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Abstract

We introduce a coloured generalization NSymA of the Hopf algebra of non-
commutative symmetric functions described as a subalgebra of the of rooted ordered
coloured trees Hopf algebra. Its natural basis can be identified with the set of
sentences over alphabet A (the set of colours). We present also its graded dual
algebra QSymA of coloured quasi-symmetric functions together with its realization
in terms of power series in partially commutative variables. We provide formulas
expressing multiplication, comultiplication and the antipode for these Hopf algebras
in various bases — the corresponding generalizations of the complete homogeneous,
elementary, ribbon Schur and power sum bases of NSym, and the monomial and
fundamental bases of QSym. We study also certain distinguished series of trees in
the setting of restricted duals to Hopf algebras.

Mathematics Subject Classifications: 05E05, 16T30, 05C25, 06A07, 68R15

1 Introduction

Theory of Hopf algebras forms a modern basis for understanding symmetries of solvable
models in quantum and statistical theoretical physics [55, 45, 12]. Application of Hopf
algebras [1, 74] to combinatorics can be traced back to Rota [43]; see also [70, 34]
for more recent reviews of the subject, which has expanded since then. Combinatorial
aspects of the Bethe ansatz and of the quantum inverse scattering method [47] were
studied, for example, in works by Fomin, Kirillov and Reshetikhin [31, 44]. For more
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about mutual interactions between the theory of integrable systems and combinatorics,
see recent reviews [14, 36, 16, 78].

Hopf algebras of rooted trees appeared in the analysis of Runge–Kutta methods by
Butcher [10] and Dür [24], and in works by Grossman and Larson [35] in the context of
symbolic computation. More recently they have been used by Connes and Kreimer [13]
to describe renormalization procedure of quantum field theory; see also [8, 9]. The non-
commutative Hopf algebra of trees and forests, generalizing that of Connes and Kreimer,
was considered by Foissy [29], and independently by Holtkamp [40].

The theory of symmetric functions [72, 52] is by now a well established subject with
numerous applications in algebraic topology, combinatorics, representation theory, inte-
grable systems and geometry. Quasi-symmetric functions, introduced by Gessel [33] (see
also an earlier relevant work of Stanley [71]), are extensions of symmetric functions that
are becoming of comparable importance [51, 3, 58]. As a graded Hopf algebra, the dual of
the algebra of quasi-symmetric functions is the Hopf algebra of non-commutative symmet-
ric functions introduced by Gelfand, Krob, Lascoux, Leclerc, Retakh and Thibon [32]. In
the works of Zhao [77] and Hoffman [39] an isomorphism has been established between the
Hopf algebra of non-commutative symmetric functions and certain subalgebra of rooted
ordered trees; see also [25] for application of such trees (called ladders) to study integrable
aspect of the renormalization.

Our work arose from the search for generalization of the relationship between theory of
symmetric functions, combinatorics and the integrable systems on the non-commutative
level. The standard description of the Kadomtsev–Petviashvili (KP) hierarchy of in-
tegrable partial differential equations in terms of free fermions by the Kyoto School [62]
already involves a large part of the theory of symmetric functions [69]; see also a generaliza-
tion [17] in direction of quasi-symmetric functions. For example, the Schur functions when
expressed in suitably scaled power sum functions (times of the KP hierarchy) provide poly-
nomial τ -function solutions of the equations. Non-commutative extensions of integrable
systems are of growing interest in mathematical physics [49, 7, 63, 28, 15, 46, 18, 20, 22, 21].

In this paper we define and study properties of a coloured version of the Hopf algebra
of non-commutative symmetric function and of its graded dual. The idea to consider
coloured versions of various algebras is not new, see for example [2, 41, 42, 57, 65, 64, 66],
where some generalizations of the Hopf algebras of non-commutative symmetric functions
or quasi-symmetric functions have been discussed as well. The generalization presented in
our work is to our best knowledge new, and in particular it extends some of the previous
concepts, see the last remark of Section 3.1.

Let us present the structure of the paper, where we give our generalization of the ba-
sic structural elements of the theory of quasi-symmetric and non-commutative symmetric
functions showing similarities and differences with the original theory. In introductory
Section 2 we recall necessary elements of the theory of graded Hopf algebras. As ba-
sic examples we take the free Hopf algebra over finite alphabet, the Hopf algebra of
quasi-symmetric functions, and their duals — the shuffle algebra and the algebra of non-
commutative symmetric functions. We also pay special attention to the Hopf algebra of
rooted ordered coloured trees, closely related to the algebraic renormalization procedure
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of the quantum field theory.
Then in Section 3, we study the Hopf algebra of sentences (coloured compositions or

tall trees), the partial order in the set of sentences, and we briefly provide an interpre-
tation of the sentences as words of certain basic context-free language. Then we slightly
change our point of view by presenting the sentences over an alphabet A as the analog of
the complete homogeneous basis in our coloured non-commutative generalization NSymA

of the Hopf algebra of symmetric functions. Then we introduce the corresponding analog
of the basis of elementary functions and discuss coloured version of the standard formu-
las describing mutual interrelation between the complete homogeneous and elementary
functions.

We devote Section 4 to a description of the Hopf algebra QSymA of coloured quasi-
symmetric functions as graded dual of NSymA. We first define the basis of coloured
monomial quasi-symmetric functions in the standard way as the dual basis to the coloured
complete homogeneous functions. Then we construct its ‘polynomial’ realization in terms
of certain power series of bounded degree in partially commuting variables. Such a par-
tial commutativity is completely new ingredient of our generalization of the theory of
quasi-symmetric functions. We remark that partially commutative variables have been
introduced to study combinatorial problems by Cartier and Foata in [11]. They have
also found applications in algebra, theory of orthogonal polynomials, statistical physics
and computer science; see review by Viennot [76] written in terms of heaps of pieces. In
theoretical computer science, as proposed by Mazurkiewicz [59], they describe concur-
rent computations. We would like to stress that both algebras NSymA and QSymA are
non-commutative and non-cocommutative for |A| > 1.

Sections 5 and 6 are devoted to a presentation of the coloured generalization of other
rudimentary elements of the theory of symmetric functions. We define and study the
fundamental basis of QSymA and its dual basis in NSymA of coloured non-commutative
ribbon Schur functions. Finally we construct the coloured non-commutative version of
the power sum symmetric functions. In Section 6 we also extend the algebra of trees to its
infinite series version working within the setting of the restricted dual Hopf algebras. This
point of view is useful in studying the coloured non-commutative power sum functions,
but certainly deserves deeper studies in the context of applications of combinatorial Hopf
algebras to integrable systems and theoretical physics.

2 Hopf algebras of trees and quasi-symmetric functions

We assume that the Reader is familiar with the basic definitions and properties of Hopf
algebras, as covered in [1] or [74]. All the results presented in this Section are known, but
we recall them to provide necessary terminology and background to formulate new ones
in the next Sections. In the paper all algebras are over a fixed field k of characteristic
zero, although sometimes a commutative ring may be enough.
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2.1 Hopf algebras

By (H, µ, η,∆, ε) denote a bialgebra which is:

1. an associative algebra (H, µ, η) consisting of k-linear multiplication µ : H⊗H → H
and k-linear unit map η : k→ H satisfying properties described by the diagrams:

H⊗H⊗H id⊗µ−−−→ H⊗H

µ⊗id

y yµ
H⊗H µ−−−→ H

H⊗ k H k⊗H

id⊗η
y id

y yη⊗id

H⊗H µ−−−→ H µ←−−− H⊗H

(2.1)

2. a co-associative coalgebra (H,∆, ε) consisting of k-linear comultiplication ∆: H →
H ⊗ H and k-linear counit map ε : H → k satisfying properties described by the
diagrams:

H ∆−−−→ H⊗H

∆

y y∆⊗id

H⊗H id⊗∆−−−→ H⊗H⊗H

H⊗H ∆←−−− H ∆−−−→ H⊗H

id⊗ε
y id

y yε⊗id

H⊗ k H k⊗H

(2.2)

3. such that ∆: H → H⊗H and ε : H → k are unital algebra morphisms.

An element x/y of a bialgebra is called primitive/group-like if

∆(x) = 1⊗ x+ x⊗ 1 / ∆(y) = y ⊗ y.

Bialgebra H is graded if it is graded as k-module H =
⊕

n>0H(n) with the structure maps
respecting the gradation

H(n) ⊗H(m) µ−→ H(n+m), H(n) ∆−→
⊕

n′+n′′=n

H(n′) ⊗H(n′′). (2.3)

A graded bialgebra is connected if H(0) ∼= k.
The space of k-linear operators End(H) can be equipped with the convolution product

? : End(H)⊗ End(H)→ End(H) defined for f, g ∈ End(A) as follows

f ? g = µ ◦ (f ⊗ g) ◦∆. (2.4)

Such a product is associative with neutral element η ◦ ε. A bialgebra H is called a Hopf
algebra if there is an element S ∈ Endk(H), called antipode, which is two-sided inverse
under ? for the identity map idH, which means

idH ? S = S ? idH = η ◦ ε. (2.5)

When it exists, the antipode S is unique and is algebra anti-endomorphism: S(1) = 1, and
S(ab) = S(b)S(a) for all a, b ∈ H. It is known [60, 75] that any graded connected bialgebra
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is a Hopf algebra. In that case the antipode of any homogeneous element x ∈ H(n) of
degree n > 0 can be calculated recursively by

S(x) = −x−
∑
i

S(yi)zi = −x−
∑
i

yiS(zi), (2.6)

where
∆x = 1⊗ x+

∑
i

yi ⊗ zi + x⊗ 1, (2.7)

and yi, zi have degrees less then n.

Example 1. Let A = {a1, . . . , am} be a finite set, called an alphabet, whose elements will
be called letters. A finite sequence of letters is called a word. The set of all words on A is
denoted by A∗ (the Kleene closure operation ∗ used here shouldn’t be confused with the
duality sign) and turns out to be free monoid with the concatenation product (denoted by
dot ”.” but usually omitted). The empty sequence plays the role of the neutral element
of multiplication and will be denoted by 1. Consider free algebra k〈A〉 = (kA∗, . ), whose
linear basis consists of words, and the multiplication is given by concatenation of words,
extended by linearity.

The unique compatible comultiplication and counit in k〈A〉 is given on letters ai ∈ A
by

∆(ai) = 1⊗ ai + ai ⊗ 1, ε(ai) = 0, ∀ai ∈ A, (2.8)

and extended by homomorphism to words and by linearity to the whole algebra. Given
word w = ai1 . . . ain we have then

∆(ai1 . . . ain) =
∑

J⊂(i1,i2,...,in)

wJ ⊗ wJ̄ , (2.9)

where the multiindex J = (j1, j2, . . . , jk) is a subsequence of (i1, i2, . . . , in), which defines
the corresponding word wJ = (aj1aj2 . . . ajk), and wJ̄ is defined analogously for the com-
plementary subsequence J̄ . The algebra is cocommutative, graded with gradation being
the length of words |ai1 . . . ain| = n, locally finite and connected. The antipode on words
reads S(ai1 . . . ain) = (−1)nain . . . ai1 .

Two Hopf k-algebras A, B are dually paired by a map 〈 , 〉 : B ⊗A → k if

〈µB(b1, b2), a〉 = 〈b1 ⊗B b2,∆A(a)〉, 〈1B, a〉 = εA(a), (2.10)

〈∆B(b), a1 ⊗A a2〉 = 〈b,µA(a1, a2)〉, εB(b) = 〈b, 1A〉 (2.11)

〈SB(b), a〉 =〈b, SA(a)〉 (2.12)

which is then extended to tensor products pairwise. This means that the product of A
and coproduct of B are adjoint to each other under 〈 , 〉, and vice-versa. Likewise, the
units and counits are mutually adjoint, and the antipodes are adjoint. In such case any
subalgebra of A gives rise to the corresponding quotient algebra in B.
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When the Hopf algebra H is finite dimensional then the natural pairing between the
k-module H and its dual H∗ allows to introduce on the latter the dual Hopf algebra
structure. When H is infinite dimensional then there is no such general construction,
which is caused by the fact that the inclusion H∗⊗H∗ ⊂ (H⊗H)∗ fails to be equality. For
connected graded Hopf algebra H =

⊕
n>0H(n) which is locally finite (each homogeneous

component H(n) is finite dimensional), one can define its graded dual as Hgr =
⊕

n>0H(n)∗

which has the property that Hgr ⊗Hgr = (H ⊗H)gr and (Hgr)gr ∼= H. Then Hgr ⊂ H∗
is a Hopf algebra where the evaluation map Hgr⊗H → k provides a duality pairing of H
with Hgr.

Remark 2. In Section 6 we will consider also another construction of a dual Hopf algebra,
called the restricted (or Sweedler’s) dual [1, 74].

Example 3. The graded dual to the Hopf free algebra k〈A〉 is described as follows. By
standard abuse of notation one identifies a fixed linear basis of a finite dimensional space
with its dual. The dual (deconcatenation) coproduct δ is given on words by

δ(ai1 . . . ain) =
n∑
k=0

ai1 . . . aik ⊗ aik+1
. . . ain . (2.13)

The corresponding product (called shuffle product) dual to the coproduct ∆ is given
by

ai1 . . . aik aj1 . . . ajl =
∑

I=(k1,k2,...,kn)

ak1ak2 . . . akn , (2.14)

where summation is over all sequences I = (k1, k2, . . . , kn) such that (i1, i2, . . . , ik) ⊂ I is
its subsequence, and (j1, j2, . . . , jl) is the complementary subsequence. The unit, counit
and antipode in the graded dual are the same as in the previous example.

Remark 4. It is known [50] that the shuffle product of words can be defined recursively
for all words u, v and all letters a, b by

u 1 = 1 u = u, ua vb = (ua v)b+ (u vb)a.

Remark 5. To distinguish between the free Hopf algebra and its graded dual, we denote
them by (kA∗, . ,∆) and (kA∗, , δ) respectively, skipping the unit and counit symbols.

2.2 Hopf algebra structures on rooted ordered coloured trees

Below we present (slightly reformulated — see the first Remark after Proposition 6) results
by Foissy [29] relevant to our paper.

A rooted ordered tree (called also rooted plane tree) is a finite rooted tree t such
that for each vertex v of t, the children of v are totally ordered (from left to right on
our pictures). Together with the depth partial order (defined by the distance from the
root) this induces linear order on the vertex set V (t) of the tree obtained from left-to-
right depth-first search; see Figure 1. By the trivial rooted tree we understand the tree
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�
A
A
A
A

�
�

A
A

t1

t4
t3 t6t2

t5

Figure 1: A rooted ordered tree with induced natural linear order on the vertex set

consisting of the root only. A planted rooted tree is a non-trivial rooted tree such that its
root has only one child.

A rooted ordered coloured (ROC) tree is a rooted ordered tree t together with a
function from a set E(t) of its edges to the set A of colours, we assume |A| <∞. By kTA
denote the linear space of finite formal combinations of A-coloured rooted ordered trees
with coefficients in the field k. The space kTA is graded

kTA = ⊕k>0kT (k)
A , T

(k)
A = {t : |t| = k}, (2.15)

with the weight |t| of a ROC-tree t being the number of its edges.
By the well known connection [72] between rooted ordered trees and Catalan numbers

Ck, dimension of each graded component kT (k)
A equals

dimkT (k)
A = |A|kCk =

|A|k

k + 1

(
2k
k

)
. (2.16)

Define the product “·” on kTA as the concatenation of trees by identification of their
roots; see Figure 2 for an example. The product respects the gradation, is associative

b
�
�b

A
Aa

tt
tt
. A
Ab
�
�ctt t

= @
@
�
�

b b
A
A ba

�
�cttt tt t

Figure 2: Multiplication of two coloured ordered rooted trees

with the trivial tree tbeing the neutral element (i.e. the unit map η : k→ kTA is defined
by 1 7−→ t).

@
@
�
�

b b
A
A
A
A ba

�
�cttt tt t

pruning−−−−→ �
�b
A
Aa t tt

⊗ A
Ab

b

�
�cttt t

Figure 3: Pruning of a ROC-tree; pruned branches are thickened

In order to define compatible coproduct on kTA one has first to describe the operation
of pruning of a tree. A rooted subtree ts of a ROC-tree t is called admissible if it shares
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the root of t. Such an admissible subtree is again ROC-tree with the root, order and
colours inherited from t. The set of admissible subtrees of t (including the trivial tree
and t itself) will be denoted by A(t). Given such admissible subtree ts ⊂ t, the planted
trees being branches of t pruned to get ts, ordered according to the linear order on t give
the sequence (t1, . . . , tm). By concatenation of the sequence of pruned branches we obtain
the complementary tree tc = t1 · . . . · tm to the admissible subtree ts of t. Such a pruning
operation gives an element tc ⊗ ts; see Figure 3 for an example.

The coproduct of a tree is defined as sum of pairs tc⊗ ts for all admissible subtrees of
t; see Figure 4

∆(t) =
∑

ts∈A(t)

tc ⊗ ts, (2.17)

and then extended to kTA by linearity.

∆

 A
A
�
�b b

att t t
 =

A
A
�
�b b

att t t
⊗ t + b

attt ⊗ b
tt +

�
�b
A
Aa
t t t

⊗ b
tt + a

tt ⊗ A
A
�
�b b

t t t
+ b

tt ⊗ b

attt + t⊗
A
A
�
�b b

att t t

Figure 4: The pruning coproduct of a ROC-tree

Such coproduct is coassociative, respects the gradation, and is compatible with the
counit defined on trees as

ε(t) =

{
1 if t = t,
0 otherwise.

(2.18)

In this context it is convenient to define the operation B+
i of planting of a tree on a new

root by attaching it to the old one by additional edge coloured by i. In particular, planting
allows to define the coproduct recursively starting from ∆( t) = t ⊗ t, and using then
the formula

∆(B+
i (t)) = B+

i (t)⊗ t + (id⊗B+
i ) ◦∆(t), (2.19)

together with compatibility of the coproduct ∆ with the concatenation product. Equation
(2.19) has the following simple meaning: apart from the trivial subtree, all admissible
subtrees of a planted tree contain the lowest (i.e. incident to the root) edge.

Proposition 6. The concatenation multiplication and pruning coproduct with the corre-
sponding unit and counit maps equip kTA with the structure of graded locally finite and
connected bialgebra (thus Hopf algebra).

Remark 7. The above result was given by Foissy [29] in the equivalent setting of the rooted
ordered vertex-coloured (or decorated) forests. Any ROC tree is uniquely mapped, by
deletion of the root, to an ordered forest colouring first its vertices using colours of adjacent
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edges below them; see the bijection map visualized on Figure 5. This notation resulted
as decorated and non-commutative version of the Connes–Kreimer Hopf algebra [13] used
to explain the renormalization procedure in the quantum field theory.

@
@
�
�

b b
A
A

c

b aa

�
�

c

tt tt t
tt t

←→ �
�

A
A t tt
b

b
b tt aa

t
t

c

c

Figure 5: Transition from the setting of ROC-trees to the setting of ROD-forests

Remark 8. In [29] one can find, among others, also the corresponding description of the
antipode, which can be transferred from the ROD-forests to ROC-trees.

Corollary 9. The subalgebra of kTA generated by one-edge planted trees ai = B+
i ( t) is a

Hopf subalgebra isomorphic to the free Hopf algebra described in Example 1.

We conclude this Section by presenting the graded dual of the Hopf algebra of ROC-
trees, which is again reformulation of the corresponding results of [29]. Because the

natural basis of the finite dimensional subspace kT (k)
A is provided by ROC-trees of weight

k it seems natural to represent the dual basis of (kT (k)
A )∗ by such trees again, i.e. the

functional φt ∈ (kT (k)
A )∗ defined on trees by

〈φt, t′〉 =

{
1 if t = t′,

0 otherwise
(2.20)

by standard abuse of notation is identified with t. The dual (deconcatenation) coproduct
δ = (.)∗ to the concatenation product acts on trees as

δ(t) =
∑

t′,t′′∈Tn

〈t, t′. t′′〉 t′ ⊗ t′′ =
∑
t′· t′′=t

t′ ⊗ t′′, (2.21)

i.e. when t = t1 . . . tm is planted trees decomposition, then

δ(t1 . . . tm) =
m∑
i=0

(t1 . . . ti)⊗ (ti+1 . . . tm), (2.22)

see Figure 6.

Corollary 10. Equation (2.21) implies the following matching condition between the
deconcatenation coproduct and the concatenation product

δ(s.t) = δ(s).( t⊗ t) + (s⊗ t).δ(t)− s⊗ t, s, t ∈ TA, (2.23)

where, by the standard abuse of notation, we extended the product sign from kTA to kTA⊗
kTA.
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δ

 A
A
�
�b b

att t t
 = t⊗

A
A
�
�b b

att t t
+

tttb
a

⊗
ttb+

A
A
�
�b b

att t t
⊗ t

Figure 6: The deconcatenation coproduct of a ROC-tree

The (asymmetric shuffle or grafting) product
T

= ∆∗, dual to the pruning coproduct
satisfies

∆(t) =
∑

t′,t′′∈TA

〈t, t′ T
t′′〉 t′ ⊗ t′′, (2.24)

and is defined with the help of the grafting procedure that follows from comparison of
equations (2.17) and (2.24). Given ROC-tree t′ = t1. . . . , tm decomposed into the planted
factors, its (non-unique) grafting on ROC-tree t′′ is defined as attaching roots of the
factors ti to vertices of t′′ in a way, which preserves the original ordering of the factors.
In other words, a grafting of t′ on t′′ gives a tree t̃ such that there exists a pruning with
t′′ = t̃s with the corresponding t′ = t̃c; see Figure 7 for an example.

�
�b

A
Aa t tt

T btt =
b
�
�b

@
@
@
@a ttt t

+ �
�b

b

A
A
A
Aa
t t
t t

+
b
�
�
�
�b

@
@
@

@a ttt t
+

�
�
�
�

b

b
A
A
A
Aa

tt
tt
+ A

A
�
�
�
�b b

att t t
+ @

@
�
�
�
�b battt t

Figure 7: The asymmetric shuffle (or grafting) product of two ROC-trees; grafted branches
are thickened

With the grafting product
T

, deconcatenation coproduct δ, the unit η = ε∗ and
counit ε = η∗ maps, the space spanned by ROC-trees is equipped with another bialgebra
(thus Hopf algebra) structure – the graded dual to the previous one.

Remark 11. It is remarkable fact, discovered by Foissy [29], that the duality described
above is self-duality. The situation is analogous to the well known self-duality of the Hopf
algebra of symmetric functions [72].

2.3 Hopf algebra of quasi-symmetric functions, and its graded dual

Let x = (x1, x2, x3, . . . ) denote infinite totally ordered set of commuting variables, and let
k[[x1, x2, x3, . . . ]] be the algebra of formal power series of bounded degree. Such a formal
series is called quasi-symmetric function if the coefficient of any term xn1

i1
xn2
i2
. . . xnk

ik
with

i1 < i2 < · · · < ik strictly increasing, agrees with that of xn1
1 x

n2
2 . . . xnk

k . The linear
space QSym of quasi-symmetric functions has as a basis the monomial quasi-symmetric
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functions indexed by compositions. Recall that a composition of m, written α |= m, is a
finite sequences of positive integers α = (α1, α2, . . . , αk) such that |α| = α1+α2+· · ·+αk =
m. In this case we say that α has k parts, or it is of length `(α) = k. The elements of the
basis are of the form

Mα =
∑

i1<i2<···<ik

xα1
i1
xα2
i2
. . . xαk

ik
, (2.25)

where the sum is over all k-tuples (i1, i2, . . . , ik) of strictly increasing; by definition M∅ = 1.
The algebra QSym is graded with each graded component QSym(m) spanned by those Mα

for which |α| = m. By the well known bijection [51] any such composition can be identified
with a subset

set(α) = {α1, α1 + α2, . . . , α1 + · · ·+ αk−1} (2.26)

of {1, 2, . . . ,m− 1}, therefore dim QSym(m) = 2m−1.
We can put a partial order on the set of all compositions of m by refinement. The

covering relations are of the form

(α1, . . . , αi, αi+1, . . . αk) ≺ (α1, . . . , αi + αi+1, . . . αk). (2.27)

This allows to define another important basis formed by the fundamental quasi-symmetric
functions, also indexed by compositions

Fα =
∑
β4α

Mβ. (2.28)

By inclusion-exclusion we can express the Mα in terms of the Fα

Mα =
∑
β4α

(−1)`(β)−`(α)Fβ. (2.29)

The product in QSym, inherited from the standard multiplication of power series,
can be described in the basis (Mα) in terms of the quasi-shuffle (or overlapping shuffle)
Q

of compositions: in addition to shuffling components αi and βj of two compositions
α = (α1, . . . , αk) and β = (β1, . . . , βl) we may replace any number of pairs of consecutive
components αi and βj in the shuffle by their sum αi + βj

MαMβ =
∑
γ

Mγ , (2.30)

where γ is a summand in quasi-shuffle of α and β.

Example 12. For M(1) = x1 + x2 + · · · and M(2) = x2
1 + x2

2 + · · · we have

(x1 +x2 + · · · )(x2
1 +x2

2 + · · · ) = (x1x
2
2 +x1x

2
3 + · · · ) + (x2

1x2 +x2
1x3 + · · · ) + (x3

1 +x3
2 + · · · ),

therefore we obtain

M(1)M(2) = M(1,2) +M(2,1) +M(3), or (1)
Q

(2) = (1, 2) + (2, 1) + (3) . (2.31)
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The coproduct δ in the algebra of quasi-symmetric functions can be defined using the
doubling variables trick. Here to the totally ordered set of variables x = (x1, x2, x3, . . . ) we
add its copy y = (y1, y2, y3, . . . ) placing elements of y after elements of x, and getting the
ordered sum of the sets of variables. To obtain the coproduct δ(f) of a quasi-symmetric
function f we expand the function over the doubled variables, decompose resulting ex-
pression into sum of products of functions of x and y getting this way

f 7→ f(x) 7→ f(x, y) =
∑
j

f ′j(x)f ′′j (y) 7→
∑
j

f ′j ⊗ f ′′j = δ(f). (2.32)

In the basis of monomial quasi-symmetric functions (Mα) the coproduct formula reads

δ(Mα) =
∑
β·γ=α

Mβ ⊗Mγ , (2.33)

where β · γ is concatenation of two compositions. As a result we obtain graded, locally
finite and connected bialgebra (thus Hopf algebra) which is commutative but not cocom-
mutative.

Example 13. Applying the procedure to M(2,1) = x2
1x2 + x2

1x3 + · · · we have

x2
1x2 + x2

1x3 + · · · 7→ x2
1x2 + x2

1x3 + · · ·+ x2
1y1 + x2

1y2 + · · ·+ y2
1y2 + y2

1y3 + · · · =
= M(2,1)(x) +M(2)(x)M(1)(y) +M(2,1)(y)

getting this way

δ(M(2,1)) = M(2,1) ⊗ 1 +M(2) ⊗M(1) + 1⊗M(2,1) . (2.34)

The graded dual to QSym is called the Hopf algebra of non-commutative symmetric
functions [32] and denoted by NSym. Let (Hα) be the dual basis to (Mβ)

〈Hα,Mβ〉 = δαβ, (2.35)

then by dualization of equations (2.30) and (2.33) we obtain the product and coproduct
formulas in NSym

HαHβ = Hα·β, ∆(Hα) =
∑
(β,γ)

Hβ ⊗Hγ , (2.36)

where α can be obtained as a summand in quasi-shuffle of β and γ. In particular, for a
composition α = (α1, . . . , αk) one has

Hα = Hα1 . . . Hαk
, (2.37)

where we wrote Hj = H(j) for a composition (j). The dual element to M∅ = 1 is
H∅ = H0 = 1. This leads to the conclusion that, as algebra, NSym is freely generated by
non-commuting elements H1, H2, . . .

NSym = k〈H1, H2, . . . 〉. (2.38)
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The coproduct formula for the generators follows from equations (2.36) and reads

∆(Hm) =
m∑
j=0

Hj ⊗Hm−j. (2.39)

Remark 14. It is known [39] that the Hopf algebra NSym is isomorphic to a Hopf subal-
gebra of rooted ordered (monochromatic) trees generated by (B+)m( t) ↔ Hm, where in
the monochromatic |A| = 1 case we skip the lower index i = 1 describing the colour of
the attached edge.

Remark 15. One can recapitulate this Section in the spirit of Examples 1 and 3 that
we presented two, mutually dual, Hopf algebra structures in the space of compositions.
Similarly to the shuffle product of words, the quasi-shuffle of compositions can be defined
recursively [38] for all compositions α, β and all natural numbers k, l by

α
Q ∅ = ∅ Q

α = α,

((k) · α)
Q

((l) · β) = (k) · (α Q
((l) · β)) + (l) · (((k) · α)

Q
β) + (k + l) · (α Q

β).

3 The Hopf algebra of coloured non-commutative symmetric
functions

3.1 The Hopf algebra of sentences

Given finite alphabet A = {a1, . . . , an}, recall (see Example 1) that words over A are
finite sequences of its elements (letters) written without separation. Define sentences as
finite sequences of words (instead of spacing to separate them we use commas). The
size of a word w = ai1 . . . aik is the number |w| = k of its letters, the size of a sentence
I = (w1, w2, . . . , wm) is the sum |I| = |w1| + |w2| + · · · + |wm| of sizes of its words, while
the length of the sentence is the number `(I) = m of its words. The maximal word of the
sentence is the concatenation w(I) = w1w2 . . . wm of all its words.

Example 16. The sentence I = (aba, ca, bac) over alphabet {a, b, c} has length `(I) = 3,
is of size |I| = 8. Its maximal word is w(I) = abacabac.

Remark 17. For unary alphabet A = {a} we will identify words with their size, and
then identify sentences with corresponding compositions, for example (aaa, aa, aaa)←→
(3, 2, 3). Speaking about colours in the place of letters, instead of sentences we may use
the notion of coloured compositions.

Given two sentences I, J , we say that I is coarsening of J (or equivalently, J is
refinement of I), denoted by I < J , if we can obtain the words of I by concatenation of
adjacent words of J . For example (aba, ca, bac) < (ab, a, ca, ba, c). With the refinement
order, the poset of sentences having the same maximal word w is isomorphic to the poset
of compositions of |w|, and therefore isomorphic (recall the bijection set mentioned in
Section 2.3) to the (dual of the) Boolean poset of {1, 2, . . . , |w| − 1}. This allows to
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(abac)

(aba,c)(ab,ac)(a,bac)

(a,b,ac) (a,ba,c) (ab,a,c)

(a,b,a,c)

(4)

(2,2)

(1,2,1)(1,1,2)

(3,1)

(2,1,1)

(1,1,1,1)

φ

(1,3) {2}

{1,3} {2,3}

{3}{1}

{1,2}

{1,2,3}

Figure 8: Isomorphism of three posets

transfer structural results between the posets, in particular to find description of the
Moebius function of the posets of sentences

µ(J, I) = (−1)`(J)−`(I) for J 4 I. (3.1)

Remark 18. The above poset point of view makes the theory of coloured non-commutative
symmetric and quasi-symmetric functions so similar to the original monochromatic theory.
There are however various differences related to new degree of non-commutativity caused
by presence of different colours/letters.

Corollary 19. The set of sentences of size n ∈ N splits onto |A|n pairwise disjoint classes
of sentences with the same maximal word.

Define also two involutions acting on sentences: reversal and complement. The reversal
of I, denoted by Ir is obtained by writing the words of I in the reverse order

(w1, w2, . . . , wm)r = (wm, wm−1, . . . , w1). (3.2)

The complement of I, denoted by Ic is the sentence with the same maximal word as I
but whose image under the map set is the complementary subset of {1, 2, . . . , |I| − 1}.
Equivalently, in the maximal word w(I) we put separating commas between letters if
there was no comma between the letters in I.

Example 20. For I = (aba, ca, bac) we have Ir = (bac, ca, aba) and Ic = (a, b, ac, ab, a, c)

We may represent sentences in terms of ribbons placing its words in subsequent rows
such that the first letter of the next word is exactly below the last letter of the previous
one. Then the ribbon diagram of Ic is obtained by transposition of the ribbon diagram
of I, see Figure 9.

Remark 21. From yet another point of view, we may identify words with the so called
planted tall trees (or ladders)

w = ai1ai2 . . . aik ←→ (B+
ik
◦ · · · ◦B+

i1
)( t). (3.3)

Then sentences are in correspondence with concatenations of such trees, and are called
tall trees ; see Figure 10 for an example.
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Figure 9: The ribbon diagrams of the sentence (aba, ca, bac) and of its complement

Corollary 22. The set of sentences over A is bijective with the context-free language [73]
generated by grammar with

• terminal symbols A∪Ā, where Ā is the disjoint copy of A with elements ā for a ∈ A,

• nonterminal symbols {X,Z} with X being the initial symbol of the grammar,

• production rules

X → 1 |XZ, Z → āiZai | āiai, where ai ∈ A. (3.4)

Roughly speaking, the second rule produces words, while the first rule builds sentences
from words. The relation of the Hopf algebra of trees and its subalgebras to context-free
languages will be presented in another publication.

Example 23. The element of the context-free language described above, which corre-
sponds to the sentence (aba, ca, bac) is āb̄āabaāc̄cac̄āb̄bac.

Given two sentences I = (w1, . . . , wm), J = (v1, . . . , vn) their concatenation I · J is
the sentence (w1, . . . , wm, v1, . . . , vn) obtained by juxtaposition of the sequences of their
words, and corresponds to joining bunches of tall trees. Their near-concatenation I�J is
the sentence (w1, . . . , wmv1, . . . , vn) in which the last word of I is concatenated with the
first word of J For example

(aba, cb) · (bb, ac) = (aba, cb, bb, ac), (aba, cb)� (bb, ac) = (aba, cbbb, ac). (3.5)

Notice that since an admissible subtree of a tall tree and its complementary tree are also
of such form then the pruning coproduct (2.17) of tall trees doesn’t lead out of that space.

Proposition 24. The planted tall trees generate Hopf subalgebra of ROC-trees with the
concatenation multiplication and pruning coproduct.

To describe the corresponding comultiplication in the language of sentences (coloured
compositions) let us consider also weak sentences, which may contain empty words. Given

weak sentence I, by Ĩ we denote the corresponding sentence obtained by removing the
empty words from it (or the empty word if I consists of the empty words only). We say
that the weak sentence J = (v1, . . . , vm) is contained in the sentence I = (w1, . . . , wm),
denoted by J ⊂ I, if there exists complementary weak sentence (u1, . . . , um), denoted by
I \ J , such that wi = uivi for i = 1, . . . ,m.
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Figure 10: Sentences as coloured tall trees

Remark 25. To avoid confusion we recall that the empty sentence, in accordance to our
previous notation, is denoted by by 1, the corresponding empty composition was denoted
previously by ∅, and the corresponding trivial tree by t.
Proposition 26. The algebra of sentences (coloured compositions) is a bialgebra with the
multiplication being concatenation of sentences, the comultiplication given by

∆(I) =
∑
J⊂I

Ĩ \ J ⊗ J̃ , (3.6)

the natural unity map, and the counit

ε(I) =

{
1 if I = 1,

0 otherwise
(3.7)

Example 27. The coproduct of a ROC-tree visualized in Figure 4 reads in the present
setting as follows

∆(ab, b) = (ab, b)⊗ 1 + (ab)⊗ (b) + (a, b)⊗ (b) + (a)⊗ (b, b) + (b)⊗ (ab) + 1⊗ (ab, b) =

= ((ab)⊗ 1 + (a)⊗ (b) + 1⊗ (ab)) . ((b)⊗ 1 + 1⊗ (b)) . (3.8)

Remark 28. As the above Example shows, the comultiplication in the Hopf algebra of
sentences is not cocommutative.

Corollary 29. The bialgebra of sentences over alphabet A is graded, with the weight of
a sentence being its size, locally finite and connected (thus Hopf algebra). The dimension
of the graded component consisting of sentences of size m > 0 is |A|m2m−1.

Corollary 30. The action of the comultiplication on single-word generators reads as
follows

∆(ai1ai2 . . . aik) =
k∑
j=0

(ai1ai2 . . . aij)⊗ (aij+1
. . . aik). (3.9)

Remark 31. In the present setting the free Hopf algebra of Example 1 should be identified
with the subalgebra of sentences built out of single-letter words, see also Corollary 9.
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In [29] one can find also detailed description of the antipode of the Hopf algebra of
ROD-forests, which can be used to define the antipode of the Hopf algebra of tall trees,
and thus to transfer it into the language of the Hopf algebra of sentences. To make
the paper self-contained we perform below the corresponding calculation from scratch
avoiding this route.

Proposition 32. The antipode in the Hopf algebra of sentences is given by the following
formula

S(I) =
∑
J4Ir

(−1)`(J)J. (3.10)

Proof. We will show first that the above formula gives the antipode for single-word sen-
tences, which generate the algebra of sentences. The coproduct formula (3.9) and equation
(2.6) give the recurrence relation

S(ai1ai2 . . . aik) = −
k−1∑
j=0

S(ai1ai2 . . . aij) · (aij+1
. . . aik), (3.11)

which, in particular, for k = 1 gives the correct formula

S(ai) = −(ai). (3.12)

Assume that the expression for the antipode holds true for generators indexed by
single-word sentences of size not greater than k, then for k + 1 we have

S(ai1ai2 . . . aik+1
) =

k∑
j=0

 ∑
J4(ai1ai2 ...aij )

(−1)`(J)+1J · (aij+1
. . . aik+1

)

 . (3.13)

which gives the correct expression, because we separated the last word of the sentence
refining (ai1ai2 . . . aik+1

).
By the anti-endomorphism property of the antipode we have

S(w1, . . . , wm) = S(wm) · . . . · S(w1) =
∑

Jm4(wm),...J14(w1)

(−1)`(Jm)+···+`(J1)Jm · . . . · J1 =

=
∑

Jm...J14(wm,...,w1)

(−1)`(Jm)+···+`(J1)Jm · . . . · J1 =
∑

J4(w1,...,wm)r

(−1)`(J)J,

(3.14)

what concludes the proof.

Remark 33. In [2, 5, 42, 57, 66] another notion of coloured compositions is considered.
In our approach such a variant corresponds to sentences made of words with definite
colours, for example (bbb, a, bb, cccc). Because concatenation and pruning operations leave
such property untouched one obtains this way a Hopf subalgebra of that introduced
in this Section. Notice [42] that the dimension of the graded component consisting of
such compositions/sentences of size m > 0 is |A|(|A| + 1)m−1, to be compared with the
dimension calculated in Corollary 29.
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3.2 Coloured non-commutative symmetric functions

Because of the isomorphism of the Hopf algebra of sentences on unary alphabet with the
Hopf algebra NSym of non-commutative symmetric functions, the algebra of sentences
over alphabet A can be also called the algebra of coloured non-commutative symmetric
functions, and denoted by NSymA. We will discuss also other bases of NSymA indexed by
sentences, therefore the linear basis of sentences will be denoted from now on by (HI) and
called the basis of complete homogeneous coloured non-commutative symmetric functions.
The multiplication, comultiplication and the antipode in the new notation read

HI ·HJ = HI·J , (3.15)

∆(HI) =
∑
J⊂I

H
Ĩ\J ⊗HJ̃ , (3.16)

S(HI) =
∑
J4Ir

(−1)`(J)HJ . (3.17)

In particular, for functions indexed by single-word sentences we have

∆(H(ai1ai2 ...aik )) =
k∑
j=0

H(ai1ai2 ...aij ) ⊗H(aij+1
...aik ) , (3.18)

and the recursive formula (2.6) then reads

S(H(ai1ai2 ...aik )) =

{
−
∑k−1

j=0 S(H(ai1ai2 ...aij )) ·H(aij+1
...aik ),

−
∑k

j=1H(ai1ai2 ...aij ) · S(H(aij+1
...aik )).

(3.19)

Remark 34. We define the operations of reversal and complement in the basis (HI)

r(HI) = HIr , c(HI) = HIc , (3.20)

and extend them to NSymA by linearity.

Example 35.

S(H(ab,c)) = S(H(c)) · S(H(ab)) = (−H(c)) · (−H(ab) +H(a,b)) = H(c,ab) −H(c,a,b). (3.21)

Like in the classical case define coloured non-commutative elementary symmetric func-
tions by

EI =
∑
J4I

(−1)|I|−`(J)HJ , (3.22)

which allows to rewrite the antipode of the complete homogeneous functions as

S(HI) = (−1)|I|EIr . (3.23)

Remark 36. In general EIr 6= r(EI), for example

E(ab,c)r = H(c,a,b) −H(c,ab), while r(E(ab,c)) = H(c,b,a) −H(c,ab).

the electronic journal of combinatorics 28(2) (2021), #P2.50 18



Proposition 37. The product of coloured non-commutative elementary symmetric func-
tions satisfies the formula

EI · EJ = EI·J , (3.24)

in particular, the elementary symmetric functions are generated by single-word elementary
functions.

Proof. By equation (3.23) and anti-endomorphism property of the antipode we have

EI · EJ = (−1)|I|+|J |S(HIr) · S(HJr) = (−1)|I·J |S(HJr·Ir) = (−1)|I·J |S(H(I·J)r) = EI·J .
(3.25)

Proposition 38. The coloured non-commutative elementary symmetric functions form a
linear basis of the Hopf algebra NSymA, in particular

HI =
∑
J4I

(−1)|I|−`(J)EJ . (3.26)

Proof. The right hand side of equation (3.26) reads∑
J4I

(−1)|I|−`(J)
∑
K4J

(−1)|J |−`(K)HK =
∑
K4I

(−1)`(I)−`(K)HK

∑
K4J4I

(−1)`(I)−`(J), (3.27)

where we changed the order of summation using also the fact that |I| = |J |. By properties
of the Moebius function (3.1) the second sum equals 1 for K = I and vanishes otherwise,
what concludes the proof.

Corollary 39. The single-word coloured non-commutative elementary symmetric func-
tions generate the algebra NSymA.

Because for |A| > 1 the Hopf algebra NSymA is both non-commutative and non-
cocommutative we cannot expect that the antipode is an involution. It turns out that its
superposition with the reversal is.

Proposition 40. In the Hopf algebra NSymA of coloured non-commutative symmetric
functions

S ◦ r ◦ S ◦ r = id. (3.28)

Proof. Notice first that

(S ◦ r)(EI) = S

(∑
J4I

(−1)|I|−`(J)HJr

)
= (−1)|I|

∑
J4I

(−1)|Jr|−`(J)EJ = (−1)|I|HI , (3.29)

where we used equations (3.23), (3.26) and the fact that |Jr| = |I| for J 4 I. Then in
the basis of complete symmetric functions by equations (3.23) and (3.29) we have

(S ◦ r ◦ S ◦ r)(HI) = (−1)|I|(S ◦ r)(EI) = HI , (3.30)

what concludes the proof.
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We will close this Section by presenting coloured and non-commutative analogs of
some classical properties of single-word elementary symmetric functions. The antipode
expressions (3.19), in view of equation (3.23), give the following recurrence formulas

E(ai1ai2 ...aik ) =

{∑k−1
j=0(−1)k−j+1E(ai1ai2 ...aij )H(aij+1

...aik ),∑k
j=1(−1)j−1H(ai1ai2 ...aij )E(aij+1

...aik ),
(3.31)

which start from E1 = 1. Equivalently, the above recurrence relations can be rewritten
for k > 0 as

k∑
j=0

(−1)jE(ai1ai2 ...aij )H(aij+1
...aik ) =

k∑
j=0

(−1)jH(ai1ai2 ...aij )E(aij+1
...aik ) = 0. (3.32)

Finally, we present the coproduct formula for our generalization of the elementary
symmetric functions.

Proposition 41. The analog of the coproduct formula (3.18) for coloured non-commuta-
tive elementary symmetric functions reads as follows

∆(EI) =
∑
J⊂I

EJ̃ ⊗ EĨ\J , (3.33)

which in the case of single-word functions gives

∆(E(ai1ai2 ...aik )) =
k∑
j=0

E(aij+1
...aik ) ⊗ E(ai1ai2 ...aij ). (3.34)

Proof. It is enough to prove the second equation, because then Proposition 37 implies
the first one. Since it holds for k = 1, then we can start induction by applying the
coproduct operation on the recurrence (3.31). Using the homomorphism property of
the comultiplication we can expand corresponding expressions and collect coefficients
at various terms of consecutive degrees on the right hand side of the tensor product
sign. By the recurrence relations (3.31) most of them vanishes, and what remains gives
equation (3.34).

Example 42. To calculate the coproduct of E(ab) = E(a)H(b) −H(ab) first notice that

∆(E(ab)) = (E(a)⊗ 1 + 1⊗E(a))(H(b)⊗ 1 + 1⊗H(b))− (H(ab)⊗ 1 +H(a)⊗H(b) + 1⊗H(ab)).

There is only one term (. . . )⊗1 of the right degree zero. Its coefficient is E(a)H(b)−H(ab) =
E(ab). There are two terms (. . . ) ⊗ E(a) and (. . . ) ⊗ H(b) of the right degree one. The
coefficient of the first one equals H(b) = E(b), while the coefficient of the second term reads
E(a) −H(a) = 0. Finally, the coefficients of the right degree two have on the left 1⊗ (. . . )
and sum up to E(a)H(b) −H(ab) = E(ab).

Remark 43. Notice that, contrary to the unary (monochromatic) case |A| = 1, for |A| > 1
the coproduct formulas for single-word coloured non-commutative complete and elemen-
tary symmetric functions are not the same.
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4 Coloured quasi-symmetric functions

In this Section we study basic properties of the graded dual to the Hopf algebra NSymA,
which we later will call the Hopf algebra of coloured quasi-symmetric functions, and
denote by QSymA. In particular, we introduce the dual basis to complete function basis
(HI), which will be called later the basis of coloured monomial quasi-symmetric functions.
Then we will provide a realization of the algebra QSymA in terms of series of bounded
degree with partially commuting variables.

4.1 The graded dual of NSymA

In the the graded dual (NSymA)gr of the Hopf algebra of A-coloured non-commutative
symmetric functions, by (H∗I ) denote the dual basis to the basis (HJ) of complete sym-
metric functions

〈H∗I , HJ〉 = δI,J . (4.1)

The dual to the concatenation product (3.16) is the deconcatenation coproduct δ, which
is given by

δ(H∗I ) =
∑
I=J ·K

H∗J ⊗H∗K i.e.

δ(H∗(w1,w2,...wk)) =
k∑
j=0

H∗(w1,w2,...wj) ⊗H∗(wj+1,...wk) ,

(4.2)

In particular, elements of the dual basis indexed by single-word sentences are primitive
elements of the coproduct.

The product in (NSymA)gr can be defined directly by dualization of the pruning co-
product of tall trees described in the basis of complete functions by formula (3.16). Equiv-
alently, it can be described in terms of the original grafting product of trees and the dual
to the injection map NSymA ↪→ kTA. It is therefore restriction of the grafting product
from ROC-trees to tall trees, i.e. we can graft planted tall trees at the root or on the top
of another such tree, with the restriction that two trees cannot be grafted on the same
top.

The geometric procedure on the level of trees is the same as that in the monochromatic
case, so we keep the same name and symbol of the quasi-shuffle product. Quasi-shuffle

I
Q

J of two sentences I = (u1, u2, . . . , uk) and J = (v1, v2, . . . , vm) is thus the sum
of shuffles of components ui and vj of I and J , where in addition we may replace any
number of pairs of consecutive words ui, vj in the shuffle by their concatenation uivj. It
can be represented, compare with [51], by a path in the lattice of size k × m from the
left bottom corner to the right top corner with horizontal steps (1, 0) representing words
ui, vertical steps (0, 1) representing words vj and oblique steps (1, 1) representing words
uivj; see Figure 11 for an example.

Therefore we have (compare with equation (2.30))

H∗IH
∗
J =

∑
K

H∗K , (4.3)
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Figure 11: The lattice for quasi-shuffle product of (u1, u2) and (v1, v2, v3) with path rep-
resenting the summand (v1, u1v2, v3, u2)

where K can be obtained as a summand in quasi-shuffle of I and J . By dualizing the
coproduct formula (3.16) we can see that there exists weak sentence J ′ ⊂ K such that

J = J̃ ′ and I = K̃ \ J ′.
Remark 44. Similarly to the quasi-shuffle product of compositions, the quasi-shuffle of
sentences can be defined recursively for all sentences I, J and all non-empty words u, v by

I
Q

1 = 1
Q
I = I,

((u) · I)
Q

((v) · J) = (u) · (I Q
((v) · J)) + (v) · (((u) · I)

Q
J) + (uv) · (I Q

J).

Example 45. The quasi-shuffle product of two tall trees takes the form given in Figure 12,
and the product of corresponding monomial functions reads

H∗(a,b)H
∗
(b) = 2H∗(a,b,b) +H∗(a,bb) +H∗(ab,b) +H∗(b,a,b) , (4.4)

compare also with Figure 7 describing the asymmetric shuffle product of the same trees.
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�
�
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att t t
+ @

@
�
�
�
�b battt t

Figure 12: The quasi-shuffle product of two tall trees as given in equation (4.4); grafted
planted tall trees are thickened

Remark 46. We have equipped the space of sentences over A with the dual Hopf alge-
bra structure, graded dual to that described in Section 3.1, with quasi-shuffle product
and deconcatenation coproduct. Being dual to non-commutative and non-cocommutative
Hopf algebra the new algebra, for |A| > 1, is also both non-commutative and non-
cocommutative.

Let us calculate the number of quasi-shuffle paths with prescribed number of oblique
steps, which will be used in Section 6.3.
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Figure 13: Four quasi-shuffle paths in 2× 3 lattice which have the same shuffle part. The
difference is in location of the (1, 1) segment which can be placed at any vertex of the
contracted path

Proposition 47. The number of quasi-shuffle paths in k×m lattice with exactly i oblique
steps (1, 1), i = 0, 1, . . . ,min{k,m}, equals(

k +m− 2i

k − i

)(
k +m− i

i

)
=

(
k

i

)(
k +m− i

k

)
=

(
m

i

)(
k +m− i

m

)
. (4.5)

Proof. Two quasi-shuffle paths are called to have the same shuffle part if they coincide
after contracting all the oblique segments (1, 1); see Figure 13 for an example. Decom-
position of the set of paths with exactly i oblique segments into disjoint classes having
the same shuffle part, and then fixing location of the segments, gives the first part of
formula (4.5). Two other expressions, which can be derived by simple algebra, also have
combinatorial interpretation. The second/third one means that the path can be encoded
by first fixing columns/rows for the oblique segments (1, 1), and then by choosing which
steps of the path are vertical/horizontal segments (0, 1)/(1, 0).

4.2 Generalized quasi-symmetric functions

For each colour a ∈ A, let xa = (xa,1, xa,2, xa,3, . . . ) denote infinite totally ordered set of
variables, each of degree 1, define also xA =

⋃
a∈A xa. We assume partial commutativity

of the variables, i.e. within each set the variables commute, but for different colours
commutativity is allowed for different second indices only

xa,ixb,j = xb,jxa,i for i 6= j, a, b ∈ A, (4.6)

We will consider a subset QSymA of the algebra k[xA] of series of bounded degree with
natural multiplication, which can be described as follows. Due to partial commutativity
any monomial in variables xa,i can be uniquely reordered in such a way that the second
indices of variables form weakly increasing (finite) sequence, say i1 6 i2 6 . . . 6 ik. Given
word w = ai1ai2 . . . aik and given j ∈ N, by xw,j denote monomial of degree |w|

xw,j = xai1 ,jxai2 ,j . . . xaik ,j, (4.7)

for example xabb,2 = xa,2x
2
b,2. From the other side, given such a reordered monomial

xw1,j1xw2,j2 . . . xwm,jm with j1 < j2 < · · · < jm by its sentence we mean (w1, w2, . . . , wm).
A formal series belongs to QSymA when its coefficients in front of monomials with the
same sentence coincide.
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It is easy to see that the set QSymA is in fact linear space with basis indexed by
sentences. In fact, given sentence I = (w1, w2, . . . , wm), by MI denote the infinite series
of the finite degree |I|

MI =
∑

16j1<j2<···<jm

xw1,j1xw2,j2 . . . xwm,jm , (4.8)

which will be called a coloured monomial quasi-symmetric function.

Example 48. Consider product of two such series

M(a,b) = xa,1xb,2 + xa,1xb,3 + xa,2xb,3 + · · · and M(b) = xb,1 + xb,2 + xb,3 + · · · ,

which after the reordering reads

M(a,b)M(b) = (xa,1xb,2 + xa,1xb,3 + xa,2xb,3 + · · · )(xb,1 + xb,2 + x2,3 + · · · ) =

=(xa,1xb,1xb,2 + · · · ) + (xa,1xb,2xb,2 + · · · ) + 2(xa,1xb,2xb,3 + · · · ) + (xb,1xa,2xb,3 + · · · ) =

=M(ab,b) +M(a,bb) + 2M(a,b,b) +M(b,a,b),

and compare with Example 45 or Figure 12.

Proposition 49. The subspace QSymA of k[xA] spanned by the series (MI) is a subalgebra
isomorphic to (NSymA)gr with the isomorphism given by MI ↔ H∗I .

Proof. Multiplication of two monomials with different second indices gives monomials
with shuffled words. When second indices of two words of both monomials coincide then
in the multiplication and reordering procedure the words will be concatenated.

To define the coproduct δ in QSymA we use the doubling variables trick described in
Section 2.3, i.e. to the set of variables xA we add its copy yA. We place the new variables
after the old ones, what in particular implies that the new and old variables commute
and allows to separate the variables in the reordering process.

Example 50. Applying the doubling variable procedure to M(ab,b) = xa,1xb,1xb,2 + · · · we
obtain

xa,1xb,1xb,2 + . . . 7→ xa,1xb,1xb,2 + · · ·+ xa,1xb,1yb,1 + · · ·+ ya,1yb,1yb,2 + · · · =
= M(ab,b)(x) +M(ab)(x)M(b)(y) +M(ab,b)(y),

getting this way

δ(M(ab,b)) = M(ab,b) ⊗ 1 +M(ab) ⊗M(b) + 1⊗M(ab,b) .

Proposition 51. The algebra isomorphism described in Proposition 49 is the Hopf algebra
isomorphism. In particular the deconcatenation coproduct in (NSymA)gr can be realized
by the variables doubling method in QSymA

δ(MI) =
∑
I=J.K

MJ ⊗MK i.e.

δ(M(w1,w2,...wk)) =
k∑
j=0

M(w1,w2,...wj) ⊗M(wj+1,...wk) .

(4.9)

the electronic journal of combinatorics 28(2) (2021), #P2.50 24



Proof. It is enough to consider how the variables doubling procedure works for the mono-
mial xw1,1xw2,2 . . . xwm,m. Finiteness of the size of the sentence assures finite sum decom-
position.

Remark 52. There is no need to check coassociativity of the coproduct in QSymA or
its compatibility with the (quasi-shuffle) product, because this holds by definition of
(NSymA)gr.

Finally let us present the formula for the antipode S∗ in the monomial basis of QSymA.
By dualizing the corresponding formula (3.17) for the antipode S in the complete basis
of NSymA we get

S∗(MI) = (−1)`(I)
∑
Jr<I

MJ (4.10)

which for unary words (i.e. usual compositions) reduce to that found in [56, 27].

Example 53. By the equation (4.10)

S∗(M(ab,c)) = M(c,ab) +M(abc). (4.11)

By the coproduct formula

δ(M(ab,c)) = 1⊗M(ab,c) +M(ab) ⊗M(c) +M(ab,c) ⊗ 1 (4.12)

and the recurrence (2.6) it should be equal to

−M(ab,c) − S∗(M(ab))M(c) = −M(ab,c) +M(ab)M(c) = −M(ab,c) +M(ab,c) +M(c,ab) +M(abc).
(4.13)

Remark 54. Notice that, contrary to the unary case [34], we cannot sum up in (4.10) with
respect to J < Ir. Such a summation in the above Example would give incorrect result
M(c,ab) +M(cab).

By dualizing equations (3.20) define the operations of reversal and complement in the
monomial basis (MI)

r(MI) = MIr , c(MI) = MIc , (4.14)

and extend them to QSymA by linearity.

5 The fundamental basis of QSymA and its dual basis in NSymA

In this Section we define and study another basis of the Hopf algebra of coloured quasi-
symmetric functions QSymA, which is the analog of the fundamental basis [71, 27]. Then
we consider the dual basis in NSymA to the coloured fundamental functions, which can
be called the basis of coloured ribbon non-commutative Schur functions.
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5.1 Fundamental coloured quasi-symmetric functions

Define the fundamental coloured quasi-symmetric functions indexed by sentences as

FI =
∑
J4I

MJ . (5.1)

By properties of the Moebius function (3.1) of the poset of sentences one can invert the
above relation

MI =
∑
J4I

(−1)`(J)−`(I)FJ , (5.2)

what shows that the fundamental functions form a linear basis in QSymA.
Let us find expressions for the coproduct, product and the antipode of QSymA in the

fundamental basis.

Proposition 55. The coproduct in the fundamental basis reads

δ(FI) =
∑

K′·K′′=I
K′�K′′=I

FK′ ⊗ FK′′ (5.3)

where the summation is over pairs of sentences which give the indexing sentence I by
concatenation or the near-concatenation.

Proof. By definition (5.1) and coproduct formula (4.9) in the monomial basis, and group-
ing terms we obtain

δ(FI) =
∑
J4I

( ∑
J ′.J ′′=J

MJ ′ ⊗MJ ′′

)
=

∑
(K′,K′′)

FK′ ⊗ FK′′ , (5.4)

where the sum is over the pairs (K ′, K ′′) which give splitting of I into two parts. The
segmentation may be either between words of I or in the middle of a word. The first case
gives I = K ′ ·K ′′, while the second one gives I = K ′ �K ′′.

Example 56. The deconcatenation coproduct of the fundamental function F(ab,c) =
M(ab,c) +M(a,b,c) is given by

δ(F(ab,c)) = 1⊗ F(ab,c) + F(a) ⊗ F(b,c) + F(ab) ⊗ F(c) + F(ab,c) ⊗ 1. (5.5)

In order to describe multiplication in the fundamental basis notice that in multiplying
FI and FJ we multiply MI′ and MJ ′ for any I ′ 4 I and J ′ 4 J . Then we group monomial
functions into the fundamental ones. This procedure leads to definition of the fundamental

shuffle I
F
J of sentences described as follows:

1. perform ordinary shuffle of letters of maximal words of both sentences,

2. concatenate neighboring letters of words of I, and concatenate neighboring letters
of words of J ,
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3. concatenate pairs of neighboring subwords of words of I and J (in this order),

which gives directly the desired formula.

Proposition 57. Multiplication of two fundamental functions is given by

FI · FJ =
∑

FK , (5.6)

where sentence K is a summand of I
F
J .

Example 58. Let us perform the procedure in order to calculate (ab)
F

(c, d). To
remember, at each step of the procedure, the origin of letters of the second word we mark
them by the tilde sign. At subsequent steps we obtain:

1. (a, b, c̃, d̃) + (a, c̃, b, d̃) + (a, c̃, d̃, b) + (c̃, a, b, d̃) + (c̃, a, d̃, b) + (c̃, d̃, a, b)

2. (ab, c̃, d̃) + (a, c̃, b, d̃) + (a, c̃, d̃, b) + (c̃, ab, d̃) + (c̃, a, d̃, b) + (c̃, d, ab)

3. (abc̃, d̃) + (ac̃, bd̃) + (ac̃, d̃, b) + (c̃, abd̃) + (c̃, ad̃, b) + (c̃, d̃, ab),

what gives

F(ab) · F(c,d) = F(abc,d) + F(ac,bd) + F(ac,d,b) + F(c,abd) + F(c,ad,b) + F(c,d,ab). (5.7)

Remark 59. In passing to the unary alphabet we obtain the corresponding multiplica-
tion formula for the fundamental quasi-symmetric functions [72, 34]. Because the same
structure of posets of compositions and of sentences the proof presented there can be
transferred also to our context. One has to label letters of the maximal words of the two
sentences by integers, whose descent sets model the separation of letters into words.

Proposition 60. The antipode in the fundamental basis is given by

S∗(FI) = (−1)|I|r(FIc). (5.8)

Proof. Expanding the fundamental function in the monomial basis and using of (4.10) we
obtain

S∗(FI) =
∑
J4I

S∗(MJ) =
∑
J4I

(−1)`(J)
∑
K<J

MKr =
∑
K

MKr

∑
J4K
J4I

(−1)`(J), (5.9)

where the last sum is over sentences J which refine simultaneously K and I. By properties
of the Moebius function of the poset of such refinements the sum doesn’t vanish only if
the poset consists of one element only, which must be therefore the sentence of one-letter
words. In this case `(J) = |I| and K must be a refinement of the complement of I, i.e.
K 4 Ic. This gives the corresponding version of monochromatic formulas of [27, 56]

S∗(FI) =
∑
K4Ic

(−1)|I|r(MK) = (−1)|I|r(FIc). (5.10)
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Example 61. In order to directly calculate the antipode of F(ab,c) = M(ab,c) +M(a,b,c) we
first find from equation (4.10)

S∗(M(ab,c)) = M(c,ab) +M(abc), S∗(M(a,b,c)) = −
(
M(c,b,a) +M(c,ab) +M(bc,a) +M(abc)

)
,

(5.11)
which summed up give S∗(F(ab,c)) = −

(
M(c,b,a) +M(bc,a)

)
= −r(F(a,bc)) in agreement

with (5.8).

Remark 62. Notice that in general r(FI) 6= FIr , for example

r(F(a,bc)) = M(bc,a) +M(c,b,a), while F(a,bc)r = M(bc,a) +M(b,c,a).

Corollary 63. By involutivity of reversal and complement operations we directly obtain
the dual counterpart of formula (3.28)

r ◦ S∗ ◦ r ◦ S∗ = id. (5.12)

As an exercise we recommend for the interested Reader to perform the calculation in
the monomial basis.

5.2 Coloured ribbon non-commutative Schur functions

Consider the basis (RI) in NSymA dual to the fundamental basis (FI) in QSymA

〈FI , RJ〉 = δI,J . (5.13)

In the monochromatic case such basis was introduced in [32] as a non-commutative analog
of the ribbon Schur functions [53].

Proposition 64. The relation between the complete basis (HI) and the ribbon basis (RI)
is given by

HI =
∑
J<I

RJ , (5.14)

RI =
∑
J<I

(−1)`(J)−`(I)HJ . (5.15)

Proof. For the first assertion, note that

HI =
∑
J

〈LJ , HI〉RJ =
∑
J

∑
K4J

〈MK , HI〉RJ =
∑
J<I

RJ . (5.16)

The second assertion follows from the first one by inclusion-exclusion.

Corollary 65. The dual version of Proposition 55 gives the multiplication formula in the
ribbon basis

RIRJ = RI·J +RI�J . (5.17)
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Corollary 66. The dual version of Proposition 57 gives the comultiplication in the ribbon
basis

∆(RI) =
∑
J,K

〈F
J

F
K
, RI〉RJ ⊗RK . (5.18)

Example 67. Both calculations using the complete basis expansion (5.15) with the cor-
responding coproduct formula (3.16) or the above Corollary and definition of the funda-
mental shuffle give

∆(R(ab,c)) = 1⊗R(ab,c) +R(a)⊗R(b,c) +R(c)⊗R(ab) +R(a,c)⊗R(b) +R(ac)⊗R(b) +R(ab,c)⊗1.

In particular, let us present the fundamental shuffle products of the non-trivial sentences
which give the sentence (ab, c) as a summand (typed in boldface):

(a)
F

(b, c) = (ab, c) + (b, ac) + (b, c, a),

(c)
F

(ab) = (cab) + (a, cb) + (ab, c),

(a, c)
F

(b) = (a, cb) + (ab, c) + (b, a, c),

(ac)
F

(b) = (acb) + (ab, c) + (b, ac).

In the monochromatic case there exists [34] a convenient formula, of the form (5.8),
expressing the coproduct in the ribbon basis. Because in the coloured case taking refine-
ments does not commute with reversal we can provide only the following result.

Corollary 68. The dual version of equation (5.8) reads as follows

S ◦ r(RI) = (−1)|I|RIc . (5.19)

Proof. This can be shown by dualization of equation (5.8). Let us provide also direct
proof. By expressing the ribbon basis in the complete one, and by using the corresponding
formula for the antipode we obtain

S ◦ r(RI) =
∑
J<I

(−1)`(J)−`(I)S(HJr) =
∑
J<I

(−1)`(J)−`(I)
∑
K4Jrr

(−1)`(K)HK =

=
∑
K

(−1)`(K)HK

∑
J<K
J<I

(−1)`(J)−`(I) = (−1)|I|
∑
K<Ic

(−1)`(K)−`(Ic)HK = (−1)|I|RIc .

Above we sum up with respect to all sentences K having the same maximal word w(I),
and the inner sum is over sentences J which coarsen simultaneously K and I. This
sum doesn’t vanish only when this poset of sentences is trivial what happens only if K
coarsens the complement of I. In this case J is the single-word sentence, thus `(J) = 1.
To conclude the calculation we notice that `(I) + `(Ic) = |I| − 1.
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6 Formal series of trees and coloured non-commutative power
sum functions

Up to now we considered the duality problem for infinite-dimensional Hopf algebras in the
graded case only. Another option to tackle the problem is to define [1, 74] the restricted
(or Sweedler’s) dual of H which is the subspace H◦ ⊂ H∗ consisting of all linear maps f
that satisfy one of equivalent conditions:

1. ∆H∗(f) ∈ H∗ ⊗H∗,

2. ker(f) contains an ideal (left, right or two-sided) of H that has finite codimension.

Define a left action ⇀ of H on H∗ as the transpose of right multiplication on H

〈a ⇀ f, b〉 = 〈f, ba〉 f ∈ H∗, a, b ∈ H.

Then H⇀ f is a subspace of H∗, and the condition f ∈ H◦ is equivalent to

(3) dim(H⇀ f) <∞.

Remark 69. One can define also a right action ↼ of H on H∗ as the transpose of left
multiplication onH. Then condition (3) can be equivalently stated as finite-dimensionality
of f ↼ H or finite-dimensionality of H⇀ f ↼ H.

6.1 Formal series of ROC trees

In this Section we consider power series of trees as the linear dual to space of rooted
ordered coloured (by A) trees kTA. A formal tree series F is function TA → k extended
to kTA by linearity. The image by F ∈ (kTA)∗ of a tree t ∈ TA is denoted by 〈F, t〉 and is
called the coefficient of t in T . The support of F is the subset of TA

supp(F ) = {t ∈ TA|〈F, t〉 6= 0}. (6.1)

Polynomials kTA ⊂ (kTA)∗ are embedded naturally as series with finite support. Usually
one writes

F =
∑
t∈TA

〈F, t〉t, (6.2)

remembering that the sum

kTA 3 P 7→ 〈F, P 〉 =
∑
t∈TA

〈F, t〉〈P, t〉, (6.3)

has a finite support.

Remark 70. Notice that, by the standard coding of trees by (coloured) Dyck words [72],
any such series of trees can be interpreted as a series of words within theory of non-
commutative power series [68]. As it was mentioned in Corollary 22, our description of
the algebra NSymA can be stated in terms of a certain context-free language.
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Remark 71. If k is equipped with discrete topology, then the set of formal tree series can
be equipped with the product topology. A sequence of its elements converges only if for
each tree the corresponding coefficient stabilizes.

Actually, two products of such series are well defined:

• the extension of the concatenation product ”.” of trees (i.e. the Cauchy product of
series)

F.G =
∑
t∈TA

(∑
t′.t′′

〈F, t′〉〈G, t′′〉

)
t; (6.4)

• the extension of the grafting product
T

of trees

F
T
G =

∑
t′,t′′∈TA

〈F, t′〉〈G, t′′〉 t′ T
t′′. (6.5)

The tensor product F ⊗G ∈ (kTA)∗ ⊗ (kTA)∗ of two series reads

F ⊗G =
∑
t,s∈TA

〈F, t〉〈G, s〉t⊗ s. (6.6)

The deconcatenation coproduct extended from tree polynomials to series

δ(F ) =
∑
t,s∈TA

〈F, t.s〉t⊗ s, (6.7)

is in general an element of (kTA⊗kTA)∗. A series F which allows for finite decomposition

δ(F ) =
r∑
i=1

Gi ⊗Hi ∈ (kTA)∗ ⊗ (kTA)∗, with Gi, Hi ∈ (kTA)∗, (6.8)

is an element of the restricted dual (kTA, . ,∆)◦. The pruning coproduct of a tree series
can be defined analogously

∆(F ) =
∑
t,s∈TA

〈F, t T
s〉t⊗ s. (6.9)

Let us describe a distinguished example of two of such tree series. By F ∗ let us denote
the characteristic series of the set of all ROC trees, i.e. F ∗ =

∑
t∈TA t, and by F =

∑
t∈T ′A

t

denote the characteristic series of the subset T ′A of planted trees. Relations between these
series can be written down as follows:

(i) an arbitrary planted tree is obtained by action of the operator B+
i , i = 1, 2, . . . , |A|,

on the corresponding tree

F =

|A|∑
i=1

B+
i (F ∗) , (6.10)
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(ii) any non-trivial tree can be uniquely decomposed into concatenation product of
planted trees (this justifies our notation)

F ∗ = t + F + F.F + F.F.F + · · · = t + F.F ∗ . (6.11)

Remark 72. Equations (6.10)-(6.11) expresses the standard grammar rules of the |A|-th
Dyck language [68].

Remark 73. By combining equations (6.10) and (6.11) we obtain a single equation for
series F

F =

|A|∑
i=1

B+
i

( t +
∞∑
k=1

F k

)
(6.12)

in the form of the combinatorial Dyson–Schwinger equation [8, 30].

Proposition 74. The series F and F ∗ are elements of the restricted dual (kTA, . ,∆)◦ of
the Hopf algebra of rooted ordered coloured trees, in particular F is primitive element

δ(F ) = t⊗ F + F ⊗ t, (6.13)

and F ∗ is group-like element, i.e.

δ(F ∗) = F ∗ ⊗ F ∗ . (6.14)

Proof. Equation (6.13) follows by linearity from the analogous result valid for any planted
tree t′ ∈ T ′A

δ(t′) = t⊗ t′ + t′ ⊗ t.
When t′ ∈ T ′A is a planted tree and t ∈ TA is an arbitrary tree then by Corollary 10

δ(t′.t) = t⊗ (t′.t) + (t′ ⊗ t).δ(t), (6.15)

which by linearity leads to the following equation on the level of the corresponding series

δ(F.F ∗) = t⊗ (F.F ∗) + (F ⊗ t).δ(F ∗). (6.16)

Adding to both sides of the above δ( t) = t⊗ t and using equation (6.11) we obtain the
relation

δ(F ∗) = t⊗ F ∗ + (F ⊗ t).δ(F ∗). (6.17)

Its solution with respect to δ(F ∗) is

δ(F ∗) = ( t⊗ F ∗).(F ⊗ t)∗ = ( t⊗ F ∗).(F ∗ ⊗ t)
and leads directly to (6.14).

Corollary 75. Any series, whose support is a subset of planted trees T ′A is a primitive
element of the restricted dual.

Remark 76. Notice that Corollary 10 implies the following matching condition between
the cut comultiplication δ and the Cauchy product of two series G and H of trees in the
restricted dual

δ(G.H) = δ(G).( t⊗H) + (G⊗ t).δ(H)−G⊗H. (6.18)
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6.2 Formal series of tall trees

By H∗ =
∑

I I denote the characteristic series of the set of coloured tall trees (indexed by
sentences over A) and by H =

∑
w∈A∗\{1}(w) denote the characteristic series of planted

coloured tall trees (indexed by single word sentences). The planting operator B+
a , a ∈ A,

acts on single word sentence (w) by forming the single word sentence (wa). Properties of
the series can be stated as follows:

(i) an arbitrary planted tall tree is obtained by action of the operator B+
i , i =

1, 2, . . . , |A| on the trivial tree or on the corresponding smaller planted tall tree

H =

|A|∑
i=1

B+
i ( t +H) , (6.19)

(ii) any non-trivial tall tree can be uniquely decomposed into concatenation of planted
tall trees

H∗ = t +H +H.H +H.H.H + · · · = t +H.H∗ . (6.20)

Remark 77. Equation (6.19) is of the combinatorial Dyson–Schwinger form.

The following result can be proven in the same way as the previous Proposition 74.

Proposition 78. With respect to the deconcatenation coproduct δ the series H is primitive
element of the restricted dual

δ(H) = t⊗H +H ⊗ t, (6.21)

and the series H∗ is group-like

δ(H∗) = H∗ ⊗H∗ . (6.22)

Remark 79. Actually, for action of the coproduct δ we should write the series H and H∗

in terms of the coloured monomial quasi-symmetric functions

HQ =
∑

w∈A∗\{1}

M(w), H∗Q =
∑
I

MI , (6.23)

δ(HQ) = 1⊗HQ +HQ ⊗ 1, δ(H∗Q) = H∗Q ⊗H∗Q . (6.24)

i.e. as elements of the restricted dual (NSymA)◦.

Finally let us present formulas for antipodes of the above series. Because HQ is
primitive element then

S∗(HQ) = −HQ, (6.25)

but the antipode of the sum of all coloured monomial quasi-symmetric functions takes
also particularly simple form.
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Corollary 80. The action of the antipode S∗ on the series H∗Q reads

S∗(H∗Q) =
∑
w∈A∗

(−1)|w|M(wc), (6.26)

i.e. is the signed sum of monomial functions indexed by minimal compositions (i.e. by
sentences built from single-letter words).

Proof. Decompose the series H∗Q into parts indexed by compositions with the same max-
imal word

H∗Q =
∑
I

MI =
∑
w∈A∗

F(w), (6.27)

where F(w) is the fundamental function indexed by the corresponding single-word compo-
sition, and apply Proposition 60.

Because bases of both algebras NSymA and QSymA are indexed by sentences one can
apply also the pruning coproduct ∆ on series of tall trees. In particular, we will show
that the series H can be considered as an element of the restricted dual (QSymA)◦. From
now on we use the notation of the theory of the non-commutative coloured symmetric
functions.

Proposition 81. The pruning coproduct of the series H =
∑

w∈A+ H(w), where A+ =
A∗ \ {1} reads

∆(H) = 1⊗H +H ⊗ 1 +H ⊗H. (6.28)

Proof. By Corollary 30, for arbitrary one word sentence (w) we have

∆(H(w)) =
∑
uv=w

H(u) ⊗H(v). (6.29)

Therefore, summing up with respect to the arbitrary prefix (u) first, we can write

∆

(∑
w∈A+

H(w)

)
=
∑
w∈A+

∑
uv=w

H(u) ⊗H(v) =
∑
u∈A∗

H(u) ⊗

( ∑
v∈u−1A+

H(v)

)
,

where for any subset L ⊂ A∗ by definition [54]

u−1L = {v |uv ∈ L}.

Because

u−1A+ =

{
A+ u = 1,

A∗ u ∈ A+,

then we obtain
∆(H) = 1⊗H +H ⊗ (1 +H).

Corollary 82. The series 1 + H =
∑

w∈A∗ H(w) is group-like element of the restricted
dual (QSymA)◦.
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6.3 Non-commutative coloured power sum symmetric functions

Define the power series

P = log(1 +H) =
∞∑
n=1

(−1)n−1

n
Hn, (6.30)

which exists because H has vanishing constant term [68].

Proposition 83. In the basis of complete homogeneous functions indexed by compositions
we have

P =
∑
I 6=1

(−1)`(I)−1

`(I)
HI , (6.31)

moreover the series P is primitive with respect to the pruning coproduct

∆(P ) = 1⊗ P + P ⊗ 1. (6.32)

Proof. The first part follows directly from the definition of P , where we recall that the
length `(I) of the sentence I is the number of its words. For the second part we provide
two proofs. The first one repeats the corresponding reasoning [56] in the monochromatic
case. The second proof is of elementary combinatorial nature.

I. By linearity and morphism property of ∆ with respect to the concatenation product,
and using Corollary 82 we have

∆(P ) = log [∆(1 +H)] = log [(1 +H)⊗ (1 +H)] = log [((1 +H)⊗ 1) . (1⊗ (1 +H))] =

= log [(1 +H)⊗ 1]+log [1⊗ (1 +H)] log [1 +H]⊗1+1⊗ log [1 +H] = P ⊗1+1⊗P,

where we also used the standard property of logarithm for commuting factors.
II. By the basic coproduct formula (3.16) applied to equation (6.31) we can see that

∆(P ) = P ⊗ 1 + 1⊗ P +
∑
J,K 6=1

cJK HJ ⊗HK , (6.33)

where the coefficient cJK equals

cJK =
∑
I

(−1)`(I)−1

`(I)
, (6.34)

where we sum with respect to the sentences I which give J ⊗ K upon action of the

coproduct, i.e. I is a summand in the quasi-shuffle J
Q
K. Interpretation of such terms

as special paths in the lattice `(J) × `(K), and application of Proposition 47 implies
that the weighted alternating sum we are looking for equals (without losing generality we
assume `(K) > `(J))

(−1)`(J)+`(K)−1

`(J)

`(J)∑
i=0

(−1)i
(
`(J)

i

)(
`(K) + `(J)− i− 1

`(J)− 1

)
,

which vanishes by standard application of the inclusion-exclusion principle.
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Finally, we define the coloured non-commutative analogs of the power sum symmetric
functions. By splitting series P into parts with the same maximal words, see Corollary 19,
we obtain from equation (6.31)

P =
∑
w∈A+

P(w), P(w) =
∑
I4(w)

(−1)`(I)−1

`(I)
HI . (6.35)

Here |w|P(w) are coloured analogs of the non-commutative power sums of the second
kind defined in [32]. For trivial sentence define P1 = 1, and for any non-empty sentence
I = (w1, w2, . . . , w`(I)) define

PI = P(w1)P(w2) . . . P(w`(I)). (6.36)

Proposition 84. Functions PI indexed by sentences form a linear basis of NSymA, in
particular

H(w) =
∑
I4(w)

1

`(I)!
PI . (6.37)

Proof. By the standard relation between exponential and logarithm, valid also for formal
non-commuting series, we have

1 +
∑
w∈A+

H(w) = exp(P ) =
∞∑
n=0

1

n!
P n =

∞∑
n=0

1

n!

(∑
w∈A+

P(w)

)n

= 1 +
∑
I 6=1

1

`(I)!
PI , (6.38)

and formula (6.37) follows from splitting of both sides into sentences with the same max-
imal word.

Example 85. For w = ab we have

P(ab) = H(ab) −
1

2
H(a)H(b),

∆(P(ab)) = 1⊗ P(ab) + P(ab) ⊗ 1 +
1

2

(
H(a) ⊗H(b) −H(b) ⊗H(a)

)
.

As the above example demonstrates, contrary to the monochromatic/unary case the
coloured power sum functions are in general not primitive elements of the Hopf alge-
bra NSymA. However, by splitting equation (6.32) into homogeneous parts we obtain
the following weaker result, which provides infinite number of primitive elements of the
algebra.

Corollary 86. For n ∈ N define Pn =
∑
|w|=n P(w) then

∆(Pn) = 1⊗ Pn + Pn ⊗ 1. (6.39)
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7 Conclusion

We have defined new generalization NSymA and QSymA of the Hopf algebras of non-
commutative symmetric and quasi-symmetric functions. In our extensions, bases in both
algebras are indexed by sentences over finite alphabet A (the set of colours), and our
results reduce to the classical ones for the sunary alphabet |A| = 1 (the monochromatic
reduction). We have presented corresponding analogs of the most pertinent structural
elements of the original theory including the description of bases of the complete ho-
mogeneous, elementary, monomial, fundamental, the ribbon Schur and the power sum
functions. It is interesting that, contrary to the monochromatic/unary case, both alge-
bras are non-commutative and non-cocommutative. We have also found a realization of
the algebra QSymA in terms of power series of bounded degree in partially commuting
variables, what justifies its name as coloured quasi-symmetric functions.

In our approach the algebra NSymA is described as Hopf subalgebra of rooted or-
dered coloured trees. We study also formal series of such trees within the setting of
the restricted duals. This new aspect of the theory deserves deeper studies in relation
to the renormalization procedure in quantum field theory, non-commutative integrable
systems and context-free languages, and will be developed in another publication. In
the literature there are known several generalizations of the non-commutative symmetric
and quasi-symmetric functions. We strongly believe that the generalization proposed in
our paper, being natural and structurally close to the original theory, will be useful in
studying problems in combinatorics and theoretical physics.
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