
ar
X

iv
:1

91
2.

03
75

4v
4 

 [
m

at
h.

C
O

] 
 1

3 
N

ov
 2

02
1

Cycles in Color-Critical Graphs

Benjamin R. Moore∗, Douglas B. West†

Revised November, 2021

Abstract

Tuza [1992] proved that a graph with no cycles of length congruent to 1 modulo k

is k-colorable. We prove that if a graph G has an edge e such that G− e is k-colorable
and G is not, then for 2 ≤ r ≤ k, the edge e lies in at least

∏r−1
i=1 (k− i) cycles of length

1mod r in G, and G− e contains at least 1
2

∏r−1
i=1 (k − i) cycles of length 0mod r.

A (k, d)-coloring of G is a homomorphism from G to the graph Kk:d with vertex set
Zk defined by making i and j adjacent if d ≤ j− i ≤ k−d. When k and d are relatively
prime, define s by sd ≡ 1mod k. A result of Zhu [2002] implies that G is (k, d)-colorable
when G has no cycle C with length congruent to is modulo k for any i ∈ {1, . . . , 2d−1}.
In fact, only d classes need be excluded: we prove that if G− e is (k, d)-colorable and
G is not, then e lies in at least one cycle with length congruent to ismod k for some i

in {1, . . . , d}. Furthermore, if this does not occur with i ∈ {1, . . . , d− 1}, then e lies in
at least two cycles with length 1mod k and G− e contains a cycle of length 0mod k.

1 Introduction

One of the most fundamental results in graph theory is that graphs without odd cycles are

2-colorable. This has been generalized in many ways. Stong [12] proved that a graph is

k-colorable if every vertex lies in fewer than
(

k
2

)

odd cycles. Erdős and Hajnal [5] proved

that a graph having no odd cycle of length more than 2j−1 is 2j-colorable. Tuza [14] proved

that a graph having no cycle with length congruent to 1 modulo k is k-colorable. Tuza also

strengthened Minty’s Theorem [9] that a graph G is k-colorable if it has an orientation in

which no cycle of G has more than k − 1 times as many forward edges as backward edges;

Tuza showed that only cycles of length 1mod k need be considered in that computation.

More recent work has provided guarantees not only for existence of cycles with certain

lengths, but also lower bounds on the number of such cycles. A graph is (k + 1)-critical

if it is not k-colorable but every proper subgraph is k-colorable. It is doubly critical if
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deleting the endpoints of any edge reduces the chromatic number by 2. In studying a weaker

form of the Erdős–Lovász Tihany Conjecture that all doubly critical graphs are complete,

Kawarabayashi, Pedersen, and Toft [8] showed that in a doubly critical graph with chromatic

number k + 1, every edge lies in
∏l−2

i=1(k − i) cycles of length l. They used the technique of

generalized Kempe chains, introduced as early as Neumann-Lara [10] and named in Toft [13].

Such a chain is a path following a particular list of colors.

Without the doubly-critical requirement, in this paper we obtain cycles in congruence

classes rather than with specified lengths. We illustrate the generalized Kempe chain tech-

nique by first strengthening Tuza’s basic result, showing that for 2 ≤ r ≤ k every edge in a

(k + 1)-critical graph lies in at least
∏r−1

i=1 (k − i) cycles of length congruent to 1 modulo r.

The statement is more general.

Theorem 1. For 2 ≤ r ≤ k and e ∈ E(G), if G− e is k-colorable and G is not, then e lies

in at least
∏r−1

i=1 (k − i) cycles of length congruent to 1 modulo r.

Thus every graph with fewer than (k − 1)! cycles of length congruent to 1 modulo k is

k-colorable.

We also apply our technique to the more general problem ofH-coloring. A homomorphism

from a graph G to a graph H is a map φ : V (G) → V (H) such that uv ∈ E(G) implies

φ(u)φ(v) ∈ E(H). A homomorphism intoH is also called anH-coloring. A proper k-coloring

is simply a Kk-coloring, where Kk is the complete graph with k vertices. The H-coloring

problem becomes more complicated when H is not complete because there are more ways

for a coloring to violate an edge. An ordinary proper coloring requires colors on adjacent

vertices to be distinct, but this is no longer enough.

The circular clique Kk:d has vertex set Zk and edge set {ij : d ≤ j − i ≤ k − d}. The

complete graph Kk is simply the circular clique Kk:1. Homomorphism into Kk:d is called

(k, d)-coloring, and a graph having a (k, d)-coloring is (k, d)-colorable. When G has an edge,

(k, d)-coloring requires k ≥ 2d. The circular chromatic number χc of a graph G is the least

k/d such that G is (k, d)-colorable. In particular, if k′/d′ ≤ k/d, then Kk′:d′ is Kk:d-colorable.

See Zhu [15, 17] for surveys on this topic.

Zhu [16] extended Tuza’s result to circular coloring. Given an orientation of a graph G,

and given a cycle C in G viewed in a consistent direction, let C− denote the set of edges

in C oriented oppositely to their orientation of G. Zhu proved that if G has an orientation

such that |E(C)| /|C−| ≤ k/d for every cycle C (in each direction) such that d |E(C)| is
congruent modulo k to some value in {1, . . . , 2d− 1}, then G is (k, d)-colorable.

When d and k are relatively prime, let s be the congruence class such that sd ≡ 1mod k.

It follows from Zhu’s result that if G has no cycle with length congruent to is modulo k for

any i with 1 ≤ i ≤ 2d− 1, then G is (k, d)-colorable. That is, (k, d)-colorability holds when

2d − 1 congruence classes of cycle lengths modulo k are forbidden. Our result implies that
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it suffices to exclude i ∈ {1, . . . , d}. In particular, if G − e is Kk:d-colorable and G is not,

then e lies in a cycle with length congruent to ismod k for some i in {1, . . . , d}. Note that

ds ≡ 1mod k. We further show that if G has no cycle through e with length ismod k when

i ∈ {1, . . . , d− 1}, then e lies in at least two cycles with length 1mod k and G− e contains

a cycle of length 0mod k. (Note that (k, d)-coloring forbids loops.)

The special case of K(2d+1):d-coloring shows that our result is sharp. Here −2d ≡
1mod (2d+1), so s = −2, and we seek a cycle length congruent to−2i for some i ∈ {1, . . . , k}.
These lengths are the odd values from 2d− 1 to 1. The graph K(2d+1):d is isomorphic to the

odd cycle C2d+1. Thus χc(G) ≤ 2+1/d for a C2d+1-colorable graph G. All shorter odd cycles

are critical non-C2d+1-colorable graphs (we can also view a single vertex with a loop as a

degenerate such example). This means that although possibly only one cycle length among

the listed classes of lengths occurs, we cannot omit any of those classes from the list.

Returning to the topic of proper k-coloring, there are further questions to ask. An edge

in the complete graph Kk+1 lies in exactly (k − 1)! cycles of length 1mod k. When r is at

most k/2, the guarantee of
∏r−1

i=1 (k−i) cycles of length 1mod r is not sharp in Kk+1, because

cycles of length r + 1 and cycles of length 2r + 1 both count.

Question 1. Can the guarantee of
∏r−1

i=1 (k − i) cycles of length 1mod r through each edge

be sharp for non-complete (k + 1)-critical graphs when k/2 < r < k?

We can also consider other congruence classes. In fact, Kk+1 has cycles in all congruence

classes modulo r for 2 ≤ r ≤ k except for the class of 2 modulo k. In a paper on cycle lengths

in directed graphs, Chen, Ma, and Zang [2] proved that for integers l and k with 1 ≤ l ≤ k

and k ≥ 2, a graph containing no cycle of length congruent to l modulo k is k-colorable if

l 6= 2, and is (k + 1)-colorable if l = 2. This proved a strong form of a conjecture of Diwan,

Kenkre, and Vishwanathan [4] and answered a question asked by Tuza [14].

A recent paper of Gao, Huo, Lui, and Ma [6] resolves almost all the existence questions in

a very strong way. Stated in our language, they proved that a non-k-colorable graph contains

k−1 cycles of consecutive lengths. This covers all but one congruence class modulo k and all

congruence classes for smaller moduli. Non-k-colorable graphs have (k+1)-critical subgraphs,

which have minimum degree at least k; they proved also that 3-connected nonbipartite graphs

with minimum degree at least k have cycles with k − 1 consecutive lengths. Also, minimum

degree at least k guarantees cycles of all even lengths modulo k− 1, extending to all lengths

modulo k − 1 in the 2-connected nonbipartite case. Finally, for k ≥ 3 every k-connected

graph has a cycle whose length is a multiple of k. These results were variously conjectured

by Sudakov and Verstraëte, by Bondy and Vince, by Thomassen, and by Dean. In [6] they

are proved by a unified approach, but the argument is quite long.

A subsequent paper by Gao, Huo, and Ma [7] resolved the remaining question about

2mod k, proving that when k ≥ 6 every non-k-colorable graph not having Kk+1 as a block
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contains k cycles of consecutive lengths. Hence it has cycles in all congruence classes with

modulus at most k. The case 2mod k when k = 3 follows from a combination of results of

Saito [11] and Dean, Kaneko, Ota, and Toft [3]. For k ∈ {4, 5}, the authors of [7] state that

their method works but yields a proof that was too long to include. Their result culminates

a long series of conjectures and theorems on cycle lengths in color-critical graphs by many

researchers; see [7] for the history and further references.

One may also wonder whether the cycle length guarantees follow from weaker hypothe-

ses. Since (k + 1)-critical graphs are k-edge-connected, one may wonder whether being

k-chromatic and critically k-edge-connected is enough. Already this fails when r = k and we

ask for just one cycle. The Petersen graph is 3-colorable (but not 3-critical) and is critically

3-edge-connected. However, it has no 4-cycle, no 7-cycle, and no 10-cycle, so it has no cycle

of length congruent to 1 modulo 3.

2 Proper Coloring

We consider the cycles forced when deletion of an edge reduces the chromatic number.

Theorem 2. Fix r, k ∈ N with 2 ≤ r ≤ k, and let e be an edge in a graph G. If G − e is

k-colorable and G is not, then e belongs to at least
∏r−1

i=1 (k − i) cycles in G having lengths

congruent to 1 modulo r.

Proof. Let [k] = {1, . . . , k}. Fix a proper k-coloring φ of G− e with colors in [k]. Let x and

y be the endpoints of e. We obtain a cycle through e for each cyclic list of r members of [k]

containing φ(x). Starting with φ(x), the cyclic list σ can be formed in
∏r−1

i=1 (k − i) ways.

Given such σ, define the σ-subdigraph of G generated by φ to be the digraph Dσ with

vertex set V (G) such that uv is an edge in Dσ if and only if uv ∈ E(G) and σ(φ(u)) = φ(v).

Let F be the subdigraph of Dσ induced by all vertices reachable from x by paths in Dσ.

Define a recoloring φ′ of G − e by φ′(u) = σ(φ(u)) for u ∈ V (F ) and φ′(u) = φ(u) for

u ∈ V (G) − V (F ). An edge is improperly colored by φ′ only if the color of one endpoint

remains fixed and the other changes into it, but then the oriented version of the edge lies in

F and both endpoints change color. Thus φ′ is a proper k-coloring of G− e.

Since G is not k-colorable, φ(x) = φ(y). Also φ′(x) 6= φ(x). If y /∈ V (F ), then we have

φ′(x) 6= φ(x) = φ(y) = φ′(y), and φ′ is a proper coloring of G, which by hypothesis does not

exist. Hence y ∈ V (F ), meaning that y is reachable from x via a path in F .

Since paths in F follow colors according to σ, and φ(y) = φ(x), the length of any x, y-

path in F is a multiple of r, and the cycle in G completed by adding the edge yx has length

congruent to 1 modulo r. Furthermore, since the coloring φ is fixed, the resulting x, y-paths

in G are distinct for distinct choices of σ. Hence we obtain
∏r−1

i=1 (k− i) cycles through e.
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Our result was motivated by a similar quantitative argument by Brewster, McGuinness,

Moore, and Noel [1]. We state it in our terminology to generalize it. For k > 2, they showed

that if G is not k-colorable but G−xy is k-colorable, then G−xy contains at least (k−1)!/2

cycles with lengths divisible by k. The early paper of Tuza [14] notes that Toft and Tuza

had observed for k > 2 that every non-k-colorable graph contains a cycle whose length is

divisible by k.

Theorem 3. For 3 ≤ r ≤ k, if a graph G is not k-colorable but G− e is k-colorable, where

e ∈ E(G), then G− e contains at least 1
2

∏r−1
i=1 (k− i) cycles whose lengths are divisible by r,

none of which contain e.

Proof. Let x and y be the endpoints of e. Again fix a proper k-coloring φ of G − e and a

cyclic permutation σ of a set of r colors containing φ(x). Define the digraph Dσ as above.

Note again that φ(x) = φ(y), since G is not k-colorable.

If Dσ is acyclic, then we recolor G by again changing the color on v from φ(v) to σ(φ(v)),

but this time we perform the change one vertex at a time, always changing the color at a

sink of the unchanged subgraph. At each step we have a proper k-coloring of G − e. If at

some point the color on x or y changes, then we have produced a proper k-coloring of G.

Since G has no such coloring, Dσ must contain a cycle. Since φ(x) = φ(y), the edge e does

not appear in Dσ, so such cycles do not contain e.

The length of any cycle in Dσ is a multiple of r. However, a cyclic permutation and

its reverse will select the same cycle in G, because the corresponding digraphs are obtained

from each other by reversing all the edges. Hence we are in fact guaranteed 1
2

∏r−1
i=1 (k − i)

cycles whose lengths are multiples of r, and none of these cycles contain e.

We have guaranteed (k− 1)! cycles of length 1mod k in a (k+1)-critical graph. We next

present a probabilistic argument that guarantees k!/2, suggested by a referee. Although

k!/2 > (k−1)! when k ≥ 3, this argument does not yield k!/2 such cycles through every edge

in a (k + 1)-critical graph, so neither result implies the other.

Theorem 4. For k ≥ 3, a non-k-colorable graph has at least k!/2 cycles with lengths con-

gruent to 1 modulo k, with equality for k ≥ 4 only when these cycles all have length k + 1.

Proof. Randomly order the vertices and orient each edge toward its later endpoint in the

order. We will bound the probability that a given cycle of length 1mod k (or its reverse)

has more than k − 1 times as many forward edges as backward edges. If this probability is

at most 2/k! and there are fewer than k!/2 such cycles, then some orientation has no cycle

of length 1mod k with more than k− 1 times as many forward edges as backward edges. By

Tuza’s strengthening of Minty’s Theorem, a graph with such an orientation is k-colorable.

Let C be a cycle of length qk + 1. Having more than k − 1 times as many forward edges

as backward edges means that if following the vertices along C involves at most q backward
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steps and more than (k − 1)q forward steps in the ordering. Since the vertices outside the

cycle are irrelevant, it suffices to show that at most (qk+1)!/k! of the (qk+1)! orderings of

v1, . . . , vqk+1 have at most q instances of vi preceding vi−1.

From one backward step to the next is an increasing run. Hence to form an ordering

with at most q backward steps we assign the positions of vertices to bins 1 through q and

place the positions within a bin in increasing order. This produces a list σ1, . . . , σqk+1 of the

positions 1 through qk + 1.

Now form the vertex permutation by putting vertex vi in position σi. Vertices whose

positions are in a single bin form a forward path in the orientation, and backward steps only

occur when starting a new bin. Furthermore, every ordering of the vertices for which the

resulting orientation has at most q backward steps arises in this way. When the least position

in the next bin is higher than the last position in the current bin, there are fewer backward

steps, so we have included the vertex orderings where the cycle has fewer backward steps.

Since we can start indexing the given cycle at any of its qk+1 vertices, a given distribution

of positions to q bins produces bad orientations for the cycle in qk+1 ways. The probability

that this cycle has too few back edges in the random vertex ordering is thus bounded by

qqk+1/(qk)!. We multiply by 2 since the same cycle also arises in the opposite direction.

It thus suffices to show
qqk+1

(qk)!
≤ 1

k!
. (1)

Equality holds when q = 1. Strict inequality for other cases yields the additional observation

that if a non-k-colorable graph has only k!/2 cycles of length congruent to 1 modulo k, then

those cycles all must have length exactly k+1. There are k!/2 cycles of length k+1 in Kk+1,

so the result is sharp.

The inequality (1) fails when (q, k) = (2, 3), where the value of qqk+1/(qk)! is 8/45, which

exceeds 1/6, but this is small enough. The probability that a given 7-cycle followed in order

has too few back edges is bounded by 8/45, and for cycles of other lengths congruent to

1mod 3 the probability of having too few back edges will be bounded by 1/6. Since we can

follow a cycle in either direction, we change these bounds to 16/45 and 1/3. Therefore, if a

graph has only two cycles of length 1mod 3, the expected number of bad cycles is bounded

by 32/45, so some vertex ordering guarantees 3-colorability.

It thus suffices to have (1) when k ≥ 4 and q ≥ 2 (except (q, k) = (2, 3)). We give an

approximate computation that is easy to make precise. Stirling’s Approximation is

n! =
(n

e

)n √
2πn

[

1 +
1

12n
+

1

288n2
− 139

51840n3
− O(n−4)

]

.

We keep only the first term, which provides a lower bound on n!
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Rewriting the desired inequality, we seek qqk+1 ≤ (qk)!/k!. By Stirling’s Approximation,

(qk)!

k!
≈ (qk/e)qk

(k/e)k

√
2πqk√
2πk

= qqk+1/2

(

k

e

)(q−1)k

.

Thus the inequality we need is (roughly)
√
q < (k/e)(q−1)k. The right side increases rapidly

with k. When k = 3, it equals 1.1043(q−1). Already when q = 3 this is greater than
√
q,

and similarly the inequality holds for (q, k) = (2, 4). To make the approximate argument

precise, note that in the numerator our approximation to (qk)! is already less than (qk)!.

We have the slack to use something slightly larger than k! in the denominator, which yields

qqk+1 < x < (qk)!/k! for some x.

We believe that the characterization of equality also holds when k = 3, but there the

argument above only restricts to lengths 4 and 7.

3 Circular Coloring

In this section we consider the analogous problem for (k, d)-coloring. We will only use color

cycles of the form (0, d, 2d, . . . ,−d) and their reverse, so we get existence results rather than

quantitative results. Nevertheless, they are sharp in terms of the number of classes allowed,

as discussed in the introduction.

The proof may require many steps of recoloring to find a desired cycle. This is inherently

necessary, because a C2d+1-coloring of C2d−1 − e may alternate 0 and d along the path.

Theorem 5. Given k and d relatively prime with k > 2d, let s be the element of Zk such

that sd ≡ 1mod k. For an edge e in a graph G, if G− e is Kk:d-colorable and G is not, then

e lies in a cycle in G of length congruent to ismod k for some i in {1, . . . , d}.

Proof. Fix a Kk:d-coloring φ of G−e. Let x and y be the endpoints of e. By cyclic symmetry,

we may assume φ(y) = 0. Since G is not Kk:d-colorable, φ(x) ∈ {0,±1, . . . ,±(d− 1)}. Let σ
be the cyclic permutation (0, d, 2d, . . . ,−d) of colors. Define the digraph Dσ as in Theorem 2,

and let F be the subdigraph of Dσ induced by all vertices reachable from x in Dσ.

Given φ, define φ′ on G− e by letting φ′(v) = φ(v)+1 for v ∈ V (F ) and φ′(v) = φ(v) for

v /∈ V (F ). We claim that φ′ is a Kk:d-coloring of G−e. First, edges within F or in G−V (F )

remain properly colored. When v ∈ V (F ), the exploration ofDσ extends along the edge vw if

φ(w)−φ(v) = d. Since φ(w)−φ(v) ∈ {d, d+1, . . . , k−d} for vw ∈ E(G−e), having v ∈ V (F )

and w /∈ V (F ) requires φ(w)−φ(v) ∈ {d+1, . . . , k−d}. Now φ′(w)−φ′(v) ∈ {d, . . . , k−d−1},
so such edges are also properly colored in φ′.

We will consider cases where φ(x) = j, for 0 ≤ j ≤ d − 1. For the case φ(x) = −j with

1 ≤ j ≤ d− 1, add j to the color at each vertex to obtain φ(x) = 0 and φ(y) = j, and then

interchange the roles of x and y and apply the argument below.
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When φ(x) = j and φ(y) = 0, we claim that G has a cycle through xy with length

congruent to is modulo k for some i in {1, . . . , d− j}. Note first that if F has an x, y-path

of length r, then rd ≡ −jmod k, since each edge increases the color value by d. Multiplying

by s yields r ≡ −jsmod k. Since sd ≡ 1, adding 1 to each side to compute the length of the

cycle yields r + 1 ≡ −js+ ds ≡ (d− j)smod k.

We now prove the claim by induction on d − j. First consider j = d − 1. If y /∈ V (F ),

then φ′ is a Kk:d-coloring of G, since φ′(x) = d and φ′(y) = 0. Hence y ∈ V (F ). Now by the

computation above we have a cycle through yx with length congruent to 1smod k.

Now suppose j < d − 1. If y ∈ V (F ), then the computation yields a cycle through yx

with length congruent to (d − j)smod k. Hence we may assume y /∈ V (F ). Now φ′ is a

Kk:d-coloring of G−xy with φ′(x) = j+1 and φ′(y) = 0. The induction hypothesis, applied

to φ′ with φ′(x) = j + 1, now implies that G has a cycle through xy with length congruent

to ismod k for some i in {1, . . . , d − j − 1}. Including d − j in the set thus covers all cases

to complete the induction step.

Note that the proof of Theorem 5 gives more detailed statements. In particular, if the

Kk:d-coloring of G− e gives distinct colors to the endpoints of e, then G has a cycle through

e of length ismod k for some i in {1, . . . , d− 1}. The next result shows that if no such cycle

occurs, then we can find an extra cycle through e of the remaining congruence class, plus

one avoiding e with length divisible by k.

Proposition 6. If in the setting of Theorem 5, e does not lie in a cycle with length congruent

to ismod k for some i in {1, . . . , d− 1}, then e lies in at least two cycles of length 1mod k

and G− e contains a cycle of length 0mod k.

Proof. With the possibilities i ∈ {1, . . . , d− 1} excluded in the argument of Theorem 5, the

remaining case is j = 0 and y ∈ V (F ). To reach y from x along steps of value +d, the

number of steps must be a multiple of k, since φ(x) = φ(y), and adding e completes a cycle.

Under σ−1, using the same (k, d)-coloring φ of G − e and starting again from x yields a

second cycle of length 1mod k through xy.

Furthermore, ifG−e has no cycle of length 0mod k, thenDσ is acyclic. Working backward

from sinks, we can add 1 to the color of each reached vertex, one vertex at a time, always

maintaining a (k, d)-coloring of G− e, until x or y changes color. This reduces the problem

to the case j > 0. Since in this case G has no cycle of length is with i ∈ {1, . . . , d − 1},
the previous arguments produce a (k, d)-coloring of G, which by hypothesis does not exist.

Therefore, in fact G− e also contains a cycle of length 0mod k.

In these arguments, we have not used cycles in Kk:d other than that generated by d or

−d. When k = 2d+1, these two are the only permutations yielding cycles in the host graph,

and that is why our sharpness examples in the introduction are for C2d+1-coloring. In that

case s = −2. The set of cycle lengths that cannot be avoided are the congruence classes
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−2imod (2d + 1) for 1 ≤ i ≤ d, and if there are no cycles through e in the classes with

1 ≤ i ≤ d− 1, then we obtain two cycles with lengths 1mod (2d+ 1).

Other cycles in the host graph can yield other sets of forced cycles, but the key is designing

a recoloring that produces another H-coloring of G− e.
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