\right\}\right) \cup\left\{b_{j_{u}}\right\}\right]$ and $G\left[\left(\cup_{i=2}^{t-1} V\left(K_{i}^{q_{1} q_{2}}\right) \backslash\left\{w_{j_{v}}\right\}\right) \cup\left\{b_{j_{v}}\right\}\right]$ form t pairwise disjoint $K_{l, l, l}$ in G, a contradiction.

By Claim 11, we assume $w_{j_{v}}^{\prime} \in V\left(K_{1}^{q_{1} q_{2}}\right) \cap V_{j_{v}}^{0}$. Since $E\left(G_{0}\right)=3 l^{2}-3$, by Claim 1, there are $x, x^{\prime}, y, z \in V^{0}$ such that $x y, y z, z x^{\prime} \notin E(G)$ (possibly $x=x^{\prime}$). If $x=x^{\prime}$, say $x \in V_{j_{u}}^{0}$ and $y \in V_{j_{v}}^{0}$, then $G\left[\left(V\left(K_{0}^{q_{1} q_{2}}\right) \cup\left\{w_{j_{u}}, w_{j_{v}}\right\}\right) \backslash\{x, y\}\right], G\left[\left(V\left(K_{1}^{q_{1} q_{2}}\right) \backslash\left\{w_{j_{u}}\right\}\right) \cup\{x\}\right]$ and $G\left[\left(\cup_{i=2}^{t-1} V\left(K_{i}^{q_{1} q_{2}}\right) \backslash\left\{w_{j_{v}}\right\}\right) \cup\{y\}\right]$ form t pairwise disjoint $K_{l, l, l}$ in G, a contradiction. So we have $x \neq x^{\prime}$. If $x, x^{\prime} \in V_{j_{v}}$, assume $y \in V_{j_{u}}$, then $G\left[\left(V\left(K_{0}^{q_{1} q_{2}}\right) \cup\left\{w_{j_{v}}, w_{j_{v}}^{\prime}, w_{j_{u}}\right\}\right) \backslash\left\{x, x^{\prime}, y\right\}\right]$, $G\left[\left(V\left(K_{1}^{q_{1} q_{2}}\right) \backslash\left\{w_{j_{u}}, w_{j_{v}}^{\prime}\right\}\right) \cup\left\{y, x^{\prime}\right\}\right]$ and $G\left[\left(\cup_{i=2}^{t-1} V\left(K_{i}^{q_{1} q_{2}}\right) \backslash\left\{w_{j_{v}}\right\}\right) \cup\{x\}\right]$ form t pairwise disjoint $K_{l, l, l}$ s in G, a contradiction. If $x, x^{\prime} \in V_{j}$, assume $y \in V_{j_{u}}$ and $z \in V_{j_{v}}$, then $G\left[\left(V\left(K_{0}^{q_{1} q_{2}}\right) \cup\left\{w_{j_{u}}, w_{j_{v}}\right\}\right) \backslash\{y, z\}\right], G\left[\left(V\left(K_{1}^{q_{1} q_{2}}\right) \backslash\left\{w_{j_{u}}\right\}\right) \cup\{y\}\right]$ and $G\left[\left(\cup_{i=2}^{t-1} V\left(K_{i}^{q_{1} q_{2}}\right) \backslash\right.\right.$ $\left.\left.\left\{w_{j_{v}}\right\}\right) \cup\{z\}\right]$ form t pairwise disjoint $K_{l, l, l}$ s in G, a contradiction. Now we consider the case $x, x^{\prime} \in V_{j_{u}}$. Assume $y \in V_{j_{v}}$. If $y \neq w_{j_{v}}$, then $G\left[\left(V\left(K_{0}^{q_{1} q_{2}}\right) \cup\left\{w_{j_{v}}^{\prime}, w_{j_{u}}\right\}\right) \backslash\left\{x^{\prime}, y\right\}\right]$, $G\left[\left(V\left(K_{1}^{q_{1} q_{2}}\right) \backslash\left\{w_{j_{u}}, w_{j_{v}}^{\prime}\right\}\right) \cup\left\{x^{\prime}, y\right\}\right]$ and $G\left[\cup_{i=2}^{t-1} V\left(K_{i}^{q_{1} q_{2}}\right)\right]$ form t pairwise disjoint $K_{l, l, l}$ in G, a contradiction. If $y=w_{j_{v}}$, then $G\left[\left(V\left(K_{0}^{q_{1} q_{2}}\right) \cup\left\{w_{j_{u}}\right\}\right) \backslash\left\{x^{\prime}\right\}\right], G\left[\left(V\left(K_{1}^{q_{1} q_{2}}\right) \backslash\left\{w_{j_{u}}\right\}\right) \cup\left\{x^{\prime}\right\}\right]$ and $G\left[\cup_{i=2}^{t-1} V\left(K_{i}^{q_{1} q_{2}}\right)\right]$ form t pairwise disjoint $K_{l, l, l} \mathrm{~S}$ in G, our final contradiction.

Remark In [9], Ferrara, Jacobson, Pfender and Wenger determined $\operatorname{sat}\left(K_{k}^{n}, K_{3}\right)$ for $k \geqslant 3$ and $n \geqslant 100$, where K_{k}^{n} is the complete balanced k-partite graph with partite sets of size n. Our result in the case $l=1$ generalizes their conclusion if $k=3$.

Acknowledgments

Many thanks to the anonymous referee for his/her many helpful comments and suggestions, which have considerably improved the presentation of the paper.

References

[1] N.C. Behague, Hypergraph saturation irregularities, Electron. J. Combin., 25(2) (2018), \#P2.11
[2] B. Bollobás, Determination of extremal graphs by using weights, Wiss. Z. Techn. Hochsch. Ilmenau, 13 (1967), 419-421.
[3] B. Bollobás, On a conjecture of Erdős, Hajnal and Moon, Amer. Math. Monthly, 74 (1967), 178-179.
[4] Y.-C. Chen, Minimum C_{5}-saturated graphs, J. Graph Theory, 61 (2009), 111-126.
[5] P. Erdős, A. Hajnal, J.W. Moon, A problem in graph theory, Amer. Math. Monthly, 71 (1964), 1107-1110.
[6] L. Kászonyi, Z. Tuza, Saturated graphs with minimal number of edges, J. Graph Theory, 10 (1986), 203-210.
[7] R. Faudree, M. Ferrara, R. Gould, M. Jacobson, $t K_{p}$-saturated graphs of minimum size, Discrete. Math, 309 (2009), 5870-5876.
[8] J. Faudree, R. Faudree, J. Schmitt, A survey of minimum saturated graphs, Electron. J. Combin, 18 (2011), \#DS19.
[9] M. Ferrara, M.S. Jacobson, F. Pfender, and P.S. Wenger, Graph saturation in multipartite graphs, J. Comb., 7(1) (2016), 1-19.
[10] Z. Furedi, Y. Kim. Cycle-Saturated Graphs with Minimum Number of Edges, J. Graph. Theory, 73 (2013), 203-215.
[11] A. Gyárfás, S.G. Hartke, C. Viss, Uniquely $K_{r}^{(k)}$-saturated hypergraphs. Electron. J. Combin., 25(4) (2018), \#P4.35.
[12] J.R. Johnson, T. Pinto, Saturated subgraphs of the hypercube, Combin. Probab. Comput., 26(1) (2017), 52-67.
[13] N. Morrison, J.A. Noel, A. Scott, On saturated k-Sperner systems, Electron. J. Combin., 21(3) (2014), \#P3.22.
[14] N. Morrison, J.A. Noel, A. Scott, Saturation in the hypercube and bootstrap percolation, Combin. Probab. Comput., 26(1) (2017), 78-98.
[15] A. Ruciński, A. Żak, Upper bounds on the minimum size of Hamilton saturated hypergraphs, Electron. J. Combin., 23(4) (2016), \#P4.12.
[16] E. Sullivan and P.S. Wenger, Saturation Numbers in Tripartite Graphs, J. Graph. Theory, 84 (2017), 428-442.
[17] Zs. Tuza, C_{4}-saturated graphs of minimum size, (English). Acta Universitatis Carolinae. Mathematica et Physica 30 (1989), 161-167.
[18] W. Wessel, Über eine Klasse paarer Graphen, I: Beweis einer Vermutung von Erdős, Hajnal und Moon, Wiss. Z. Tech. Hochsch. Ilmenau, 12 (1966), 253-256.
[19] W. Wessel, Über eine Klasse paarer Graphen, II. Bestimmung der Minimalgraphen, Wiss. Z. Techn. Hochsch. Ilmenau, 13 (1967), 423-426.

[^0]: *This work is partially supported by the National Natural Science Foundation of China (Grant 11771247 \& 11971158) and Tsinghua University Initiative Scientific Research Program.

