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Abstract

Bernardi has given a general formula for the number of regions of a deformation
of the braid arrangement as a signed sum over boxed trees. We prove that each set
of boxed trees which share an underlying (rooted labeled plane) tree contributes 0
or ±1 to this sum, and we give an algorithm for computing this value. For Ish-
type arrangements, we further construct a sign-reversing involution which reduces
Bernardi’s signed sum to the enumeration of a set of (rooted labeled plane) trees.
We conclude by explicitly enumerating the trees corresponding to the regions of
Ish-type arrangements which are nested, recovering their known counting formula.

Mathematics Subject Classifications: 05A19

1 Introduction

Hyperplane arrangements, or collections of codimension-1 subspaces of a vector space
(typically Rn) appear in many different mathematical contexts. For example, the ele-
ments of any finite Weyl group W can be interpreted as (compositions of) reflections
across certain hyperplanes in Rn. The resulting “Coxeter arrangement” then provides a
geometric interpretation of the so-called “weak order” on W . This hyperplane arrange-
ment also reappears in the representation theory of finite-dimensional algebras as the
“stability diagram” of a “preprojective algebra”. See [13].

A common problem in enumerative combinatorics is to count the connected compo-
nents (called regions) of the complement of a hyperplane arrangement. In 1975, Zaslavsky
showed that this can be done by plugging -1 into the characteristic polynomial of the ar-
rangement [14]. This has helped motivate a large body of work aimed at computing
the chacteristic polynomials of hyperplane arrangements. See e.g. [10, 12, 4]. Another

the electronic journal of combinatorics 28(4) (2021), #P4.2 https://doi.org/10.37236/10233

https://doi.org/10.37236/10233


method for counting the regions of a hyperplane arrangement is to establish a bijection
with some well-known set of combinatorial objects. This approach has the advantage of
offering a somewhat direct explanation as to why two sets of objects are enumerated by
the same formula.

In a main result of [5], Bernardi gives a general formula for the number of regions of a
certain type of hyperplane arrangement, called a deformation of the braid arrangement.
This formula is a signed sum over so called boxed trees, which are partitions of the nodes
of certain rooted labeled plane trees. (See Definition 10 below for the precise definition.)
Under a condition known as transitivity (Definition 12), Bernardi further shows that the
signed sum reduces to an enumeration, thereby recapturing and generalizing several known
counting formulas. The aim of this paper is to reduce Bernardi’s formula for arrangements
which are not transitive. Our main result is an algorithm for computing the restriction
of Bernardi’s sum to the set of boxed trees sharing an underlying (rooted labeled plane)
tree (see Theorem 30). We then reduce the signed sum to an enumeration for the class
of Ish-type arrangements (Definition 4). This class notably contains the Ish arrangement,
which is known to have its regions enumerated by the Cayley numbers (see [3] and the
discussion in Section 2).

1.1 Organization and Main Results

This paper is organized as follows: In Section 2, we review the relevant background and
definitions. In Section 3, we study the contribution of all S-boxings (Definition 10) of a
given (rooted labeled plane) tree to the signed sum of Bernardi and prove our first main
theorem:

Theorem 1 (Theorem 30, simplified version). For an arbitrary deformation of the braid
arrangement, the contribution of the set of boxed trees sharing an underlying (rooted labeled
plane) tree to the formula of Bernardi is 0 or ±1. Moreover, there exists an algorithm for
computing this contribution.

We believe the algorithm in Theorem 1 can be implemented in polynomial time. See
Remark 32 for further discussion. We also note that trees with a contribution of −1 do not
appear in the transitive case, but we suspect that they are ubiquitous in the non-transitive
case. See Remark 34.

In Section 4, we define almost transitive arrangements (Definition 36) and specialize
the result of Theorem 30 to these arrangements (Proposition 41). In Section 5, we further
restrict to Ish-type arrangements (Definition 4). In this case, we consider four parameters
for every tree contributing ±1 to the signed sum: the lower 1-length, lower inefficiency,
upper 1-length, and upper inefficiency (Definitions 42 and 43). We then construct a series
sign-reversing involutions allowing us to prove our second main theorem:

Theorem 2 (Theorem 50). The regions of an Ish-type arrangement are equinumerous
with the corresponding rooted labeled plane trees with lower 1-length, lower inefficiency,
upper 1-length, and upper inefficiency all 0.
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In Section 6, we prove our final main theorem, showing explicitly for any nested Ish
arrangement (Definition 4) that our sign-reversing involutions reduce the Bernardi formula
to the known counting formula of [1].

Theorem 3 (Theorem 53). Let AS be a nested Ish arrangement in Rn. For 2 6 j 6 n,
let S1,k be the set of hyperplanes in AS of the form x1− xk = s for some s ∈ R. Then the
number of regions of AS is given by

rS =
n∏
k=2

(n+ 1 + |S1,k| − k). (1)

2 Background

In this section, we recall notation, constructions, and background results that will be
used in this paper. For detailed definitions and background pertaining to hyperplane
arrangements, we refer readers to [11]. For the purposes of introduction, we follow much
of the exposition in [5].

We consider hyperplane arrangements consisting of hyperplanes in Rn of the form

Hi,j,s : xi − xj = s

for some 1 6 i < j 6 n and s ∈ Z. These are known as deformations of the braid arrange-
ment, where the braid arrangement consists of {Hi,j,0} for all 1 6 i < j 6 n. A common
question about a hyperplane arrangement is the number of regions into which it divides
Rn, where a region is a connected component of the complement of the hyperplanes.

Deformations of the braid arrangement include several families of hyperplane arrange-
ments with historically known counting formulas for their number of regions. Examples
include the braid arrangement, Shi arrangement [9], and Linial arrangement [8]. We refer
to [5, Sections 1-2] for additional examples and references.

Consider a deformation of the braid arrangement A = {xi−xj = s} in Rn. We identify
A with the tuple of sets S = (Si,j)16i<j6n, where for 1 6 i < j 6 n,

Si,j := {s : (xi − xj = s) ∈ A}.

This hyperplane arrangement is then called the S-braid arrangement, and we write A =
AS. The number of regions of AS is denoted rS. We likewise denote

Sj,i := Si,j, S−i,j := {s > 0| − s ∈ Si,j}, S−j,i := {0} ∪ {s > 0|s ∈ Si,j} (2)

For use later, we fix the notation

m := max

{
|s| : s ∈

⋃
16i<j6n

Si,j

}
. (3)

In this paper, we consider Ish-type arrangements as our prototypical example.
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Figure 1: The projection of the Ish arrangement for n = 3 onto the plane x0+x1+x2 = 0,
viewed from the direction (1, 1, 1). The three hyperplanes xi−xj = 0 are drawn as dashed.
The complement of the arrangement consists of 16 = 42 connected components.

Definition 4. Let S be a tuple of sets as above such that 0 ∈ Si,j for all 1 6 i < j 6 n
and Si,j = {0} whenever i 6= 1. Then AS is called an Ish-type arrangement. If in addition
S1,j ⊆ S1,k whenever 1 < j < k 6 n, then AS is called a nested Ish arrangement. If
S1,j = {0, 1, . . . , j− 1} for all 1 < j 6 n, then AS is simply called the (n-dimensional) Ish
arrangement.

The Ish arrangement is defined in [2], and an example with n = 3 is shown in Figure 1.
It is shown in [2] that, like those of the Shi arrangement, the regions of the Ish arrangement
are enumerated by the Cayley numbers (n + 1)n−1. The connection between the regions
of the Ish arrangement and those of the Shi arrangement is further explored in [3, 7], with
[7] describing an explicit bijection between them. The more general Ish-type and nested
Ish arrangements are introduced in [1]1. The authors of that paper prove that nested
Ish arrangements are free, and use this fact to show their regions are enumerated by the
formula in Equation 1.

2.1 The Bernardi Formula

We now give an overview of the constructions and definitions in [5] that lay the foundation
of this paper.

A rooted tree is a tree (a connected graph with no cycles) with some vertex designated
as the root. If u and v are vertices of a rooted tree and the unique path from v to the root
goes through u, we say v is above u and u is below v. If in addition u and v are connected
by an edge, we say u is the parent of v and v is one of the children of u.

An arbitrary vertex in a rooted tree is a called a node if it has at least one child and
is called a leaf otherwise. Under these notions, a rooted labeled tree is a rooted tree with
the nodes labeled with distinct positive integers from 1 to the number of nodes.

In this paper, we consider rooted labeled plane trees. These are rooted labeled trees
with a (left-to-right) ordering imposed on the children of each node. We draw rooted
labeled plane trees with the root of the tree at the bottom, each child of a vertex above
the original vertex, and the children of any vertex ordered from left to right. Given a

1In [1], an Ish-type arrangement AS is referred to as the “N -Ish arrangement” with N :=
(S1,2, S1,3, . . . , S1,n). Moreover, the definition of a nested Ish arrangement includes the case where there
exists a permutation σ on {2, . . . , n} so that S1,σ(j) ⊆ S1,σ(k) whenever 1 < j < k 6 n. Since permuting
the axes does not affect the number of regions in a hyperplane arrangement, we have assumed without
loss of generality that our nests are always indexed using the identity permutation.
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Figure 2: A rooted labeled plane tree with 6 nodes. In this tree, the node 4 is the root,
cadet(4) = 5, cadet(5) = 1, lsib(5) = 1, lsib(1) = 3, lsib(3) = 0, parent(6) = 5, and the
node 1 is a right sibling of the node 6.

node u, its cadet is its rightmost child that is also a node (if one exists), and is denoted
cadet(u). If v has parent u, we define the left siblings of v to be the children of u (nodes
and leaves) which are to the left of v. We denote by lsib(v) (or lsibT (v) if we wish to
emphasize the tree T ) the number of left siblings of v. We define right siblings and rsib(v)
similarly. An example of these concepts is shown in Figure 2.

Notation 5. Let n and m be positive integers. We denote by T (m)(n) the set of rooted
labeled plane trees with n nodes such that each node has m+ 1 children.

Remark 6. We can consider the tree in Figure 2 as an element of T (3)(6) by “adding right
siblings”. That is, the nodes 1, 3, and 6 are considered to each have 4 children (all leaves),
the node 2 is considered to have 3 children (all leaves) which are to the right of 3, and the
node 4 is considered to have 2 children (both leaves) to the right of 5. For any node v, we
then observe that both cadet(v) (if it exists) and lsib(v) are the same in the tree drawn
in Figure 2 and the “larger” tree in T (3)(6). We adopt this convention of “omitting right
siblings” in many of our examples for improved readability.

For the remainder of this section, let us fix an arbitrary deformation of the braid
arrangement AS. We then take n to be the dimension of AS and m as in Equation 3.

Definition 7. [5, Definition 4.1] A sequence (v1, v2, . . . , vk) of nodes in a tree T ∈ T (m)(n)
is a cadet sequence if vj = cadet(vj−1) for all 1 < j 6 k. If in addition

∑j
p=i+1 lsib(vp) 6∈

S−vi,vj for all 1 6 i < j 6 k, then the sequence (v1, v2, . . . , vk) is called an S-cadet sequence.

Example 8. The tree in Figure 2 has cadet sequences (4, 5, 1), (2, 3), and (6). Sub-
sequences of these which are convex with respect to the relation “is the cadet of”, for
example (4, 5) and (3), are also cadet sequences. Now suppose that AS is a deformation
of the braid arrangement in R6 so that S−4,5 = {0}, S−5,1 = {0, 2}, and S−4,1 = {0, 2, 4}.
Then both (4, 5) and (5, 1) are S-cadet sequences, while (4, 5, 1) is not.

Remark 9. We note that a cadet sequence is uniquely determined by the nodes it contains.
Thus, depending on context, we will freely move between notating cadet sequences by
(v1, . . . , vk) and by {v1, . . . , vk}.
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Definition 10. [5, Definition 4.1] A boxed tree is a pair (T,B), where T ∈ T (m)(n) and B
is a partition of the nodes of T into cadet sequences. We say that (T,B) is S-boxed if each
cadet sequence of B is also an S-cadet sequence. The set of S-boxed trees is denoted US.

Given a boxed tree (resp. S-boxed tree) (T,B), we will sometimes refer to B as a
boxing (resp. S-boxing) of T and refer to the partition elements of B as boxes (resp.
S-boxes). Examples of S-boxings are given in Example 22 below.

Theorem 11. [5, Theorem 4.2] The number of regions rS of the arrangement AS is given
by

rS =
∑

(T,B)∈US

(−1)n−|B|, (4)

where |B| is the number of partition elements in B.

We refer to Equation 4 as the Bernardi formula. While the formula holds in general,
there are many hyperplane arrangements with known explicit counting formulas (for ex-
ample, the Ish arrangement). One of the main results in [5] is to recover such formulas
when the set S satisfies a condition called transitivity. This beautifully unifies and ex-
pands upon many known results, in particular answering a question of Gessel. (See [5,
Section 2.3] and [6, Section 1] for further discussion.)

Definition 12. [5, Definition 4.3] We call the tuple S transitive if for all distinct i, j, k ∈
[n] and for all nonnegative integers s 6∈ S−i,j and t 6∈ S−j,k, we have s+ t 6∈ S−i,k.

Theorem 13. [5, Theorem 4.6] If S is transitive, then there exists a set of trees TS ⊆
T (m)(n) such that rS =

∑
(T,B)∈US(−1)n−|B| = |TS|. Moreover, let B0 be the partition of

[n] into singletons, and consider TS as a subset of US by identifying each T ∈ TS with
(T,B0) ∈ US. Then there is a sign-reversing involution on US \ TS.

As stated in the theorem, Bernardi’s proof involves the construction of a sign-reversing
involution; that is, a bijection Φ : US \ TS → US \ TS for which Φ2 = Id and if Φ(T1, B1) =
(T2, B2), then (−1)n−|B1| + (−1)n−|B2| = 0. This makes the corresponding terms in the
Bernardi formula “cancel out”. We adopt a similar approach in Section 5.

Remark 14. Let AS be the Ish arrangement with n > 4. Then S−4,2 = {0}, S−2,1 = {0, 1},
and S−4,1 = {0, 1, 2, 3}. Observe that 1 6∈ S−4,2, 2 6∈ S−2,1, but 1 + 2 ∈ S−4,1. Therefore, for
n > 4, the Ish arrangement is not transitive.

Motivated by Theorem 13 and this remark, we wish to reduce Bernardi’s formula to
an enumeration when the assumption of transitivity is removed. We do this for Ish-type
arrangements in Theorem 50, allowing us to recover the known explicit counting formula
for nested Ish arrangements in Theorem 53.
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Figure 3: A rooted labeled plane tree partitioned into maximal cadet sequences. A box is
drawn around the nodes of each sequence (but this is not necessarily an S-boxing). The
last node of the maximal cadet sequence in the blue/dashed box is 1, and the first node
is 4.

3 The Contribution of a Tree

In this section, we define and characterize the contribution of a (rooted labeled plane) tree
to the Bernardi formula. We fix for the remainder of this section an arbitrary deformation
of the braid arrangement AS. As before, we let n be the dimension of AS and define m
as in Equation 3.

Definition 15. Let T ∈ T (m)(n). For any sequence (v1, v2, . . . , vk) of the nodes of T ,
define the last node of the sequence to be vk, and the first node of the sequence to be v1.
We refer to k as the length of the sequence.

Definition 16. Let T ∈ T (m)(n). Define a maximal cadet sequence of T to be a cadet
sequence (v1, v2, . . . , vk) of T such that all the children of vk are leaves, and there is no
node u for which cadet(u) = v1.

An example of these concepts is shown in Figure 3.

Remark 17. As in Figure 3, the nodes of any rooted labeled plane tree can be uniquely
partitioned into maximal cadet sequences. Indeed, since no two nodes can have the same
cadet and each node has at most one cadet, we can complete any nonempty cadet sequence
(in the forward and reverse directions) to a unique maximal cadet sequence. Possibly, such
a sequence will contain only one node.

Given a (possibly maximal) cadet sequence of a rooted labeled plane tree, we can
consider an S-boxing of the sequence as in Definition 10. More precisely, we have the
following.

Definition 18. Let T ∈ T (m)(n) and let X be an arbitrary cadet sequence of T . Define
an S-boxing of X to be a partition B of the nodes in X so that each Y ∈ B is an S-cadet
sequence (of T ).

We are now prepared to define the contributions of a tree and a cadet sequence.
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Definition 19. Let T ∈ T (m)(n) and let X be a (not necessarily maximal) cadet sequence
of T . Let k be the length of X. Denote by US(T ) and US(X) the sets of S-boxings of T
and X, respectively. We then define the contribution of T and the contribution of X as

rS(T ) :=
∑

B∈US(T )

(−1)n−|B|, rS(X) :=
∑

B∈US(X)

(−1)k−|B|.

Observe that, by definition, the Bernardi formula (Equation 4) says that the number
of regions of AS is the sum over T ∈ T (m)(n) of the contribution of T ; that is,

rS =
∑

T∈T (m)(n)

rS(T ).

Lemma 20. Let T ∈ T (m)(n). Then the contribution of T is equal to the product of the
contributions of its maximal cadet sequences.

Proof. Let X1, . . . , Xt be the maximal cadet sequences of T . As any S-cadet sequence is
necessarily contained in a maximal cadet sequence, choosing an S-boxing of T is equivalent
to choosing an S-boxing of each maximal cadet sequence Xi. That is, we can identify
US(T ) with V := US(X1)× · · · × US(Xt). We then have

rS(T ) =
∑

B∈US(T )

(−1)n−|B|

=
∑

(B1,...,Bt)∈V

t∏
j=1

(−1)|Xj |−|Bj |

=
t∏

j=1

∑
Bj∈US(Xj)

(−1)|Xj |−|Bj |

=
t∏

j=1

rS(Xj)

Definition 21. Let T ∈ T (m)(n). Let (vi, vi+1, . . . , vj) be an S-cadet sequence of T and
let (v1, v2, . . . , vk) be the maximal cadet sequence containing it. We say (vi, vi+1, . . . , vj)
is a maximal S-cadet sequence if both (a) either i = 1 or (vi−1, vi, . . . , vj) is not an S-cadet
sequence and (b) either j = k or (vi, . . . , vj, vj+1) is not an S-cadet sequence.

Example 22. In the tree from Figure 3, suppose that S−2,3 = S−4,5 = S−5,1 = {0}, and
S−4,1 = {0, 1, 2, 3, 4, 5}. Then, writing (S-)boxings as the list of sets of nodes in each
S-cadet sequence,

1. The only valid S-boxing of the maximal cadet sequence of the orange/solid box is
the partition {6}, for a contribution of (−1)1−1 = 1.

2. The only valid S-boxing of the maximal cadet sequence of the black/dotted box is
the partition {2}{3}, for a contribution of (−1)2−2 = 1.
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3. The valid S-boxings of the maximal cadet sequence of the blue/dashed box are
the partitions {4}{5}{1}, {4, 5}{1}, and {4}{5, 1} for a contribution of (−1)3−3 +
(−1)3−2 + (−1)3−2 = −1.

4. The valid S-boxings of the tree are {6}{2}{3}{4}{5}{1}, {6}{2}{3}{4, 5}{1}, and
{6}{2}{3}{4}{5, 1}, for a sum of

−1 = (−1)6−6 + (−1)6−5 + (−1)6−5

=
(
(−1)1−1

) (
(−1)2−2

) (
(−1)3−3 + (−1)3−2 + (−1)3−2

)
,

which can be seen to be the product of the contributions of the maximal cadet
sequences.

Moreover, the maximal S-cadet sequences of the blue/dashed maximal cadet sequence are
{4, 5} and {5, 1}, since {4, 5, 1} is not an S-cadet sequence.

Definition 23. Let T ∈ T (m)(n), and let X be a nonempty cadet sequence of T . We say
that X is S-connected if

1. Given a maximal S-cadet sequence Y of T , either X ∩ Y = ∅ or Y ⊆ X.

2. No cadet sequence satisfying (1) is properly contained in X.

Lemma 24. Let T ∈ T (m)(n) and let X = (v1, . . . , vk) be a maximal cadet sequence
of T . Then for all 1 6 i 6 k, there exist unique indices 1 6 i′ 6 i 6 i′′ 6 k so
that (vi′ , . . . , vi, . . . , vi′′) is an S-connected cadet sequence. That is, any maximal cadet
sequence can be uniquely partitioned into S-connected cadet sequences.

Proof. Let vi ∈ X = (v1, . . . , vk) and let Yi be the set of cadet sequences containing vi
and satisfying (1) in the definition of an S-connected cadet sequence. Since X ∈ Yi and
Yi is closed under intersections, we see that Yi =

⋂
Y ∈Yi Y is the unique S-connected cadet

sequence containing vi.

Lemma 25. The contribution of a maximal cadet sequence is equal to the product of the
contributions of its S-connected cadet sequences.

Proof. Recall that any S-cadet sequence must be contained within a maximal S-cadet
sequence, and any maximal S-cadet sequence must be contained within some S-connected
cadet sequence. Thus choosing an S-boxing of a maximal cadet sequence is equivalent to
choosing an S-boxing of each of its S-connected cadet sequences. The result then follows
using the same argument as in Lemma 20.

Example 26. Figure 4 shows a maximal cadet sequence and its maximal S-cadet se-
quences. (We have suppressed the numbers of left siblings and the definition of S.) This
can be partitioned into the S-connected cadet sequences with nodes labeled {1, 2, 3}, {4},
and {5, 6}.

the electronic journal of combinatorics 28(4) (2021), #P4.2 9



1 2 3 4 5 6

Figure 4: A maximal cadet sequence and its maximal S-cadet sequences. Cadet relation-
ships move left to right; that is, if there is an edge from u to v and v is right of u, then
cadet(u) = v.

1. The valid S-boxings of {1, 2, 3} are {1}{2}{3}, {1, 2}{3}, and {1}{2, 3}, so the
contribution is (−1)3−3 + (−1)3−2 + (−1)3−2 = −1.

2. The only valid S-boxing of {4} is {4}, for a contribution of (−1)1−1 = 1.

3. The valid S-boxings of {5, 6} are {5}{6} and {5, 6}, for a contribution of (−1)2−2 +
(−1)2−1 = 0.

4. The valid S-boxings of the entire maximal cadet sequence are {1, 2, 3}{4}{5}{6},
{1, 2, 3}{4}{5, 6} {1, 2}{3}{4}{5}{6}, {1, 2}{3}{4}{5, 6}, {1}{2, 3}{4}{5}{6}, and
{1}{2, 3}{4}{5, 6}, for a contribution of

(−1)6−4 + (−1)6−3 + (−1)6−5 + (−1)6−4 + (−1)6−5 + (−1)6−4

= ((−1)3−3 + (−1)3−2 + (−1)3−2)((−1)1−1)((−1)2−2 + (−1)2−1) = 0

Definition 27. Let T ∈ T (m)(n) and let (v1, v2, . . . , vk) be an S-connected cadet sequence
of T with maximal S-cadet sequences (X1, X2, . . . , Xk′), in increasing order of index of
last node. For convenience, define X0 = {0} = Xk′+1 and parent(v1) = 0 = cadet(vk).
For 0 6 i < j 6 k′, we say Xi reaches Xj if the parent of the largest indexed node in
Xj \ Xj+1 is contained in Xi. We say a (not necessarily maximal) S-cadet sequence X
precedes Xj if the cadet of the last node in X is the last node in Xj \Xj+1.

Example 28. Suppose we have a maximal cadet sequence X = (1, 2, 3, 4, 5, 6, 7) with
maximal S-cadet sequences X1 = {1, 2, 3}, X2 = {2, 3, 4, 5}, X3 = {3, 4, 5, 6}, and X4 =
{5, 6, 7}. We note that X is actually an S-connected cadet sequence in this case. Now
recall that X0 = {0} = X5. Then X1 reaches X2 because parent(2) ∈ X1 and X1 reaches
X3 because parent(4) ∈ X1. Likewise, X2 reachesX3, butX2 does not reachX4. Moreover,
the S-box {1} precedes X2, any S-box with last node 3 precedes X3, and any S-box with
last node 6 precedes X4.

Remark 29. We note that the condition parent(v0) = 0 implies that X0 reaches X1 if
X2 \ X1 contains a single node and X0 does not reach any maximal S-cadet sequence
otherwise. Likewise, the condition cadet(vk) = 0 implies that Xk′−1 reaches Xk′ if Xk′ \
Xk′−1 contains a single node and Xk′−1 does not reach any maximal S-cadet sequence
otherwise.

We are now prepared to state the main result of this section.
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Theorem 30 (Theorem 1). Let T ∈ T (m)(n) and let X = (v1, v2, . . . , vk) be an S-
connected cadet sequence of T with maximal S-cadet sequences (X1, X2, . . . , Xk′), in in-
creasing order of index of last node. Define X0 = {0} = Xk′+1. Generate a subsequence
(Xi0Xi1 , . . . , Xit) of (X0, X1, X2, . . . , Xk′) by the following algorithm:

1. Define Xi0 = X0

2. For j > 0 such that ij 6= k′, let Xij+1
be the first maximal S-cadet sequence reached

by Xij but not reached by Xi` for ` < j, if such a maximal S-cadet sequence exists.
If no such maximal S-cadet sequence exists, the algorithm fails.

3. If ij = k′, set t = j and terminate the algorithm.

Now, if any step of this algorithm fails, the contribution of X is 0. Otherwise, the con-
tribution of X is given by rS(X) = (−1)k−t.

Before proving Theorem 30, we give a detailed example.

Example 31. Consider the setup of Example 28. The algorithm in Theorem 30 first
defines Xi0 = X0. Then, the algorithm sets Xi1 = X1 (see Remark 29) and Xi2 = X2.
Now, since X2 reaches only X3, which is also reached by X1, the algorithm fails at the
j = 2 step. This means the contribution of X should be zero. We will show this by
considering the possible S-boxings of X in cases.

1. We first consider those S-boxings of X which contain {1}. We then have four
subcases:

(a) Let B be the set of S-boxings of X which contain both {1} and {2}. For B ∈ B
we define a new S-boxing as follows:

i. If there exists Y ∈ B with {3, 4} ⊆ Y , then let

B′ = (B \ {Y }) ∪ {{3}, Y \ {3}} .

ii. Otherwise, let Y ∈ B be the S-box with 4 ∈ Y . Then let

B′ = (B \ Y ) ∪ {{3} ∪ Y }.

We observe that the association B 7→ B′ is an involution on B. Moreover, for
all B ∈ B, the values of |B| and |B′| will differ by 1. We conclude that the
S-boxings in B together contribute 0 to value of rS(X). (Note in particular
that {2} does not precede any maximal S-cadet sequence. We will use this fact
to generalize this argument in the proof of Theorem 30.)

(b) Let C be the set of S-boxings of X which contain both {1} and {2, 3}. We will
consider C later.

(c) By replacing 3 and 4 with 5 and 6, reasoning analogous to case (1a) shows that
the S-boxings of X containing both {1} and {2, 3, 4} together contribute 0 to
rS(X).
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(d) By replacing 3 and 4 with 6 and 7, reasoning analogous to case (1a) shows that
the S-boxings of X containing both {1} and {2, 3, 4, 5} together contribute 0
to rS(X).

2. Reasoning analogous to case (1a) shows that the S-boxings of X containing {1, 2}
and together contribute 0 to rS(X). (We note that {1, 2} does not precede any
maximal S-cadet sequence.)

3. Let D be the set of S-boxings of X which contain {1, 2, 3}. Again, reasoning anal-
ogous to case (1a) shows that the S-boxings in C ∪ D contribute 0 to rS(X).

Together, the casework above shows that rS(X) = 0, as desired.

We now formalize and extend the arguments from Example 31 to prove Theorem 30.
The resulting proof uses ideas similar to that of [5, Theorem 4.6].

Proof of Theorem 30. We first claim that if X2 \ X1 contains more than a single node,
then the algorithm fails and the contribution of X is 0. Indeed, suppose there exist two
nodes vi, vi+1 ∈ X1 \ X2. For an S-boxing B ∈ US(X), we define a new S-boxing as
follows:

1. If vi is in the S-cadet sequence Y ∈ B and vi+1 is in the S-cadet sequence Y ′ ∈ B
with Y 6= Y ′, then replace Y and Y ′ with Y ∪ Y ′.

2. If there exists an S-cadet sequence Y ∈ B containing both vi and vi+1, replace it
with Y ′ = {vj ∈ Y |j 6 i} and Y ′′ = {vj ∈ Y |j > i+ 1}.

As this construction changes the number of maximal S-cadet sequences by 1, we have a
sign-reversing involution on US(X). In particular, the contribution of X is 0. Moreover,
we recall that if X2 \ X1 contains more than a single node, then X0 does not reach any
maximal S-cadet sequence, so the algorithm fails in this case.

Now let B ⊆ US(X) be the set of S-boxings B of X for which every S-box in B
except the last one (the one containing vk) precedes some maximal S-cadet sequence Xj

for j 6 k′.
We claim there is a sign-reversing involution on the S-boxings which are not in B.

Indeed, let B be such an S-boxing and let Y ∈ B be the first S-box that does not precede
any maximal S-cadet sequence. Let v the last node of Y . Now since Y does not precede
any maximal S-cadet sequence, we have that cadet(v) and cadet(cadet(v)) are contained
in Xj \Xj+1 for some j. As before, we can then construct a sign-reversing involution by
combing or splitting the S-boxes containing cadet(v) and cadet(cadet(v)).

We have thus far shown that the contribution of X is rS(X) =
∑

B∈B(−1)k−|B|. We
wish to reduce this to the sum over a single S-boxing (of size t+ 1).

We claim there is a bijection between B and the set of subsequences (Xi0 , . . . , Xir)
of (X0, X1, . . . , Xk′+1) for which Xi0 = X0, Xir = Xk′ , and Xij reaches Xij+1

for all j.
Moreover, we will show that the number of S-boxes of any B ∈ B is the same as the
length (i.e., the value of r + 1) of the corresponding sequence.
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For readability, we use X1+ij for the maximal S-cadet sequence with index 1 + ij and
Xij+1

for the maximal S-cadet sequence with index ij+1 (the maximal S-cadet sequence
for which i has index j + 1).

First consider an S-boxing B = (Y1, . . . , Yr) ∈ B. For 1 6 j 6 r − 1, let Xij+1
be

the maximal S-cadet sequence that Yj precedes. Let Xi0 = X0 and Xi1 = X1. Note that
Xir = Xk′ because vk ∈ Xk′ \Xk′−1, so Yr must be contained within Xk′ , so the cadet of
the last node in Yr−1 must be in Xk′ .

To see that Xij reaches Xij+1
, let v be the last node in Yj−1. Then since Yj−1 precedes

Xij , we have cadet(v) ∈ Xij \ X1+ij . Moreover, we have cadet(v) ∈ Yj which means
Yj ⊆ Xij . Now let u be the last node in Yj. Then since Yj precedes Xij+1

, we have
cadet(u) ∈ Xij+1

\X1+ij+1
, and cadet(u) is also the largest indexed node with this property.

Now, since the node u with this property is contained in Yj, it is contained in Xij , so Xij

reaches Xij+1
by definition.

Now consider a sequence (Xi0 , . . . , Xir) so that Xi0 = X0, Xir = Xk′ , and Xij reaches
Xij+1

for all j. For j ∈ [r − 1], define Yj to have last node u ∈ Xij so that cadet(u) ∈
Xij+1

\X1+ij+1
and cadet(cadet(u)) ∈ X1+ij+1

. (Note that this is possible since Xij reaches
Xij+1

.) Define the last node of Yr to be vk.
Now that we have identified our remaining S-boxings with certain sequences of maxi-

mal S-cadet sequences, we wish to find a sign-reversing involution on all such sequences
except the one generated by the algorithm. For such a sequence let (1j) denote the con-
dition that Xij+2

is not reached by Xij , and let (2j) denote the condition that Xij+1
is the

first S-box of the full sequence reached by Xij , but not by Xij−1
.

Suppose there is some smallest index q for which either (1q) is false or (2q) is false. If
(2q) is false, we can insert Xp after Xij such that Xp is the smallest indexed S-box reached
by Xij but not Xij−1

. This increases the length by 1 and makes (1q) false and (2q) true.
Otherwise, (2q) is true and (1q) is false. We can then delete Xq+1 from the subsequence.

This decreases the length by 1 and makes (2q) false. As these two operations are inverse to
each other, we can consider only S-boxings B ∈ B corresponding to sequences satisfying
(1j) and (2j) for all j. This leaves only the sequence generated by the algorithm.

We observe that Theorem 30, together with Lemmas 20 and 25, provide an algorithm
for computing the contribution rS(T ) of any tree T ∈ T (m)(n).

Remark 32. We note that the unsimplified version of Bernardi’s formula can only be
computed in exponential time. (This essentially follows from needing to find all possible
S-boxings of the given tree.) On the other hand, the complexity of our proposed algorithm
appears to be at most O(n2 logm). Indeed, the step which appears to be the most
nontrivial is finding all of the maximal S-cadet sequences. To do this, let us suppose we
are starting with a cadet sequence (v1, . . . , vk). Then for each i, we denote by f(i) the

smallest index for which
∑f(i)

`=i+1 lsib(v`) ∈ S−i,f(i). (If none exists, we can set f(i) = k+ 1.)

Assuming a complexity of O(logm) to determine if a number is in a given set S−i,`, we can
compute the function f in O(n2 logm). The longest S-cadet sequence starting at vi will
then end at the vertex with index g(i) := mini6`6f(i)−1(f(`) − 1). We see that g can be
computed in O(n2). It then remains to delete those S-sequences we have generated which

the electronic journal of combinatorics 28(4) (2021), #P4.2 13



are not maximal (it is possible they can be “extended downards”). This process can be
done in O(n). Putting this together, we conclude that finding all of the maximal S-cadet
sequences of a given cadet sequence has complexity at most O(n2 logm).

In particular, the following corollaries make it easier to compute the contribution of
many trees.

Corollary 33. In a tree with nonzero contribution, any maximal S-cadet sequence of size
more than one must intersect some other maximal S-cadet sequence.

Proof. Let X be a maximal S-cadet sequence which does not intersect some other maximal
S-cadet sequence. We observe that X is an S-connected cadet sequence. Moreover, if there
exist two nodes v, cadet(v) ∈ X, then as in the proof of the theorem, we can construct a
sign-reversing involution by combining or splitting the S-boxes containing v and cadet(v).
Thus any such tree has contribution 0.

Remark 34. We observe that for transitive arrangements, no two distinct maximal S-cadet
sequences intersect. Thus, in this case, S-connected cadet sequences and maximal S-cadet
sequences are one and the same. This implies that the contribution of each S-connected
cadet sequence (and by extension each tree) is either 0 or 1. (This fact was leveraged by
Bernardi to prove Theorem 13. Indeed, in [5, Definition 4.5], the set TS in the statement
of Theorem 13 is defined to be the set of trees T ∈ T (m)(n) for which every maximal
S-cadet sequence consists of exactly one node.) On the other hand, we suspect that trees
contributing -1 always exist for non-transitive arrangements. For example, if s /∈ S−i,j,
t /∈ S−j,k, and s+ t ∈ S−i,k, then an S-connected cadet sequence (vi, vj, vk) with lsib(vj) = s
and lsib(vk) = t would contribute −1.

Corollary 35. Let T ∈ T (m)(n) and let X = (v1, v2, . . . , vk) be an S-connected cadet
sequence of T with maximal S-cadet sequences X1, . . . , Xk′ (in increasing order of index
of last node). Define X0 = {0} = Xk′+1. If X has nonzero contribution and k′ > 1, then
|X1 \X2| = 1 = |Xk′ \Xk′−1|.

Proof. The fact that |X1 \ X2| = 1 is immediate from Remark 29 and Theorem 30.
Moreover, by Theorem 30, there exists j < k′ so that Xj reaches Xk′ . Since the largest
indexed node in Xk′ \Xk′+1 is vk, this means vk−1 ∈ Xj and j = k′ − 1.

4 Contributions for Almost Transitive Arrangements

In this section, we define almost transitive arrangements and show that Ish-type arrange-
ments are almost transitive. We then further characterize the contributions of trees for
almost transitive arrangements.

Definition 36. We say a hyperplane arrangement AS is almost transitive if for all distinct
i, j, k ∈ [n] with 1 /∈ {i, k} and for all nonnegative integers s ∈ S−i,j and t ∈ S−j,k, we have

s+ t /∈ S−i,k.
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Remark 37. Since permuting the axes does not affect the number of regions of a hyperplane
arrangement or the corresponding signed sum of trees, the condition 1 /∈ {i, k} could be
replaced with c /∈ {i, k} for any fixed c ∈ [n].

Lemma 38. Any Ish-type arrangement is almost transitive.

Proof. Let AS be an Ish-type arrangement. We observe that S−i,j = {0} whenever 1 /∈
{i, k}. Now let i, j, k ∈ [n] be distinct with 1 /∈ {i, k} and let s /∈ S−i,j and t /∈ S−j,k be

nonnegative integers. Note that 0 ∈ S−i,j ∩ S−j,k, so we must have s > 0 and t > 0. This

means s+ t /∈ S−i,k = {0}, as desired.

Lemma 39. Let AS be almost transitive and let T ∈ T (m)(n). Suppose that (v1, v2, . . . , vk)
and (vk, vk+1, . . . , vk+`) are S-cadet sequences of T . If either vk = 1 or neither sequence
contains the node 1, then (v1, v2, . . . , vk+`) is an S-cadet sequence of T .

Proof. Let i < k and 0 < j 6 `. Then by assumption
∑k

p=i+1 lsib(vp) /∈ S−vi,vk and∑k+j
p=k+1 lsib(vp) /∈ S−vk,vk+j

. Now neither vi nor vk+j is the node 1. Thus since AS is almost

transitive, we have
∑k+j

p=i+1 lsib(vp) /∈ S−vi,vk+j
. This implies the result.

Corollary 40. Let AS be almost transitive and let T ∈ T (m)(n). Suppose there ex-
ist positive integers a, b, c and nodes u1, . . . , ua+b+c such that both (u1, u2, . . . , ua+b) and
(ua, ua+1, . . . , ua+b+c) are maximal S-cadet sequences of T . Then 1 ∈ {ua−1, ua+b+1}.

Proof. Since (ua−1, ua, . . . , ua+b+c) is not an S-cadet sequence, Lemma 39 implies that
either ua−1 = 1 or there exists a < j 6 a+b+c such that uj = 1. If ua−1 = 1 we are done,
so suppose there exists such a j. Since (u1, . . . , ua+b, ua+b+1) is not an S-cadet sequence,
Lemma 39 then implies that j = a+ b+ 1.

Now, we can fully characterize the contribution of a tree.

Proposition 41. Let AS be almost transitive and let T ∈ T (m)(n). Then the contribution
rS(T ) is nonzero if and only if the following conditions hold:

1. Any maximal cadet sequence of T not containing the node 1 does not contain any
maximal S-cadet sequences of size greater than 1.

2. In the maximal cadet sequence (v1, v2, . . . , vt) containing the node 1 =: vj, there exist
unique integers 0 6 i < j and 0 6 k < t− j so that:

(a) If t < j − i− 1 or t > j + k + 1, then {vt} is a maximal S-cadet sequence.

(b) There is a maximal S-cadet sequence {vj−i, . . . , vj, . . . , vj+k}.
(c) If j − i 6= 1, then there is a maximal S-cadet sequence {vj−i−1, vj−i, . . . , vj−1}.

If j − i = 1, then i = 0.

(d) If j + k 6= t, then there is a maximal S-cadet sequence {vj+1, . . . , vj+k, vj+k+1}.
If j + k = t, then k = 0.
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(e) There are no other maximal S-cadet sequences.

Furthermore, if T satisfies these conditions, then its contribution is given by rS(T ) =
(−1)k+i.

Proof. Let T ∈ T (m)(n) have nonzero contribution. Then each of its maximal cadet
sequences must contribute ±1 by Lemma 20. By Corollary 33, this means any maximal
S-cadet sequence of size greater than 1 intersects another maximal S-cadet sequence, and
so condition (1) is a direct consequence of Corollary 40.

Now consider the maximal cadet sequence X = (v1, v2, . . . , vt) containing 1 =: vj.
Since we have already shown (1), we note that the contribution of X is equal to the
contribution of T .

Suppose X has maximal S-cadet sequences (X1, X2, . . . , Xk′) in increasing order of
index of last node. As usual, define X0 = {0} = Xk′+1. Since X is the union of its
maximal S-cadet sequences, there exists some maximal S-cadet sequence Xr which can
be written Xr = {vj−i, . . . , vj, . . . , vj+k} for some 0 6 i 6 j and 0 6 k 6 t− k. Thus the
tree T satisfies (2b). Now by Corollary 40, we see that if a maximal S-cadet sequence
Xs intersects Xr, then either the last node of Xs is vj−1 or the first node of Xs is vj+1.
This means Xr−1 intersects Xr if and only if either Xr−1 has size greater than 1, Xr+1

intersects Xr if and only if Xr+1 has size greater than 1, and no other maximal S-cadet
sequence intersects Xr. Moreover, if s < r − 1 or s > r + 1, then Xs does not intersect
any other maximal S-cadet sequence, and thus has size one. We have therefore shown
that T satisfies (2a).

If j − i = 1 (so that r = 1), then Corollary 35 implies that Xr+1 \ Xr = {vj} and
hence i = 0. Likewise, if j + k = t (so that r = k′), then Corollary 35 implies that
Xr \Xr−1 = {vj} and hence k = 0.

We now show that if r 6= 1 then the first node of Xr−1 is vj−i−1 and if r 6= t then the
last node of Xr+1 is vj+k+1. Suppose r 6= 1 and observe that, for any s, if Xs and Xs+1

both have size 1, then Xs reaches Xs+1 and does not reach any other maximal S-cadet
sequence. Thus by Theorem 30, we have a sequence (X0, X1, . . . , Xr−2, Xr−1) where each
maximal S-cadet sequence reaches the next. Thus the largest indexed node in Xr−1 \Xr

is vi−j−1 as desired. The result for Xr+1 is completely analogous, observing that Xr must
reach Xr+1.

We have thus shown (2c) and (2d). Condition (2e) then follows immediately from the
observation that the only possible maximal S-cadet sequences of size greater than 1 are
those in (2b), (2c), and (2d).

Now suppose T satisfies (1) and (2). We then see that the contribution of T is equal
to the contribution of the maximal cadet sequence containing 1 and that this contribution
is nonzero. Indeed, using the notation as above we see that (X0, X1, . . . , Xk′) is a valid
output of the algorithm in Theorem 30. Furthermore, we have that k′ = (j − i− 1) + 1 +
(t− k − j). Thus by Theorem 30, the contribution of T is

rS(T ) = (−1)t−(j−i+t−k−j) = (−1)i+k.
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Definition 42. Let AS be almost transitive and let T ∈ T (m)(n) have nonzero contribu-
tion. Let i and k be as in the statement of Proposition 41. Then we refer to Ll(T ) := i
and Lu(T ) := k as the lower 1-length and upper 1-length of T , respectively.

As an example, the tree shown in Figure 5 has Ll(T ) = 1 and Lu(T ) = 0. (See
Notation 44 and Example 45 below for an explanation of the caption.) We note the
the lower and upper 1-length of a (rooted labeled plane) tree depend on the hyperplane
arrangement AS, even though this is not reflected in our notation.

5 1-length and Inefficiency

In this section, we work exclusively with Ish-type arrangements. We recall from Lemma 38
that these arrangements are almost transitive. We therefore study the conditions outlined
in Proposition 41 in detail. We do so using the notions of upper and lower 1-length and
two additional parameters, which we define now.

Definition 43. Let AS be an Ish-type arrangement and Let T ∈ T (m)(n) and let
(v1, . . . , vj, . . . , vt) be the maximal cadet sequence of T which contains the node 1 =: vj.
We say a node w of T is lower inefficient if w is a left sibling of 1 and lsib(w) /∈ S−w,1.
Likewise, we say w is upper inefficient if parent(w) = 1, w is not the cadet of 1, and
lsib(w) /∈ S−1,w. We denote by El(T ) and Eu(T ) the number of lower and upper inefficient
nodes in T , respectively. We refer to these values as the lower inefficiency and upper
inefficiency of T .

We emphasize that, as with lower and upper 1-length, the lower and upper inefficiency
of a (rooted labeled plane) tree depend on the hyperplane arrangement AS, even though
this is not reflected in our notation.

Notation 44. We denote by S(el, `l, eu, `u) the set of trees T ∈ T (m)(n) with nonzero
contribution so that El(T ) = el, Ll(T ) = `l, Eu(T ) = eu, and Lu(T ) = `u. We note that
S(el, `l, eu, `u) is necessarily empty if el + `l + eu + `u > n.

Example 45. Let AS be the nested Ish arrangement with n = 8 and each S1,j = {−j +
1, . . . , j−1}. Then the tree in Figure 5 is an element of S(1, 1, 0, 2). The maximal S-cadet
sequences of size larger than 1 are {7, 5} and {5, 1}, the upper inefficient nodes are 2 and
3, and the lower inefficient node is 4.

We now describe a series of sign-reversing involutions in order to reduce Bernardi’s
formula to the enumeration of the trees in S(0, 0, 0, 0). In particular, we will show that
the trees with lower 1-length `l 6= 0 (resp. upper 1-length `u 6= 0) and lower (resp. upper)
inefficiency 0 are in bijection with those of lower 1-length `l − 1 (resp. upper 1-length
`u − 1) and nonzero lower (resp. upper) inefficiency.

We first fix some el, `l, eu, `u with `l 6= 0 and let T ∈ S(el, `l, eu, `u). We denote by
(v1, . . . , vj, . . . , vt) the maximal cadet sequence of T containing the node 1 =: vj. Note
that by Proposition 41, the fact that Ll(T ) = `l 6= 0 implies that j − `l 6= 1. We now
construct a new (rooted labeled plane) tree φl(T ) as follows:
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Figure 5: A tree in S(1, 1, 0, 2), where AS is the nested Ish arrangement with n = 8 and
each S1,j = {−j + 1, . . . , j − 1}.

.

1. Delete all of the right siblings of the node vj−1 (which are necessarily leaves), and
denote by s1, s2, . . . , slsib(1) the left siblings of the node 1 (including leaves), indexed
left to right.

2. Let c be the leftmost child of vj−2. (Note that c may or may not be a node). Replace
the edge from vj−2 to c with a pair of edges from vj−2 to a new node v′j−1 and from
v′j−1 to c.

3. For each i ∈ [lsib(1)] in order, delete the edge from vj−1 to si and draw an edge from
vj−2 to si so that si has i− 1 left siblings.

4. Delete the node vj−1 and all incident edges, relabel v′j−1 by vj−1, and draw an edge
from vj−2 to 1 so that 1 is the rightmost child of vj−2.

5. Add and delete leaves as rightmost children where necessary so that every node has
m+ 1 children.

The idea behind this construction is to move vj−1 from being in a maximal S-cadet
sequence with 1 to being a lower inefficient node. An example is shown in Figure 6.

Lemma 46. Let T ∈ S(el, `l, eu, `u). Then φl(T ) ∈
⋃n−1
b=el+1 S(b, `l − 1, eu, `u).

Proof. We first claim that φl(T ) is a well-defined member of T (m)(n). Indeed, we have
lsibφl(T )(1) = lsibT (1)+ lsibT (vj−1), lsibφl(T )(vj−1) = lsibT (1), and lsibφl(T )(w) = lsibT (w) for
all other nodes w. Now recall from Proposition 41(2) that both {vj−`l−1, . . . , vj−1} and
{vj−`, . . . , vj} are S-cadet sequences, but {vj−`l−1, . . . , vj} is not. This means

j∑
p=j−`l

lsibT (vp) ∈ S−vj−`l−1,1
.

This sum gives an upper bound on lsibT (1) + lsibT (vj−1), which means 1 (and hence every
node) has at most m left siblings in φl(T ). We conclude that φl(T ) ∈ T (m)(n), as desired.
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Figure 6: An example of the map φl applied to a tree in S(1, 2, 0, 0), where AS is the Ish
arrangement with n = 6. All leaves which do not have any nodes as left siblings have
been omitted for clarity. We note that the final tree is an element of S(2, 1, 0, 0).

Now note that vj−1 is lower inefficient in φl(T ) since {vj−1, vj} is an S-cadet sequence
of T . Moreover, if a left sibling si of 1 in T is a node, then si is still a left sibling of 1 in
φl(T ) with lsibφl(T )(si) = lsibT (si). This means si is lower inefficient in T if and only if it
is lower inefficient in φl(T ). We conclude that El(φl(T )) > El(T ) = el.

We now observe that (v1, . . . , vj−2, vj, . . . , vt) is a maximal cadet sequence of φl(T ). It
is straightforward to verify that the maximal S-cadet sequences of this cadet sequence are
precisely those of (v1, . . . , vt) in T with the node vj−1 removed. This means Ll(φl(T )) =
Ll(T )−1 = `l−1 and Lu(φl(T ) = Lu(T ) = `u. Moreover, if j+`u 6= t, then the left siblings
of vj+`u+1 are the same in both T and φl(T ). This implies that Eu(φl(T )) = Eu(T ) = eu.

It remains to show that no other maximal cadet sequence of φl(T ) contains a maximal
S-cadet sequence of size larger than 1. Indeed, consider the maximal cadet sequence of
φl(T ) which contains vj−1. We note that vj−1 is a left sibling of 1, and hence is not the
cadet of any node. Moreover, if vj−1 has a cadet, then this cadet must be c and we have
lsibφl(T )(c) = 0 ∈ S−vj−1,c

by construction. As no other nodes have their cadets or number
of left siblings changed in moving from T to φl(T ), this implies the result.

Now let T ∈ ∪n−1b=el+1S(b, `l−1, eu, `u), and let (v1, . . . , vj, . . . , vt) be the maximal cadet
sequence of T containing the node 1 =: vj. Since El(T ) 6= 0, it must be that j 6= 1. Now
construct a new tree ψell (T ) as follows:

1. Let w be the (el + 1)-th lower inefficient node of T (from the left). Denote by
s1, s2, . . . , slsib(w) the left siblings of w, indexed left to right.

2. Let c be the leftmost child of w. (Note that c may or may not be a node.) Delete
all right siblings of c (necessarily leaves), and replace the edges from vj−1 to w and
from w to c with an edge from vj−1 to c.

3. Delete the node w and all incident edges and replace the edge from vj−1 to 1 with
edges from vj−1 to a new node again labeled w and this new node w to 1.
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Figure 7: An example of the map ψ1
l applied to a tree in S(2, 1, 0, 0), where AS is the Ish

arrangement with n = 6. All leaves which do not have any nodes as left siblings have been
omitted for clarity. We note that this gives an inverse to the construction in Figure 6.

4. Delete the edges from vj−1 to s1, . . . , slsib(w) and draw edges from w to s1, . . . , slsib(w)
so that the left siblings of 1 are s1, . . . , slsib(w) in that order.

5. Add and delete leaves as rightmost children where necessary so that every node has
m+ 1 children.

An example of this construction is shown in Figure 7. We emphasize that the param-
eter el must be specified in the definition of ψell . Indeed, this will allow us to accurately
describe the bijections in our proof of Theorem 50.

Lemma 47. Let T ∈
⋃n−1
b=el+1 S(b, `l − 1, eu, `u). Then ψell (T ) ∈ S(el, `l, eu, `u).

Proof. We first claim that ψell (T ) is a well-defined member of T (m)(n). Indeed, we have
that lsibψel

l (T )(1) = lsibT (w), lsibψel
l (T )(w) = lsibT (1)− lsibT (w), and lsibψT

(w′) = lsibT (w′)

for all other nodes w′. We conclude that every node has at most m left siblings in ψell (T )
and thus ψell (T ) ∈ T (m)(n).

We next observe that (v1, . . . , vj−1, w, vj, . . . , vt) is a maximal cadet sequence of ψell (T ).
It is straightforward to show that the maximal S-cadet sequences of this cadet sequence
are precisely those of (v1, . . . , vj, . . . , vt) in T with u appended to the maximal S-cadet
sequence which ends with vj−1 and to the maximal S-cadet sequence which contains
1 = vj. This means Ll(ψ

el
l (T )) = Ll(T )+1 = `l and Lu(ψ

el
l (T )) = Lu(T ) = `u. Moreover,

if j + `u 6= t, then the left siblings of vj+`u+1 are the same in both T and ψell (T ). This
implies that Eu(ψ

el
l (T )) = Eu(T ) = eu.

Now, since no other nodes have their cadets or number of left siblings changed in
moving from T to ψell (T ), all other maximal S-cadet sequences of ψell (T ) have size 1.
Furthermore, the left siblings of 1 in ψell (T ) are precisely those of u in T (in the same
order). In particular, the lower inefficient nodes in ψell (T ) correspond precisely with those
lower inefficient nodes of T which are left of v, of which there are el. This implies the
result.

We now give “upper analogues” to the constructions φl and ψell . We remark that the
proofs of Lemmas 48 and 49 below are similar to those of Lemmas 46 and 47.
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Figure 8: An example of the maps φu and ψ1
u, where AS is the nested Ish arrangement

with n = 6 and S1,j = {−j + 1, . . . , 0} for each j. The tree on the left is an element of
S(0, 0, 1, 1) and the tree on the right is an element of S(0, 0, 2, 0).

Again fix some el, `l, eu, `l, now with `u 6= 0, and let T ∈ S(el, `l, eu, `u). We denote
by (v1, . . . , vj, . . . , vt) the maximal cadet sequence of T containing 1 =: vj. Note that by
Proposition 41, the fact that Lu(T ) = `u 6= 0 implies that j + `u 6= t. We now construct
a new tree φu(T ) as follows:

1. Delete all right siblings of the node vj+1 (necessarily leaves) and denote the left
siblings of the node vj+2 by s1, . . . , slsib(vj+2), indexed left to right.

2. For each i ∈ {2, . . . , lsib(vj+2)} in order, delete the edge from vj+1 to si and draw
an edge from 1 to si so that si has lsibT (vj+1) + i− 1 left siblings. (That is, at each
step si is the rightmost child of 1.) Likewise, delete the edge from vj+1 to vj+2 and
draw an edge from 1 to vj+2 so that vj+2 is the rightmost child of 1.

3. Add and delete leaves as rightmost children where necessary so that every node has
m+ 1 children.

The idea behind the construction is to move vj+1 from being in a maximal S-cadet se-
quence with 1 to being an upper inefficient node. An example is show in Figure 8.

Lemma 48. Let T ∈ S(el, `l, eu, `u). Then φu(T ) ∈
⋃n−1
b=eu+1 S(el, `l, b, `u − 1).

Proof. We first claim that φu(T ) is a member of T (m)(n). Indeed, we observe that
lsibφu(T )(vj+2) = lsibT (vj+1) + lsibT (vj+2), lsibφu(T )(w) = lsibT (w) + lsibT (vj+1) is w is
a left sibling (but not the leftmost sibling) of vj+2, and lsibφu(T )(w

′) = lsibT (w′) for
all other nodes w. Now recall from Proposition 41(2) that both {vj, . . . , vj+`u} and
{vj+1, . . . , vj+`u+1} are S-cadet sequences, but {vj, . . . , vj+`u+1} is not. This means

j+`u+1∑
p=j+1

lsibT (vp) ∈ S−1,vj+`u+1
.

This sum gives an upper bound on lsibT (vj+1) + lsibT (vj+2), which means vj+1 (and hence
every node) has at most m left siblings in φu(T ). We conclude that φu(T ) ∈ T (m)(n), as
desired.

We now observe that (v1, . . . , vj, vj+2, . . . , vt) is a maximal cadet sequence of φu(T ).
It is straightforward to verify that the valid S-boxings of (v1, . . . , vj, vj+2, . . . , vt) in φu(T )
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are precisely those of (v1, . . . , vt) in T with the node vj+1 removed. In particular, we
have that (vj−`l , . . . , vj, vj+2, . . . , vj+`u) is the maximal S-cadet sequence of φu(T ) which
contains 1 = vj. This means Lu(φu(T )) = Lu(T )− 1 = `u− 1 and Ll(φu(T ) = Ll(T ) = `l.
Moreover, if j− `l 6= 1, the left siblings of 1 = vj are the same in both T and φu(T ). This
means El(φu(T )) = El(T ) = el.

Now since {vj, vj+1} is an S-cadet sequence of T , we see that vj+`u is upper inefficient
in φu(T ). Moreover, if si is a left sibling of vj+1 in T which is a node, then si is still a left
sibling of vj+1 in φu(T ) with lsibφu(T )(si) = lsibT (si). This means si is upper inefficient in T
if and only if it is upper inefficient in φu(T ). We conclude that Eu(φu(T )) > Eu(T ) = eu.

It remains to show that no other maximal cadet sequence of φu(T ) contains a maximal
S-cadet sequence of size larger than 1. Indeed, consider the maximal cadet sequence of
φu(T ) which contains vj+1. We note that vj+1 is a left sibling of vj+2, and hence is not the
cadet of any node. Moreover, if vj+1 has a cadet, then this cadet was the leftmost child
of vj+1 in T and has no left siblings in φu(T ) by construction. As no other nodes have
their cadets or number of left siblings changed in moving from T to φl(T ), this implies
the result.

Now let T ∈ ∪n−1b=eu+1S(el, `l, b, `u − 1). Let (v1, . . . , vj, . . . , vt) be the maximal cadet
sequence of T containing 1 =: vj. Note that Eu(T ) > 0 implies that j 6= t. Now construct
a new tree ψeuu (T ) as follows:

1. Let w be the (eu + 1)-th upper inefficient node of T (from the right). Delete all but
the leftmost child of w.

2. Fix λ = lsib(vj+1)− lsib(w)−1 and denote the vertices which have w as a left sibling
and vj+1 as a right sibling by s1, . . . , sλ, indexed left to right.

3. For each i ∈ [λ] in order, delete the edge from 1 to si and draw an edge from w to
si so that si has i left siblings. Likewise, delete the edge from 1 to vj+1 and draw
an edge from w to vj+1 so that w has λ+ 1 left siblings.

4. Add and delete leaves as right siblings where necessary so that every node has m+1
children.

As before, we emphasize that the parameter el must be specified in the definition of
ψell . An example is shown in Figure 8.

Lemma 49. Let T ∈
⋃n−1
b=eu+1 S(el, `l, b, `u − 1). Then ψeuu (T ) ∈ S(el, `l, eu, `u).

Proof. We first claim that ψeuu (T ) is a well-defined member of T (m)(n). Indeed, we have
that lsibψeu

u (T )(vj+1) = lsibT (vj+1)−lsibT (w) and lsibφu(T )(w
′) = lsibT (w′) for all other nodes

w′. We conclude that every node has at mostm left siblings in φu(T ) and φu(T ) ∈ T (m)(n),
as desired.

We now observe that (v1, . . . , vj, w, vj+1, . . . , vt) is a maximal cadet sequence of ψeuu (T ).
It is straightforward to verify that the valid S-boxings of this sequence are precisely
those of (v1, . . . , vt) in T with the node w appended to the maximal S-cadet sequence
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which starts with vj+1 and to the maximal S-cadet sequence which contains 1 = vj.
This means Lu(ψ

eu
u (T )) = Lu(T ) + 1 = `u and Ll(φu(T ) = Ll(T ) = `l. Moreover, if

j − `l 6= 1, the left siblings of vj−`l−1 are the same in both T and ψeuu (T ). This means
El(ψ

eu
u (T )) = El(T ) = el.

Now, since no other nodes have their cadets or number of left siblings changed in
moving from T to ψeuu (T ), all other maximal S-cadet sequences of ψeuu (T ) are of size 1.
Furthermore, the left siblings of w in ψeuu (T ) are precisely those of w in T (in the same
order). In particular, the upper inefficient nodes in ψeuu (T ) correspond precisely with those
upper inefficient nodes of T which are left of w, of which there are eu. This implies the
result.

We now prove the main result of this section.

Theorem 50 (Theorem 2). Let AS be an Ish-type arrangement. Then the regions of AS

are equinumerous with the trees in T (m)(n) with lower length, lower inefficiency, upper
length, and upper inefficiency all 0. That is, rS = |S(0, 0, 0, 0)|.

Proof. Let T (m)
1 (n) ⊆ T (m)(n) be the set of trees with nonzero contribution. We recall

from Proposition 41 that

rS =
∑

T∈T (m)
1 (n)

(−1)Ll(T )+Lu(T ) =
∑

el+`l+eu+`u<n

(−1)`l+`u|S(el, `l, eu, `u)|.

Now let T ∈ T (m)
1 (n). We note that if Ll(T ) 6= 0, then φl(T ) is defined. In this

case, it is straightforward to show that ψ
El(T )
l ◦ φl(T ) = T . Likewise, if El(T ) 6= 0, then

φl ◦ ψil(T ) = T for any i ∈ {0, . . . , El(T ) − 1}. By replacing “lower” with “upper”, the
analogous statements hold for the compositions of φu and ψiu.

Now for any eu and `u, we define a sign-reversing involution ωl on⋃
el,`l,eu,`u:el+`l 6=0

S(el, `l, eu, `u)

by

ωl(T ) =

{
φl(T ) El(T ) = 0

ψ0
l (T ) El(T ) 6= 0

.

We remark that this is indeed a sign-reversing operation since the maps φl and ψ0
l change

the parameter `l by 1 and preserve the parameter `u. Moreover, the function ωl is an
involution since for any T , the tree ψ0

l (T ) contains no lower inefficient nodes. Thus we
can reduce our equation to

rS =
∑

eu+`u<n

(−1)`u |S(0, 0, eu, `u)|.

Now again, we define a sign-reversing involution ωu on⋃
eu,`u:eu+`u 6=0

S(0, 0, eu, `u)
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by

ωu(T ) =

{
φu(T ) Eu(T ) = 0

ψ0
u(T ) Eu(T ) 6= 0

.

As before, this allows us to reduce equation to rS = |S(0, 0, 0, 0)|.

6 The Counting Formula for Nested Ish Arrangements

In this section, we show directly that for any nested Ish arrangement AS, the number of
trees in S(0, 0, 0, 0) is equal to the known counting formula for number of regions of AS

(Equation 1).

Lemma 51. Let AS be a nested Ish arrangement. Let T(S) be the set of rooted labeled
plane trees with n nodes such that

1. The root is the node 1.

2. The node 1 has 2m+ 2 children.

3. Every other node has one child.

4. For k 6= 1 a node, either lsib(k) ∈ S−1,k or rsib(k) ∈ S−k,1.

Then |T(S)| =
∏n

k=2(n+ 1 + |S1,k| − k).

Proof. Let S(S) be the set of sequences a2, . . . , an where

ak ∈ Ak := {(0, i)|i ∈ {k + 1, k + 2, . . . , n}} ∪ {(1, s)|s ∈ S−1,k} ∪ {(−1, t)|t ∈ S−k,1}

for all k. Since (−S−1,k) ∪ S
−
k,1 = S1,k and (−S−1,k) ∩ S

−
k,1 = {0}, we observe that

|S(S)| =
n∏
k=2

((n− k) + |S−1,k|+ |S
−
k,1|) =

n∏
k=2

(n+ 1 + |S1,k| − k).

We will construct a bijection between T(S) and S(S).
For k ∈ [n], consider the set of rooted labeled plane trees with n− k+ 1 nodes labeled

1, k + 1, . . . , n. (Our convention when k = n is that the single node is labeled 1.) Let
Tk(S) of such trees which satisfy:

1. The root of the tree is 1.

2. The node 1 has 2m+ 2 children.

3. Every other node has one child.

4. For j > k a node, either lsib(j) ∈ S−1,j or rsib(j) ∈ S−j,1.
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We note that T1(S) = T(S). Now for any tree T and any node k in T with a parent
and exactly one child, we define extracting k as removing the node k from the tree and
drawing an edge between its neighbors.

Now let k > 1, let T ∈ Tk−1(S), and let T ′ be the tree obtained by extracting the
node k from T . If k is a child of 1, then we see that lsibT ′(child(k)) = lsibT (k) (and hence
rsibT ′(child(k)) = rsibT (k)). Moreover, for all other nodes j > k, we have that the number
of left (and right) siblings of j does not change between T and T ′. Thus since child(k) > k
and AS is nested, T ′ ∈ Tk(S).

Now let T ∈ T(S). We associate T =: T1 to a sequence a2, . . . , an in S(S) as follows.
For each k ∈ {2, 3, . . . , n} in order:

1. From the tree Tk−1, define

ak =


(0, parent(k)) if parent(k) 6= 1

(1, lsib(k)) if parent(k) = 1 and rsib(k) > m

(−1, rsib(k)) if parent(k) = 1 and lsib(k) > m

(5)

2. Extract k from Tk−1 to yield Tk.

We note that the second and third cases are indeed mutually exclusive, so this map is
well-defined by the previous paragraph. See Example 52 below.

We next construct a map from S(S) to T(S). Let a2, a3 . . . , an be a sequence in S(S)
and let Tn be the tree consisting of a node labeled 1 with 2m + 2 children (all of which
are leaves). For each k ∈ {n, n− 1, . . . , 2} in decreasing order, construct Tk−1 from Tk as
follows:

1. If ak = (0, i), then i > k and there is a node labeled i in Tk. Replace the edge from
i to child(i) with edges from i to a new node labeled k and from k to child(i).

2. If ak = (1, i), then let c be the child of 1 in Tk which has i left siblings. Replace the
edge from 1 to c with edges from 1 to a new node labeled k and from k to c.

3. If ak = (−1, i), then let c be the child of 1 in Tk which has i right siblings. Replace
the edge from 1 to c with edges from 1 to a new node labeled k and from k to c.

Note that the final tree T := T1 is in T(S).
Now let k ∈ [n] and let Tk ∈ Tk(S) be arbitrary. If k 6= 1, let ak ∈ Ak be arbitrary and

form a tree Tk−1 using the above construction. We then see that extracting k from Tk−1
yields Tk and that ak is precisely as described in Equation 5. Likewise, if k 6= n extract
k+ 1 from Tk to form a new tree Tk+1 and define ak+1 as in Equation 5. We then see that
adding a node k + 1 to Tk+1 using the above construction yields precisely Tk. We have
thus given a bijection between T(S) and S(S).

Example 52. Let AS be the nested Ish arrangement with S1,j = {0, 1, . . . , j − 2} for
1 6= j ∈ [6]. Consider the tree T ∈ T(S) on the right in Figure 9. We see that 2 has
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Figure 9: An example of the bijection in Theorem 53, where AS is the nested Ish arrange-
ment with S1,j = {0, 1, . . . , j− 2} for 1 6= j ∈ [6]. Leaves which lie to the right of 6, above
3, or above 5 are omitted from the left picture for clarity. Visually, the forward direction
of this bijection can be seen as flipping the edges pointing up from 6 (or more generally
from the parent of 1) so that they point down from 1, then rotating everything below 1
counterclockwise until 1 is positioned as the root.

more than m = 4 left siblings and 0 right siblings, meaning we associate to this tree
a2 = (−1, 0). Proceeding in this way, the sequence corresponding to this tree is given by:

a2 = (−1, 0), a3 = (1, 1), a4 = (0, 6),

a5 = (1, 2), a6 = (−1, 2).

We now recover the known counting result of [1] for the number of regions of a nested
Ish arrangement.

Theorem 53 (Theorem 3). Let AS be a nested Ish arrangement. Then the number of
regions of AS is given by

rS =
n∏
k=2

(n+ 1 + |S1,k| − k).

In particular, if AS is the (n-dimensional) Ish arrangement, then the number of regions
is given by the Cayley formula: rS = (n+ 1)n−1.

Proof. By Theorem 50 and Lemma 51, we need only show that there is a bijection between
S(0, 0, 0, 0) and T(S). Informally, given a tree T ∈ S(0, 0, 0, 0), we will construct a new
tree as follows. If 1 is not the root of T , we first “flip” the edges pointing up from the
parent of the node 1 so that they point down from 1. We then rotate everything below 1
counterclockwise until 1 is positioned as the root. See Figure 9 for an example. If, on the
other hand, the node 1 is already the root of T , we will simply add m + 1 new leaves as
the rightmost children of 1 and delete all of the children but the leftmost of every node.

We now rigorously define this bijection and its inverse. First let T ∈ S(0, 0, 0, 0)
and let v be a node in T . We observe that if v is not the root and is the cadet of its
parent u, then Proposition 41 and the definitions of lower and upper 1-length imply that
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lsibT (v) ∈ S−u,v. This means that lsibT (v) can only be nonzero if v = 1, v is a child of 1,
or v is a left sibling of 1. Otherwise, either v is the root or it is the leftmost child of its
parent and its m right siblings are all leaves.

We now define a new tree f(T ) as follows. If 1 is the root of T , then add m+ 1 leaves
as the rightmost children of 1 and delete all of the children but the leftmost of every other
node. (Note that these deleted children are all leaves.) Otherwise:

1. Delete all leaves other than those which are left siblings of some node, children of
1, or right siblings of 1.

2. Denote the left siblings of 1 by s1, s2, . . . , slsib(1) and the right siblings of 1 (necessarily
leaves) by slsib(1)+2, . . . , sm+1.

3. Denote by (v1, . . . , vk, 1) the cadet sequence from the root v1 to 1. For each j ∈ [k],
delete all edges incident to vj. Consider 1 as the new root.

4. Draw edges from 1 to s1, . . . , slsib(1), vk, slsib(1)+2, . . . , sm+1 so that si has i − 1 right
siblings for each i and vk has lsib(1) right siblings.

5. For each j ∈ {k, k − 1, . . . , 2} in order, draw an edge from vj to vj−1.

6. Add a leaf to every node different from 1 that does not have a cadet in the new tree.

By the preceding paragraph, we see that the tree f(T ) is indeed an element of T(S).
Now let T ∈ T(S). We define a new tree g(T ) as follows. If there is no node amongst

the m+ 1 rightmost children of 1, delete the m+ 1 rightmost children of 1 and add leaves
as right siblings of other nodes (and of any leaf which is the only child of its parent) so
that every node has m+ 1 children. Otherwise,

1. Delete those children of nodes different from 1 that are leaves.

2. Denote by s1, . . . , sm+1 the m+ 1 rightmost children of 1, indexed right to left. Let
sk be the leftmost of these children which is a node.

3. Denote by (sk, v1, . . . , vj) be the longest possible cadet sequence beginning with sk.
For i ∈ [j], delete all edges incident to vi. Consider vj as the new root.

4. For each i ∈ {j, j− 1, . . . , 2} in order, draw an edge from vi to vi−1. Drawn an edge
from v1 to sk.

5. Draw edges from sk to s1, . . . , sk−1, 1, sk+1, . . . , sm+1 so that si has i− 1 left siblings
for each i.

6. Add leaves as right siblings of nodes (and of any leaf which is the only child of its
parent) as necessary so that every node has m+ 1 children.
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We claim g(T ) is an element of S(0, 0, 0, 0). We will prove this by showing every maximal
S-cadet sequence of g(T ) has size 1 and that g(T ) has no lower or upper inefficient nodes.

Let v be a node in g(T ) which has a cadet u. If v = 1, we see that u is the rightmost
node among the m + 1 leftmost children of 1 in T and that the left siblings of u are
the same in both T and g(T ). This means lsibg(T )(u) ∈ S−1,u, so {1, u} is not an S-cadet
sequence. Likewise, if u = 1, we see that v is the leftmost node among the m+1 rightmost
children of 1 in T , and that the left siblings of v in g(T ) are precisely the right siblings of
v in T . This again means lsibg(T )(1) ∈ S−u,1, so {u, 1} is not an S-cadet sequence. Finally,
in the case that neither v nor u is the node 1, we see that either {u, v} or {v, u} is a cadet
sequence of T . By construction, we then have that lsibg(T )(u) = 0 ∈ S−v,u. We conclude
that every maximal S-cadet sequence of T has size 1, as claimed.

Now let u be a left sibling of 1 in g(T ). Then u is one of the m+ 1 rightmost children
of 1 in T . Moreover, the left siblings of u in g(T ) are precisely the right siblings of u in
g(T ). This means lsibg(T )(u) ∈ S−u,1, so u is not lower inefficient in g(T ). Likewise, let v
be a left sibling of the cadet of 1 in g(T ). Then v is one of the m + 1 leftmost children
of 1 in T . Moreover, the left siblings of v are the same in both T and g(T ). This means
lsibg(T )(v) ∈ S−1,v, so v is not upper inefficient in g(T ). This proves the claim.

It is straightforward to see that f and g are inverse to one another. Therefore we have
a bijection between S(0, 0, 0, 0) and T(S), as desired.
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