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Abstract

We show that for loopless 6-regular triangulations on the torus the gap between
the choice number and chromatic number is at most 2. We also show that the largest
gap for graphs embeddable in an orientable surface of genus g is of the order Θ(

√
g),

and moreover for graphs with chromatic number of the order o(√g/ log2(g)) the
largest gap is of the order o(√g).
Mathematics Subject Classifications: 05C15, 05C10, 05C35, 05C75

1 Introduction

We shall denote by N the set of natural numbers {0, 1, 2, . . .}. For a graph G = (V,E),
the notation v → w shall indicate that the edge v ∼ w ∈ E is oriented from the vertex v
to the vertex w. A graph G is directed if every edge of G is oriented. All logarithms in this
paper are to the base 2. We freely make use of the Bachmann–Landau–Knuth notations,
but state them briefly for completeness below. Let f and g be positive functions of real
variables. (1) f = o(g) if limx→∞ f(x)/g(x) = 0; (2) f 6 O(g) if there is a constant
M > 0 such that lim supx→∞ f(x)/g(x) 6M ; (3) f > Ω(g) if g 6 O(f); and (4) f = Θ(g)
if Ω(g) 6 f 6 O(g).

A (vertex) coloring of a graph G = (V,E) is an assignment of a “color” to each vertex,
that is, an assignment v 7→ color(v) ∈ N for every v ∈ V (G). A coloring of G is proper if
adjacent vertices receive distinct colors. G is k-colorable if there exists a proper coloring
of the vertices using at most k colors. The least integer k for which G is k-colorable is
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called the chromatic number of G and is denoted χ(G). If χ(G) = k, we also say that G
is k-chromatic.

A variation of k-colorability called k-choosability was defined independently by Viz-
ing [33] in 1976 and Erdős, Rubin and Taylor [13] in 1979. A list assignment L on G is
a collection of sets of the form L = {Lv ⊂ N : v ∈ V (G)}, where one thinks of each Lv
as a list of colors available for coloring the vertex v ∈ V (G). G is L-choosable if there
exists a proper coloring of the vertices such that color(v) ∈ Lv for every v ∈ V (G). G is
k-choosable if it is L-choosable for every list assignment L with |Lv| > k for all v ∈ V (G).
The least integer k for which G is k-choosable is called the choice number or list chromatic
number of G and is denoted χ`(G). If χ`(G) = k, we also say that G is k-list-chromatic.

The choice number generalizes the chromatic number in the following sense: if L is a
list assignment in which all the lists Lv are identical and have cardinality at most k, then
G is L-choosable if and only if G is k-colorable. Hence, χ(G) 6 χ`(G) for any graph G.
In general, however, χ(G) < χ`(G), so it behooves one to investigate the nature of the
gap between the choice number and chromatic number.

One line of investigation is to examine chromatic-choosable graphs, that is, graphs
that satisfy χ(G) = χ`(G). We mention one of the important results concerning such
graphs, conjectured by Ohba [24] in 2002 and subsequently settled in the affirmative by
Noel, Reed and Wu [23] in 2015: if G is a graph on at most 2χ(G) + 1 vertices, then it
satisfies χ(G) = χ`(G).

The opposite line of investigation is to examine the width of the gap between the
chromatic number and choice number. In [13], Erdős, Rubin and Taylor showed that
there are bipartite graphs (that is, graphs with χ(G) = 2) that have arbitrarily large
choice number; more precisely, they showed that χ`(Kn,n) > k if n >

(
2k−1
k

)
. At first

glance it appears that this line of investigation is thus fruitless, but one has to note
that the graphs Kn,n have high average degree. In fact, Alon [3] showed in 2000 that
χ`(G) >

(
1
2
− o(1)

)
log(δ), where δ ≡ δ(G) is the minimum degree of G.

Thus, one is motivated to bound the minimum degree of graphs in order to examine
the gap between the chromatic number and choice number. A natural criterion for doing
so is to consider graphs that are embeddable in a fixed surface. By a surface we mean
a compact connected 2-manifold. Informally, a graph G = (V,E) is embeddable in a
surface if there exists a drawing of G on the surface without any crossing edges. By the
classification of surfaces theorem, every orientable surface is homeomorphic to a sphere
with g > 0 handles, denoted Sg, and every nonorientable surface is homeomorphic to
a sphere with k > 1 crosscaps, denoted Nk. The genus of the surface Sg (resp. Nk) is
defined to be g (resp. k). We shall primarily restrict our attention to graphs embeddable
on orientable surfaces in what follows.

Now, suppose that G = (V,E) is a connected graph which is embeddable in Sg, g > 0.
Choose an embedding and denote by v, e and f the number of vertices, edges and faces
of G, respectively, in this embedding. Euler’s formula says that v − e + f > 2− 2g, with
equality holding if every face is homeomorphic to a disc. Let F ≡ F (G) be the set of
faces of G in this embedding. If degree(f) > 3 for each f ∈ F , then we have 3f 6 2e, and
this bounds the minimum degree as δ(G) 6 2e/v 6 6 + 12(g − 1)/v. Hence, δ(G) 6 5 if
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g = 0 and δ(G) 6 12g + 6 if g > 1. Thus, we make the following definitions:

Definition 1. For a graph G = (V,E), define the jump of G by jump(G) := χ`(G)−χ(G).
For each g > 0, define the jump at g by

jump(g) := max{jump(G) : G is embeddable in Sg}.

For graphs embeddable in the sphere S0 (equivalently, for planar graphs), the inves-
tigation of jump(0) was indicated by Erdős, Rubin and Taylor [13] through the following
conjectures and question:

(C1) Every planar graph is 5-choosable.

(C2) There exists a planar graph that is not 4-choosable.

(Q) Does there exist a planar bipartite graph that is not 3-choosable?

Alon and Tarsi [4] in 1992 answered (Q) in the negative by showing that every planar
bipartite graph is 3-choosable; this is also best possible since there are simple examples [13]
of planar bipartite graphs that are not 2-choosable. Voigt [34] in 1993 settled (C2)
positively by constructing a planar graph on 238 vertices that is not 4-choosable, and
Thomassen [32] in 1994 settled (C1) positively through a remarkably short and elegant
proof.

Thus, jump(0) 6 2, with equality holding if and only if there exists a planar 3-chromatic
graph that is not 4-choosable. Mirzakhani [19] in 1996 constructed such a graph on 63
vertices; parallelly, Voigt and Wirth [35] in 1997 observed that a non-4-choosable planar
graph on 75 vertices constructed by Gutner [15] in 1996 is 3-chromatic. Thus, it is known
that jump(0) = 2.

We pose the analogous question for toroidal graphs:

Question 2. What is jump(1)? That is, how large can the gap between the choice number
and chromatic number be for a toroidal graph?

Since every planar graph is also toroidal, the maximum gap for toroidal graphs cannot
be smaller than 2. In Section 3, we examine 6-regular triangulations on the torus and
show the following result:

Theorem 3. For any loopless 6-regular triangulation G on the torus, jump(G) 6 2.

While computing jump(g) precisely for larger values of g seems difficult, we are able
to describe the asymptotic behavior of jump(g) in Section 4 as follows:

Theorem 4. jump(g) = Θ(
√
g). That is, there exist two positive constants c1 and c2 such

that
c1
√
g 6 jump(g) 6 c2

√
g

for all sufficiently large g.
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A natural follow-up is to investigate for which graphs this largest gap is attained, for
which the following classical result is useful:

Theorem 5 (Heawood [16], 1890). Let g > 1. If G is embeddable in Sg, then

χ(G) 6 χ`(G) 6 H(g) :=

⌊
7 +
√

1 + 48g

2

⌋
.

Heawood proved that H(g), the so called Heawood number, is an upper bound for
χ(G), and essentially the same argument carries forward to prove that H(g) is an upper
bound for χ`(G) as well. Now, Theorem 5 shows that if G is H(g)-chromatic then it is
also H(g)-list-chromatic, so such graphs can never attain the maximum gap for Sg. The
same is true if G is (H(g) − 1)-chromatic, by the following result known as Dirac’s map
color theorem:

Theorem 6 (Dirac [11], 1952, Böhme–Mohar–Stiebitz [9], 1999). If G is embeddable in
Sg with χ(G) = H(g) or χ`(G) = H(g), then KH(g) is a subgraph of G.

Dirac proved this result for the chromatic number, and it was later extended to the
choice number by Böhme, Mohar and Stiebitz.

At the other end, consider the complete bipartite graph Kn,n. It is an easy exercise
that Kn,n is k-choosable where k := blog(n)c+1, and it is known that Km,n is embeddable
in Sg for g := d(m− 2)(n− 2)/4e and this is best possible (see [27]). Hence,

jump(Kn,n) 6 log(n)− 1 6 log
(
2
√
g + 1 + 2

)
− 1 6 O

(
log(g)

)
6 o(
√
g).

Since any bipartite graph is a subgraph of a complete bipartite graph, this shows that
one does not expect bipartite graphs to attain the greatest gap on a fixed surface.

This motivates the following definition:

Definition 7. For each g > 0, r > 1, define

jump(g, r) := max{jump(G) : G is connected and embeddable in Sg, χ(G) = r}

whenever the set on the right is nonempty. If there is no connected graph embeddable in
Sg having chromatic number r, then define jump(g, r) := 0.

In Section 4, we prove the following stronger result along the same lines as the bipartite
case:

Theorem 8. jump(g, r) = o(
√
g) when r = o

(√
g/ log(g)

)
. That is, if for each δ > 0 we

have r 6 δ
√
g/ log(g) for all sufficiently large g, then for every ε > 0, jump(g, r) 6 ε

√
g

for all sufficiently large g.

The rest of the paper is organised as follows. In Section 2, we state some preliminary
results that will be used in our proofs later on. In Section 3, we prove Theorem 3. In
Section 4, we prove Theorems 4 and 8. In Section 5, we mention some partial results
towards computing jump(1), that is, the maximum gap χ`(G)− χ(G) for toroidal G. We
also generalise the definitions of jump(g) and jump(g, r), as well as the results proved in
Section 4, to graphs embeddable on nonorientable surfaces. We conclude the paper with
some open questions for further investigation.
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2 Preliminaries

We begin with the following result on the embeddability of the complete graph Kr into
an orientable surface:

Theorem 9 (Ringel–Youngs [28], 1968). For every r > 1, Kr is embeddable in Sγ(r) for
γ(r) = d(r − 3)(r − 4)/12e, and this is best possible.

The above result, called the Ringel–Youngs theorem, also shows that KH(g) is em-
beddable in Sg for all g > 1, so it implies that Heawood’s upper bound is tight for all
g > 1.

Definition 10. Let G = (V,E) be a simple graph, and k > 1. The k-core of G is the
unique maximal subgraph of G having minimum degree at least k.

The next result is folklore; it was observed for k = 2 by Erdős, Rubin and Taylor [13],
but we include the proof for general k for the sake of completeness.

Proposition 11. Let G = (V,E) be a simple graph, and k > 1. Then, G is k-choosable
if and only if its k-core is k-choosable.

Proof. If G is k-choosable, then so is every subgraph. In particular, its k-core is k-
choosable. This proves the forward direction. For the reverse direction, suppose for the
sake of contradiction that the k-core of G is k-choosable, but G is not k-choosable. Let
H 6 G be a subgraph of G with the least order such that H is not k-choosable. Note
that H must be nonempty.

We show that the minimum degree of H must be at least k. Suppose for the sake of
contradiction that there exists a vertex v ∈ V (H) such that degree(v) < k. Let L be a list
assignment on G with lists of size k for which H is not L-choosable. The subgraph H − v
is k-choosable by the minimality of H with respect to the number of vertices, so properly
color H − v using the list assignment L. Now, observe that the list Lv on the vertex v
has lost at most k − 1 colors due to the coloring of its neighbors, hence the coloring on
H − v extends to a proper coloring on H. Hence, H is L-choosable, a contradiction.

Thus, the minimum degree of H is at least k, and so H is a subgraph of the k-core
of G. But the k-core of G is k-choosable by assumption, so H is also k-choosable, a
contradiction. This completes the proof.

The next result, called Brooks’s theorem, gives a useful bound on the chromatic and
choice numbers of a graph in terms of its maximum degree.

Theorem 12 (Brooks [10], 1941, Vizing [33], 1976, Erdős–Rubin–Taylor [13], 1979). Let
G be a connected simple graph with maximum degree ∆. Then, G is ∆-colorable (resp.
∆-choosable), unless G is an odd cycle or the complete graph on ∆ + 1 vertices, in which
cases G is (∆ + 1)-chromatic (resp. (∆ + 1)-list-chromatic).

Brooks proved his result for the chromatic number, and this was later extended to the
choice number independently by Vizing and by Erdős, Rubin and Taylor.

Another useful result in computing the choice number of graphs is as follows.
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Definition 13. For a directed graph G, a subgraph H is Eulerian if indegreeH(v) =
outdegreeH(v) for all v ∈ V (H). An even (resp. odd) Eulerian subgraph is one with an
even (resp. odd) number of edges.

Note that the subgraphs are not assumed to be connected in the above definition.

Theorem 14 (Alon–Tarsi [4], 1992). Suppose the edges of a graph G can be oriented
such that the number of even Eulerian subgraphs differs from the number of odd Eulerian
subgraphs. Let L be a list assignment such that |Lv| > outdegree(v) + 1 for all v ∈ V (G).
Then, G is L-choosable.

Notation. For every m, r > 1, denote by Km∗r the complete r-partite graph with m
vertices in each part.

We will need the following bound on the growth of the choice number of Km∗r:

Theorem 15 (Alon [2], 1992). There exist two positive constants c1 and c2 such that, for
every m > 2 and for every r > 2,

c1r log(m) 6 χ`(Km∗r) 6 c2r log(m).

If G = (V,E) is a k-regular triangulation on the torus S1, then kv = 2e and 3f = 2e,
which together with Euler’s formula v − e + f = 0 for S1 gives k = 6. So, any regular
triangulation on the torus is necessarily 6-regular. In 1973, Altshuler [5] characterized the
6-regular triangulations on the torus as follows (similar constructions can also be found
in [21, 30]). For integers r > 1, s > 1, and 0 6 t < s, let the graph G := T (r, s, t) have
the vertex set V (G) := {(i, j) : 1 6 i 6 r, 1 6 j 6 s} and the following edges:

• For 1 < i < r, the vertex (i, j) is adjacent to (i, j ± 1), (i± 1, j) and (i± 1, j ∓ 1).

• If r > 1, the vertex (1, j) is adjacent to (1, j ± 1), (2, j), (2, j − 1), (r, j + t+ 1) and
(r, j + t).

• If r > 1, the vertex (r, j) is adjacent to (r, j ± 1), (r − 1, j + 1), (r − 1, j), (1, j − t)
and (1, j − t− 1).

• If r = 1, the vertex (1, j) is adjacent to (1, j ± 1), (1, j ± t) and (1, j ± (t+ 1)).

Here, addition in the second coordinate is taken modulo s.
T (r, s, t) can be visualized by taking an (r+1)× (s+1) grid graph, identifying the top

and bottom rows in the usual manner, identifying the leftmost and rightmost columns with
a “twist” by t vertices, and then triangulating each face in a regular manner. Figure 1
shows the graph G = T (5, 6, 2). The edges between the top and bottom rows are not
shown in the figure. Note that the graph in Figure 1 happens to be 3-chromatic.

Theorem 16 (Altshuler [5], 1973). Every 6-regular triangulation on the torus is isomor-
phic to T (r, s, t) for some integers r > 1, s > 1, and 0 6 t < s.

Note that T (r, s, t) can be isomorphic to T (r′, s′, t′) even if the tuples (r, s, t) and
(r′, s′, t′) are distinct.
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(1,1)

(1,1)

(1,2)

(1,2)

(1,3)

(1,3)

(1,4)

(1,4)

(1,5)

(1,5)

(1,6)

(1,6)

(2,1)

(2,6)

(3,1)

(3,6)

(4,1)

(4,6)

(5,1)

(5,6)

Figure 1: G = T (5, 6, 2)

3 The gap for 6-regular triangulations on the torus

We start by observing that some of the graphs T (r, s, t) are not simple triangulations:
they may contain loops and multiple edges.

The graphs containing loops are precisely those isomorphic to T (1, s, 0) for all s > 1,
so we do not consider them. The loopless graphs containing multiple edges are precisely
those isomorphic to T (2, s, t) for t = 0, s−2, s−1, s > 2, and T (1, s, t) for t = 1, b(s−1)/2c,
s > 3. One can check that these graphs are never bipartite, so the chromatic number
of any such graph is at least 3. Moreover, after deleting the duplicate edges (since they
do not make a difference for the purpose of coloring) these graphs have maximum degree
∆ 6 5. Hence, by Theorem 12, any such graph is 5-choosable and thus has gap at most 2,
unless it is isomorphic to K6; but in the latter case, Theorem 12 says that the chromatic
number and choice number are both equal to 6, so the gap is 0. Hence, jump

(
T (r, s, t)

)
6 2

if T (r, s, t) contains multiple edges.
This takes care of the trivial cases. Next, we examine the graphs T (r, s, t) that are

simple. First, we establish some notations and definitions for use in the upcoming proofs:

Notation.

• A list Lv is called a k-list if |Lv| = k. A k-list assignment L on a graph G is a list
assignment for which every list Lv is a k-list. Note that a graph G is k-choosable if
and only if it is L-choosable for every k-list assignment L.

• Let G be a graph with a list assignment L. For a subgraph G′ of G and a color
c ∈ N, denote by G′(c) the induced subgraph of G′ on those vertices whose lists
contain the color c. We shall denote (maximal connected) components of G′(c) by
α, β, etc.

• Let P be a nonempty path or cycle graph. A vertex v ∈ V (P ) is an end point of P
if degree(v) = 1, and it is an interior point of P if degree(v) = 2.
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• Let P ′ be a nonempty proper connected subgraph of P (so P ′ is itself a nonempty
path graph). We denote by v(P ′) an end point of P ′, and by w(P ′) a vertex in
P \ P ′ that is adjacent to v(P ′) (when it exists).

Next, we record the following simple observation:

Observation 17. Suppose P is a nonempty path or cycle graph, L is a k-list assignment
on P (k > 1), and c ∈ N is any color such that P (c) is a nonempty proper subgraph of
P . Let α be a component of P (c). Let v(α) be an end point of α for which w(α) exists.
Then, there exists a color d ∈ Lw(α) \Lv(α), since c 6∈ Lw(α) and |Lv(α)| = |Lw(α)| = k > 1.
In particular, there exists a component β of P (d) containing w(α) but not v(α).

The following key lemma will allow us to color the alternate vertices of a path—
equipped with a list assignment—in such a way that the remaining vertices lose at most
one color from each of their lists.

Lemma 18. Let P = (V,E) be a path graph on at least 2 vertices, and L a k-list assign-
ment on P , k > 1. Let I1 ∪ I2 be the unique partition of V (P ) into two independent sets.
Then, there exists a coloring of I1 such that every v ∈ I2 loses at most one color from its
list.

Proof. Fix an end point v(P ) of P . Choose a color c ∈ Lv(P ) and consider the component
α of P (c) containing v(P ). Set color(v) = c for every v ∈ I1 ∩ V (α).

If α = P , then we are done, since every v ∈ I2 has lost at most one color from its list,
namely c. So, suppose that α 6= P , and define P1 := P − α. Then, P1 is a nonempty
path, and there is an end point v(α) of α such that w(α) is an end point of P1. Choose
c1 ∈ Lw(α) \ Lv(α), which exists by Observation 17. Let α1 be the component of P1(c1)
containing w(α), and set color(v) = c1 for every v ∈ I1 ∩ V (α1).

Again, if α1 = P1, then we are done. Else, let P2 := P1 \ α1, and proceed inductively
until the process terminates.

Proof of Theorem 3

Proof. Let us first show that any simple 6-regular toroidal triangulation G that is 3-
chromatic is 5-choosable.

By Theorem 16, G is isomorphic to T (r, s, t) for some integers r > 1, s > 1, and
0 6 t < s. It is straightforward to check that when T (r, s, t) is a simple graph, it is
3-chromatic if and only if s ≡ 0 ≡ r − t (mod 3). Moreover, T (r, s, t) is uniquely 3-
colorable whenever this happens, so let I1, I2, I3 be the three independent sets defined
by any coloring of T (r, s, t) with 3 colors. Without loss of generality, we fix Ij to be the
independent set containing (1, j) for j = 1, 2, 3.

Consider the subgraph G1 := G− I1 of G. Note that G1 is a 3-regular bipartite graph.
Orient the edges of G1 as follows: every horizontal edge is directed east, every vertical
edge is directed north, and every diagonal edge is directed south-east. (Figure 2 shows this
for G = T (5, 6, 2).) More formally, give the orientations as follows (recall that addition in
the second coordinate is taken modulo s). For every 1 6 i 6 r and 1 6 j 6 s such that
j − i 6≡ 0 (mod 3):
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(1,2)

(1,2)

(1,3)

(1,3)(1,5)

(1,5)

(1,6)

(1,6)

(2,1) (3,1) (5,1)

(2,6) (4,6) (5,6)

Figure 2: G1 with oriented edges

(1,1)

(1,1)

(1,2)

(1,2)(1,4)

(1,4)

(1,5)

(1,5)
(3,1) (4,1)

(2,6) (3,6) (5,6)

Figure 3: The subgraph H

• if j− i ≡ 2 (mod 3), assign (i, j)→ (i+1, j) for all 1 6 i < r, and (r, j)→ (1, j−t);

• if j− i ≡ 1 (mod 3), assign (i, j)→ (i, j+ 1) for all 1 6 i 6 r, (i, j)→ (i+ 1, j− 1)
for all 1 6 i < r, and (r, j)→ (1, j − t− 1).

Then, outdegreeG1
(v) = 2 for every v ∈ I2, and outdegreeG1

(v) = 1 for every v ∈ I3.
We claim that G1 with this orientation has no odd Eulerian subgraphs. For, if H is

an Eulerian subgraph of G1 and v ∈ V (H) is not an isolated vertex, then degreeH(v) is a
positive even integer, so degreeH(v) = 2. Thus, H is a disjoint union of cycles and isolated
vertices, but every cycle in a bipartite graph is even, so this proves our claim. Since the
empty graph is an even Eulerian subgraph of G1, by Theorem 14 G1 is L-choosable for
every list assignment L such that |Lv| > 3 for all v ∈ I2 and |Lv| > 2 for all v ∈ I3.

Now, suppose that we are given a 5-list assignment L on G. If we arbitrarily assign
color(v) ∈ Lv for every v ∈ I1, then—in the worst-case scenario—we are left with a 2-list
assignment on G1 = G − I1. However, to apply Theorem 14 on G1 with the orientation
described above, we need 3-lists on I2. So, let us now consider the subgraph H on I1 ∪ I2
with only the horizontal and vertical edges present (see Figure 3). We will show that we
can color I1 carefully in such a way that every vertex in I2 loses at most one color in H;
thus every vertex in I2 will lose at most two colors in G (since every v ∈ I2 is adjacent to
one more vertex of I1 in G than in H, shown by the dotted edges in Figure 3). Then, we
will be done by invoking Theorem 14.

Note that H is a disjoint union of even cycles (in fact, there are exactly gcd(s, r− t)/3
cycles in H). First, assume for the sake of simplicity that there is only one cycle in H (as
in Figure 3). We eliminate the trivial case: if there is a color that belongs to every list
on I1, then we just color I1 with that color, and we are done. Thus, it suffices to assume
that there is no color common to every list on I1.

Now, suppose there exists a color c such that H(c) has a component α of even order.
Assign color(v) = c for all v ∈ I1 ∩ V (α). Observe that:

• Every v ∈ V (α) ∩ I2 loses at most one color (namely, c) from its list.
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• Since α has even order, it has endpoints vj(α) in Ij for j = 1, 2.

• The vertex w1(α) ∈ I2 has not lost any color in its list due to the coloring of v1(α),
so we are free to put any color on the other vertex adjacent to w1(α).

• On the other hand, the vertex w2(α) ∈ I1 must be colored carefully, since v2(α) ∈ I2
has already lost one color from its list.

By Observation 17, there exists a color d ∈ Lw2(α) \ Lv2(α). So, consider the path P :=
H − α. Apply Lemma 18 to P by starting the coloring at w2(α) with the color d. Then,
every v ∈ I2 will indeed have lost at most one color from its list, so we are done.

On the other hand, suppose that for every color c, every component of H(c) has odd
order. Choose a color c and a component α of H(c) such that both ends of α lie in I1.
We can always do this because if α′ is a component of H(c′) such that both ends of α′ lie
in I2, then choose c ∈ Lw(α′) \Lv(α′) for some end point v(α′), and let α be the component
of H(c) containing w(α′). Then, both ends of α lie in I1 as required. Assign color(v) = c
for all v ∈ I1 ∩ V (α). In this case, we have that:

• Every v ∈ I2 ∩ V (α) loses at most one color (namely, c) from its list.

• Since both ends, v1(α) as well as v2(α), lie in I1, the vertices w1(α) and w2(α) in I2
have not yet lost any color from their lists, so we are free to put any color on their
other neighbors.

Thus, we consider the path P := H−α, and apply Lemma 18 to P starting from any end
point with any color. Then, every v ∈ I2 will again have lost at most one color from its
list, so we are done.

If H consists of more than one cycle, we repeat this process for each cycle. Thus,
with this coloring scheme for I1, we are left with the required list sizes on the vertices of
G1 = G − I1, so we are done by Theorem 14. Thus, we have shown that every simple
6-regular toroidal triangulation that is 3-chromatic is 5-choosable.

Now, on the one hand, any simple triangulation requires at least 3 colors for a proper
coloring. On the other hand, H(1) = 7, so every toroidal graph requires no more than 7
colors for a proper coloring by Theorem 5. Furthermore, Theorem 6 shows that χ(G) =
7 ⇐⇒ χ`(G) = 7 for any toroidal graph G. Hence, if G is a simple triangulation on the
torus with jump(G) > 2, then it must be that χ(G) = 3 and χ`(G) = 6. However, we
have shown above that this cannot happen if G is 6-regular. Hence, jump(G) 6 2 for any
simple 6-regular triangulation G on the torus. We have also seen that jump(G) 6 2 for
any loopless 6-regular triangulation G that contains multiple edges. This completes the
proof of Theorem 3.

4 Asymptotics of the jump function

For the sake of simplicity, we ignore any ceilings and floors in the following proofs.
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Proof of Theorem 4

Proof. Let g > 1. For any graph G, χ`(G)−χ(G) 6 χ`(G), and if G is embeddable in Sg
then χ`(G) 6 H(g) by Theorem 5. Thus, jump(g) 6 H(g) 6 7

√
g for all g > 1.

To establish the lower bound, let m > 2 be fixed, and consider the graph Km∗r for
r > 2. Note that χ(Km∗r) = χ(Kr) = r, and χ`(Km∗r) > c1r log(m) by Theorem 15.
Hence, jump(Km∗r) > c1r log(m)− r. Pick m large enough so that c1 log(m) > 2. Then,
jump(Km∗r) > r. Thus, we would like to show that Km∗r is embeddable in Sg for g 6
O(r2).

Theorem 9 says that Kr is embeddable in Sγ(r), so start with an embedding of Kr

into Sγ(r) and then add handles to Sγ(r) to accommodate the extra edges of Km∗r. Since
|E(Kr)| =

(
r
2

)
and |E(Km∗r)| = m2

(
r
2

)
, we need to add at most (m2−1)

(
r
2

)
handles to Sγ(r).

Since γ(r) + (m2 − 1)
(
r
2

)
6 m2r2/2, Km∗r is embeddable in Sg(r) where g(r) := m2r2/2,

and this is what we wanted to show. Hence, jump
(
g(r)

)
> r = c

√
g(r) for all r > 2,

where c :=
√

2/m.
Finally, suppose that g(r) 6 g′ 6 g(r + 1) for a fixed r > 2. Km∗r is embeddable in

Sg′ as well, so

jump(g′) > jump(Km∗r) > r = c
√
g(r + 1)− 1 > c

√
g′ − 1 > c′

√
g′

for any positive constant c′ < c, provided r (and hence g(r)) is sufficiently large. This
completes the proof. Additionally, we note that the proof of Theorem 15 in [2] shows that
one can take c′ = 2× 10−113.

Proof of Theorem 8

Proof. Let ε > 0 and g > 1. Let G be simple and embeddable in Sg with χ(G) = r, and
let |V (G)| = m. To show that jump(G) 6 ε

√
g it suffices to show that χ`(G) 6 ε

√
g since

jump(G) 6 χ`(G). By Proposition 11, there is no loss of generality in assuming that G
is equal to its (ε

√
g)-core. Thus, the minimum degree, and hence average degree 2e/v,

of G is bounded below by ε√g. By Euler’s formula, 2e/v 6 6 + 12(g − 1)/m, and hence
m 6 24

√
g/ε.

Now, G is a subgraph of Km∗r, and χ`(G) 6 χ`(Km∗r) 6 c2r log(m) by Theorem 15.
Then, for every δ > 0,

χ`(Km∗r) 6 c2r log(m)

6 c2

(
δ
√
g

log(g)

)(
log(24/ε) +

1

2
log(g)

)
6 c2δ

√
g

(
log(24/ε)

log(g)
+

1

2

)
< c2δ

√
g

for all sufficiently large g. Let δ = ε/c2 to finish the proof.
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5 Conclusions and further remarks

5.1 The jump for general toroidal graphs

We discuss some partial results towards computing jump(G) for a general toroidal graph
G.

Firstly, we will need the following result of Alon and Tarsi [4] used in their proof that
bipartite planar graphs are 3-choosable. For a graph G, define

L(G) := max
H6G

{
|E(H)|
|V (H)|

}
,

where the maximum is taken over all subgraphs H = (V,E) of G.

Theorem 19 (Alon–Tarsi [4], 1992). Every bipartite graph G is (dL(G)e+ 1)-choosable.

Using Euler’s formula, it follows that any planar bipartite graph G = (V,E) satisfies
e 6 2v − 4, so L(G) 6 2. Hence, every bipartite planar graph is 3-choosable.

The same analysis goes through for toroidal bipartite graphs, since Euler’s formula
applied on toroidal bipartite graphs G = (V,E) yields e 6 2v, so again L(G) 6 2. Thus,
every bipartite toroidal graph is also 3-choosable. Hence, if G is a toroidal graph with
jump(G) > 2, then G cannot be bipartite, so it must be that χ(G) > 3. On the other
hand, if χ(G) > 4, then jump(G) 6 2, since every toroidal graph is 7-choosable, but every
7-list-chromatic toroidal graph is also 7-chromatic, by Theorem 6.

Hence, any counterexample to the claim that jump(1) = 2 must be a toroidal graph G
for which χ(G) = 3 and χ`(G) = 6. Now, suppose that there do exist such graphs, and
choose one with the minimal number of vertices. Then, by Proposition 11, its minimum
degree is at least 5. Recall that Euler’s formula shows that the average degree, 2e/v, of
a toroidal graph G satisfies 2e/v 6 6, and equality holds if G is a triangulation. Thus,
if δ(G) = 6, then G is in fact a 6-regular triangulation. This motivates one to examine
6-regular triangulations in particular, and we have shown in Theorem 3 that jump(G) 6 2
for such graphs.

Thus, any minimal counterexampleGmust satisfy δ(G) = 5. Moreover, if we add edges
to G while preserving its toroidicity and chromatic number, then we can get a minimal
counterexample whose faces are all either triangular or quadrangular, which we call a
mosaic following Nakamoto, Noguchi and Ozeki [20]. Thus, it follows that jump(1) > 2
if and only if there is a 3-chromatic toroidal mosaic of minimum degree 5 that is not
5-choosable.

Now, it so happens that there do exist 3-chromatic toroidal graphs G with δ(G) = 5
(see Figures 4, 5, and 6; again, the edges between the top and bottom rows are omitted).
While ad hoc arguments can show that jump(G) 6 2 for some of these graphs, a unified
argument is still missing. An Alon–Tarsi type argument appears more difficult to imple-
ment since there may be several vertices with degree greater than 10, so it is not clear
how to orient the edges appropriately.

A relevant concept to mention here is color criticality of graphs. For k > 1, a k-critical
graph is one that is not (k − 1)-colorable but whose proper subgraphs are. Similarly, a
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Figure 4: Toroidal G with χ(G) = 3,
δ(G) = 5, ∆(G) = 6
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Figure 5: Toroidal G with χ(G) = 3,
δ(G) = 5, ∆(G) = 7
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Figure 6: Toroidal G with χ(G) = 3, δ(G) = 5, ∆(G) = 12

the electronic journal of combinatorics 28(4) (2021), #P4.50 13



k-list-critical graph is one for which there is a k-list assignment L such that the graph is
not L-choosable but every proper subgraph is. Every k-critical graph is thus also k-list-
critical, but in general there are k-list-critical graphs that are not k-critical. Furthermore,
a k-critical graph cannot contain another k-critical graph as a proper subgraph, but this
statement is not true if we replace “k-critical” with “k-list-critical”, since a graph may be
list-critical with respect to a list assignment L but not L′, yet it may contain a proper
subgraph that is list-critical with respect to L′ but not L. So, one defines a minimal
k-list-critical graph to be one which does not contain a k-list-critical graph as a proper
subgraph.

Observe that a minimal counterexample to our claim that also has the least number
of edges must be a minimal 6-list-critical graph. Postle and Thomas [25] showed in 2018
that there are only finitely many 6-list-critical graphs on any surface. Thus, the claim
that every toroidal graph has gap at most 2 needs to be verified against only finitely many
potential counterexamples; however, a complete list of 6-list-critical graphs on the torus
does not yet exist in the literature (though a complete list of 6-critical graphs was given
by Thomassen [31] in 1994). Stiebitz, Tuza and Voigt [29] in 2009 showed that for all
2 6 r 6 k, there is a minimal k-list critical graph that is r-chromatic, so one also cannot
immediately rule out the existence of a minimal 6-list-critical graph on the torus that is
3-chromatic.

We note that computing tight bounds even for triangulations on surfaces of higher
values of g appears difficult due to the lack of structural results similar to Altshuler’s
theorem for the torus (Theorem 16).

5.2 Analogous results for graphs embeddable in nonorientable surfaces

As mentioned in Section 1, the restriction to orientable surfaces has only been for con-
venience, and the results proved in Section 4 also hold over nonorientable surfaces with
suitable modifications, which we indicate below.

The Heawood number for nonorientable surfaces is

H̃(k) :=

⌊
7 +
√

1 + 24k

2

⌋
.

By essentially the same argument as given by Heawood [16] for the orientable case, H̃(k)
is an upper bound for the chromatic number of any graph G embeddable in Nk, k > 1,
and the argument also carries forward to the choice number, so χ(G) 6 χ`(G) 6 H̃(k)
for every G embeddable in Nk, k > 1.

This upper bound is not tight for the Klein bottle N2, as shown by Franklin [14] in
1934: H̃(2) = 7, but every graph embeddable in N2 is 6-colorable. In particular, K6

is embeddable in N2, but K7 is not. Using Theorem 12 one can show that every graph
embeddable in N2 is also 6-choosable.

For every other nonorientable surface, Heawood’s upper bound is tight. Ringel [26]
showed in 1954 that for every r > 1, except r = 2, Kr is embeddable in Nγ̃(r) for
γ̃(r) := d(r−3)(r−4)/6e and this is best possible. This implies that KH̃(k) is embeddable
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in Nk for all k > 1 except k = 2. Dirac’s map color theorem [1, 11] also extends to Nk

for all k > 1, except k = 2. In the latter case, K6 is not the only 6-chromatic graph that
is embeddable in N2 (see [1] for an example of another such graph). Dirac’s map color
theorem for the choice number [9, 18] also extends to Nk for all k > 1, except k = 2.

We define, analogously, the functions j̃ump(k) and j̃ump(k, r). Using the above results
it is not hard to show the following:

Theorem 20. j̃ump(1) = 2. That is, for graphs G embeddable in the projective plane N1,
jump(G) 6 2. Moreover, this bound is best possible.

The asymptotic bounds on j̃ump(k) and j̃ump(k, r) are also the same as in the orientable
case. The proofs go through in a similar manner. One just needs to know what the result
is of adding a handle to a nonorientable surface, for which the following theorem is useful:

Theorem 21 (Dyck [12], 1888). The connected sum of a torus and a projective plane is
isomorphic to the connected sum of three projective planes.

One also needs to modify Euler’s formula for nonorientable surfaces as follows: if G
is embeddable in Nk, k > 1, and v, e and f denote the number of vertices, edges, and
faces of G in an embedding of G in Nk, respectively, then v− e+ f > 2− k, with equality
holding if every face is homeomorphic to a disc.

5.3 Concluding remarks

We have proved in Theorem 3 that any loopless 6-regular triangulation G on the torus
satisfies jump(G) 6 2. We speculate that every 3-chromatic toroidal graph is in fact
5-choosable:

Conjecture 22. jump(1, 3) = 2.

A resolution to Conjecture 22 will also answer Question 2, as we have observed that
the maximum gap for toroidal graphs is at least 2, and neither toroidal bipartite graphs
nor toroidal graphs with chromatic number at least 4 can attain a gap greater than 2.

An easy example of a 6-regular triangulation G on the torus for which jump(G) = 1
is furnished by T (3, 3, 0), which is isomorphic to the complete multipartite graph K3∗3.
Kierstead [17] in 2000 showed that χ`(K3∗r) = d(4r−1)/3e for every r > 1, so χ`(K3∗3) =
4, and since T (3, 3, 0) ≡ T (r, s, t) satisfies s ≡ 0 ≡ r−t (mod 3), it is 3-chromatic. Hence,
jump

(
T (3, 3, 0)

)
= 1.

We are also able to show that if G is any 3-chromatic 6-regular toroidal triangulation,
then G is not 3-choosable (except possibly when G = T (3, 9, 3)), which will appear in a
forthcoming paper [8]. But, we do not have an explicit example of a 6-regular toroidal
triangulation for which jump(G) = 2. One of the authors is unsure whether any such
graph exists, while the other believes that there might be one; in any case, we pose the
following question:

Question 23. Are there 3-chromatic 6-regular toroidal triangulations that are 5-list-
chromatic?
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The results on the asymptotic behavior of jump(g) and jump(g, r) motivate the follow-
ing conjectures that refine the results proved in Section 4:

Conjecture 24. jump(g, r) is unimodal in r for each fixed g. That is, there exists r0 ≡
r0(g) such that

jump(g, 1) 6 jump(g, 2) 6 · · · 6 jump(g, r0) > · · · > jump
(
g,H(g)

)
.

This is already seen to be true for planar and toroidal graphs. Firstly, a loopless graph
is 1-chromatic if and only if it is empty, which implies that it is also 1-list-chromatic,
so jump(g, 1) = 0 for all g > 0. Next, the results mentioned in Section 1 show that
jump(0, 2) = 1, jump(0, 3) = 2, and jump(0, 4) = 1. Lastly, jump(0, r) = 0 for r > 5 by the
four color theorem due to Appel and Haken [6,7]. So, jump(0, r) is indeed unimodal in r.

Similarly, for toroidal graphs, though we don’t have precise values of jump(g, r) for all
r, the discussion so far shows that jump(1, 2) = 1, jump(1, 3) = 2 or 3, jump(1, 4) = 1 or
2, jump(1, 5) = 0 or 1, jump(1, 6) = 0 and jump(1, 7) = 0. So, jump(1, r) is unimodal in r
as well.

It is not hard to show that unimodality also holds for j̃ump(1, r) and j̃ump(2, r), that
is, for the projective plane and the Klein bottle; so, Conjecture 24 can be extended to the
nonorientable case as well.

One also notices that there may be more than one value r0 at which the maximum
gap is attained. So, define rmax ≡ rmax(g) to be the least value of r0(g) in Conjecture 24.
We conjecture that √g is the correct order of r at which jump(g, r) attains its maximum
value for each fixed g:

Conjecture 25. For all sufficiently large g, rmax = Θ(
√
g).

Again, Conjecture 25 can be extended analogously to the nonorientable case as well.
Finally, a structural result on the Klein bottle N2 for 6-regular triangulations, similar

in spirit to Altshuler’s theorem on the torus (Theorem 16), was given independently by
Negami [22] in 1984 and Thomassen [30] in 1991. We pose the following question on the
Klein bottle analogous to Question 2 for the torus, and also ask whether the 6-regular
triangulations on the Klein bottle can be examined to get a result analogous to Theorem 3.

Question 26. What is j̃ump(1)? That is, how large can the gap between the choice
number and chromatic number be for a graph embeddable on the Klein bottle?

Just as in the toroidal case, it is not hard to show that the maximum gap cannot be
smaller than 2, and we ask how large this gap can get.

Question 27. What is the maximum value of j̃ump(G) for any loopless 6-regular trian-
gulation G on the Klein bottle?

However, computing j̃ump(k) precisely for higher values of k seems difficult for the
same reason as in the orientable case.
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Lastly, the proof of Theorem 4 shows that

c1
√
g 6 jump(g) 6 c2

√
g

for all sufficiently large g, with c1 = 2× 10−113 and c2 = 7. It would be interesting to see
if this can be refined further:

Question 28. Does the limit

lim
g→∞

jump(g)
√
g

exist? If yes, what is its value?

Of course, one can also raise the analogous question for j̃ump(k) as well.
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