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Abstract

A well-known result of Brylawski constructs an elementary lift of a matroid M
from a linear class of circuits of M . We generalize this result by constructing a
rank-k lift of M from a rank-k matroid on the set of circuits of M . We conjecture
that every lift of M arises via this construction.

We then apply this result to group-labeled graphs, generalizing a construction
of Zaslavsky. Given a graph G with edges labeled by a group, Zaslavsky’s lift
matroid K is an elementary lift of the graphic matroid M(G) that respects the
group-labeling; specifically, the cycles of G that are circuits of K coincide with the
cycles that are balanced with respect to the group-labeling. For k > 2, when does
there exist a rank-k lift of M(G) that respects the group-labeling in this same sense?
For abelian groups, we show that such a matroid exists if and only if the group is
isomorphic to the additive group of a non-prime finite field.

Mathematics Subject Classifications: 05B35

1 Introduction

This paper is concerned with using structure on the circuits of a matroid M to construct a
new matroid on the ground set ofM . For example, a collection C of circuits of a matroidM
is a linear class if, whenever C1 and C2 are circuits in C so that |C1∪C2|−rM(C1∪C2) = 2,
then every circuit C of M contained in C1 ∪ C2 is also in C. Brylawski [2, Prop. 7.4.15]
showed that, for each linear class C of circuits of a matroid M , one can construct a matroid
M ′ on E(M) with rank at most one greater than r(M). Moreover, this matroid M ′ is
an elementary lift of M , so there is a matroid P with ground set E(M) ∪ {e} so that
P \e = M ′ and P/e = M .
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Theorem 1 (Brylawski ’86). Let M be a matroid, and let C be a linear class of circuits
of M . Then the function rM ′ defined, for all X ⊆ E(M), by

rM ′(X) =

{
rM(X) if each circuit of M |X is in C,
rM(X) + 1 otherwise

is the rank function of an elementary lift M ′ of M . Moreover, every elementary lift of M
can be obtained in this way.

Note that C is precisely the set of circuits of M that are also circuits of M ′. Zaslavsky
[12] applied this construction to group-labeled graphs (also called gain graphs), by showing
that for each graph G with edges labeled by a group, one can use the group-labeling to
obtain a natural linear class B of circuits of the graphic matroid M(G). The circuits in
B are the balanced cycles of G with respect to the group-labeling, and the pair (G,B)
is a biased graph. So, via Brylawski’s construction, each graph G with edges labeled by
a group naturally leads to an elementary lift M of M(G); Zaslavsky calls this the lift
matroid of the biased graph (G,B). We will define this terminology in greater detail in
Section 2. Note that M respects the group-labeling in the sense that a cycle of G is a
circuit of M if and only if it is balanced.

The goal of this paper is to generalize the constructions of Brylawski and Zaslavsky
to rank-k lifts for k > 2. A matroid K is a lift of a matroid M if there is a matroid P and
a subset X of E(P ) so that P \X = K and P/X = M . If r(K) − r(M) = k, then K is
a rank-k lift of M . We prove the following generalization of Brylawski’s construction, by
defining a lift of a matroid M using a given matroid N on the set of circuits of M . Just
as Brylawski’s construction only applies to a linear class of circuits, the matroid N must
satisfy some necessary dependencies of the circuits of M . We say that a collection C ′ of
circuits of M is perfect if | ∪C∈C′ C| − rM(∪C∈C′C) = |C ′|, and no circuit in C ′ is contained
in the union of the others. The matroid N must satisfy the natural condition that if a
circuit C of M is contained in the union of the circuits of a perfect collection C ′, then C
is spanned by C ′ in N .

Theorem 2. Let M be a matroid, and let N be a matroid on the set of circuits of M so
that

(2∗) if C ′ is a perfect collection of circuits of M , then each circuit C ′ of M contained in
∪C∈C′C satisfies C ′ ∈ clN(C ′).

Then the function rMN defined, for all X ⊆ E(M), by

rMN (X) = rM(X) + rN({C : C is a circuit of M |X})

is the rank function of a rank-r(N) lift MN of M .

We remark that the case when r(N) = 1 is exactly Brylawski’s construction. To see
this, note that if C1 and C2 are loops of N for which |C1 ∪ C2| − rM(C1 ∪ C2) = 2, then
condition (2∗) implies that every circuit C of M contained in C1 ∪ C2 is also a loop of
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N . This implies that the set of circuits of M that are loops of N is a linear class. From
the rank function of MN , we see that the loops of N are precisely the circuits of M that
are also circuits of MN . So when r(N) = 1, the matroid MN is equal to the matroid M ′

obtained by applying Theorem 1 with the linear class of loops of N .
As an example of Theorem 2 when r(N) > 1, let M = U1,n. Then the set of circuits of

M is the set of 2-element subsets of [n], which is the edge set of the complete graph Kn.
So we can think of the matroid N = M(Kn) as a matroid on the set of circuits of U1,n. It
turns out that M(Kn) satisfies (2∗). To see this, let C ′ be a perfect collection of circuits of
U1,n. Let H be the corresponding subgraph of Kn, so E(H) = C ′ and V (H) = ∪C ′. Then
each edge {i, j} of H is a leaf of H, or else the circuit {i, j} of U1,n is contained in the
union of the other circuits in C ′. In particular, H has no cycles. Also, |∪C∈C′C|−1 = |C ′|,
because C ′ is perfect and rM(∪C∈C′C) = 1. Since ∪C∈C′C = V (H) and C ′ = E(H), this
implies that V (H) = E(H) + 1. Then since H is acyclic, this implies that H is a tree.
Since H is a tree for which every edge is a leaf, it follows that H is a star. If a circuit
C ′ = {i, j} of U1,n is contained in ∪C∈C′C, then i, j ∈ V (H), so the edge {i, j} is spanned
in N by E(H). Equivalently, C ′ is spanned in N by C ′. Therefore, N = M(Kn) satisfies

(2∗), so by Theorem 2 we can construct the matroid U
M(Kn)
1,n . This matroid has n elements

and rank r(U1,n) + r(M(Kn)) = 1 + (n− 1) = n, and is thus the free matroid on ground
set [n].

We apply Theorem 2 to group-labeled graphs, taking the matroid M to be the cycle
matroid of the underlying graph, and using the group-labeling to construct the matroid
N , just as Zaslavsky uses the group-labeling to construct the balanced cycles. We remark
that, given a graph G and a set B of balanced cycles with respect to a group-labeling of
G, we can define a rank-1 matroid N on the circuits of M(G), where each cycle in B is
a loop of N , and every other cycle of G is a non-loop of N . Then the matroid M(G)N

is exactly Zaslavsky’s lift matroid of the biased graph (G,B). For certain finite groups,
we will construct a matroid N of rank at least two on the circuits of M(G) using the
group-labeling. For each finite group Γ and integer n > 3, we only consider the fully
Γ-labeled graph KΓ

n , which has vertex set [n] and edge set
(

[n]
2

)
×Γ. To ensure that the lift

M of M(KΓ
n ) respects the Γ-labeling, we require that the cycles of KΓ

n that are circuits of
M are precisely the balanced cycles of KΓ

n . If Γ is isomorphic to Zjp (the direct sum of j
copies of the cyclic group of order p) for some prime p and some integer j > 2, then such
a matroid M exists.

Theorem 3. Let p be a prime, and let n > 3 and j > 2 be integers. For each integer i

with 1 6 i 6 j, there is a rank-i lift M of M(K
Zj
p

n ) so that a cycle of K
Zj
p

n is a circuit of
M if and only if it is balanced.

Surprisingly, these are the only finite abelian groups for which this construction is
possible. If Γ is a finite abelian group that is not isomorphic to Zjp for some prime p
and integer j > 2, then there is no rank-k lift of M(KΓ

n ) with k > 2 that respects the
group-labeling.

Theorem 4. Let Γ be a nontrivial finite abelian group, and let n > 3 be an integer. Let
M be a lift of M(KΓ

n ) so that a cycle of KΓ
n is a circuit of M if and only if it is balanced.
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Then either Γ ∼= Zjp for some prime p and integer j > 2, or M is an elementary lift of
M(KΓ

n ).

We conjecture that this result in fact holds for all finite groups, and we make some
partial progress in support of this conjecture.

After applying Theorem 2 to group-labeled graphs, we consider Theorem 2 in its own
right. This theorem relies on the matroid N , and in general it is unclear how to construct
a matroid N of rank at least two on the set of circuits of M so that N satisfies (2∗). We
show that, for any matroid M with corank at least three, there is a rank-3 matroid N on
the circuits of M that satisfies (2∗), and there are many rank-2 matroids on the circuits
of M that satisfy (2∗). For representable matroids we can do much better. Using the
derived matroid of Longyear [7] and Oxley and Wang’s recent generalization of it [9], we
show that if M is representable, then there are many examples of a matroid N on the
circuits of M that satisfies (2∗).

Theorem 5. Let M be a matroid representable over a field F. Then, for each integer k
with 1 6 k 6 r∗(M), there is a rank-k matroid N on the set of circuits of M so that N
satisfies (2∗).

It is unclear in general when there is a matroid N on the circuits of a given matroid M
so that N satisfies (2∗). Theorem 1 states that every elementary lift of a given matroid
M arises from a linear class of circuits of M . Is it possible that every lift of M arises
from a matroid N on the circuits of M that satisfies (2∗)? We conjecture an affirmative
answer to this question.

Conjecture 6. Let M be a matroid. For every lift K of M , there is a matroid N on the
circuits of M so that N satisfies (2∗), and K ∼= MN .

We further conjecture how to construct N given a lift K of M (Conjecture 29).
Finally, we consider Theorem 2 in the dual setting. If a matroid K is an (elementary)

lift of a matroid M , then M is an (elementary) projection or quotient of K. Since projec-
tions are dual to lifts, one can use Theorem 1 to construct an elementary projection of M∗

from a set of hyperplanes of M∗ whose complements form a linear class of circuits of M .
Such a collection of hyperplanes is called a linear subclass of hyperplanes. Equivalently,
a collection H of hyperplanes of a matroid K is a linear subclass if, whenever H1 and H2

are hyperplanes in H so that rK(H1 ∩ H2) = r(K) − 2, then every hyperplane H of K
containing H1 ∩H2 is also in H. The following classical result of Crapo [3] constructs an
elementary projection from a linear subclass; it is dual to Theorem 1.

Theorem 7 (Crapo ’65). Let K be a matroid, and let H be a linear subclass of hyperplanes
of K. Then the function rK′ defined, for all X ⊆ E(K), by

rK′(X) =

{
rK(X)− 1 if each hyperplane of K containing X is in H,
rK(X) otherwise

is the rank function of an elementary projection K ′ of K. Moreover, every elementary
projection of K can be obtained in this way.
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In the same way, we can use Theorem 2 to construct a projection of a matroid K using
a given matroid on the set of hyperplanes of K.

Theorem 8. Let K be a matroid, and let N be a matroid on the set of hyperplanes of K
so that

(8∗) if H′ is a set of hyperplanes of K for which no hyperplane in H′ contains the inter-
section of the others, and rK(∩H∈H′H) = r(K) − |H′|, then each hyperplane H ′ of
K that contains ∩H∈H′H satisfies H ′ ∈ clN(H′).

Then the function rKN
defined, for all X ⊆ E(K), by

rKN
(X) = rM(X)− r(N)

+ rN({H : H is a hyperplane of K that contains X})

is the rank function of a rank-r(N) projection KN of K.

Condition (8∗) implies that the set H of hyperplanes of K that are loops of N is a
linear subclass of hyperplanes, so when r(N) = 1, the matroid KN is equal to the matroid
K ′ obtained by applying Theorem 7 to the linear subclass H. By duality, Conjecture 6 is
equivalent to the conjecture that every projection of K arises from a matroid N on the
hyperplanes of K that satisfies (8∗).

2 Preliminaries

Unless stated otherwise, we follow the notation and terminology of Oxley [8]. Zaslavsky
[12] showed that elementary lifts of graphic matroids can be encoded using biased graphs.
A theta graph consists of two distinct vertices x and y, and three pairwise internally
disjoint paths from x to y. A set B of cycles of a graph G satisfies the theta property if
no theta subgraph of G contains exactly two cycles in B; equivalently, B is a linear class
of circuits of the graphic matroid M(G). A biased graph is a pair (G,B) where B is a
collection of cycles of G which satisfies the theta property. The cycles in B are balanced,
and the cycles not in B are unbalanced.

Biased graphs were first described by Zaslavsky in [11], and in [12] he defined the
following matroid associated with a given biased graph. The lift matroid of a biased
graph (G,B) is the matroid with ground set E(G) so that I ⊆ E(G) is independent if and
only if the subgraph of G induced by I contains at most one cycle, and no balanced cycle.
Equivalently, the lift matroid of (G,B) is the matroid obtained from applying Theorem 1
to M(G) with the linear class B. Note that if B is the set of all cycles of G, then the lift
matroid of (G,B) is isomorphic to M(G).

A natural family of biased graphs arises from graphs whose edges are labeled by
elements of a group. We define group-labeled graphs using the notation of [4]. A
group-labeling of a graph G consists of an orientation of the edges of G, and a func-
tion φ : E(G) → Γ for some (multiplicative) group Γ. For each walk W in G with edge
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sequence e1, e2, . . . , ek, define ci(W ) by

ci(W ) =

{
1 if ei is traversed forward in W,

−1 if ei is traversed backward in W,

and define φ(W ) =
∏k

i=1 φ(ei)
ci(W ). Let Bφ be the set of cycles C of G for which some

(and thus every) simple closed walk W around C satisfies φ(W ) = 1. Then Bφ satisfies
the theta property, so (G,Bφ) is a biased graph [11]. The cycles in Bφ are the balanced
cycles with respect to the group-labeling. We will also be interested in the group values
of simple closed walks around unbalanced cycles of (G,Bφ). For each cycle C of G, we
define

φ(C) = {φ(W ) : W is a simple closed walk around C}.

Note that C is balanced if and only if 1 ∈ φ(C).
For each finite group Γ and each integer n > 3, we write KΓ

n for the graph with vertex
set [n] and edge set

(
[n]
2

)
×Γ. We write BΓ

n for the set of balanced cycles obtained from the
Γ-labeling φ(({i, j}, α)) = α, and the following edge-orientation: for all 1 6 i < j 6 n,
each edge between vertices i and j is oriented from vertex i to vertex j. We say that a
cycle of KΓ

n is balanced if it is in BΓ
n ; the natural Γ-labeling and edge-orientation will be

implicit throughout the remainder of the paper. We denote the lift matroid of (KΓ
n ,BΓ

n)
by LG(n,Γ).

3 The Construction

In this section we prove Theorem 2. For a set E and a set X of subsets of E, we write
∪X for ∪X∈XX. Given a matroid M , we write C(M) for the collection of circuits of M .
Recall that a collection C ′ of circuits of a matroid M is perfect if | ∪ C ′| − rM(∪C ′) = |C ′|,
and no circuit in C ′ is contained in the union of the others. The following lemma shows
that the set of fundamental circuits of a matroid with respect to some basis is always a
perfect collection of circuits.

Lemma 9. Let M be a matroid. Let B be a basis of M , and, for each e ∈ E(M) − B,
let Ce be the unique circuit of M |(B ∪ {e}). Then C ′ = {Ce : e ∈ E(M) − B} is a
perfect collection of |E(M)| − r(M) circuits of M . Conversely, every perfect collection of
|E(M)| − r(M) circuits of M arises in this way.

Proof. Let E = E(M). Clearly no circuit of C ′ is contained in the union of the others,
and ∪C ′ = E. Then | ∪ C ′| − rM(∪C ′) = |E| − r(M) = |C ′|, so C ′ is perfect. Conversely,
let C ′ be a perfect collection of |E(M)| − r(M) circuits of M . For each C ∈ C ′, let XC

be the set of elements in C that are not in any other set in C ′. Let T be a transversal
of {XC : C ∈ C ′}. Then |T | = |E| − r(M), and T ⊆ clM((∪C ′) − T ). This implies that
E − T is a spanning subset of M of size r(M), and is thus a basis of M . Also, each set
in C ′ has all but one element in E − T , so C ′ is the set of fundamental circuits of M with
respect to the basis E − T .
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The following theorem easily implies Theorem 2.

Theorem 10. Let M be a matroid, and let N be a matroid on the set of circuits of M
so that

(10∗) if C ′ is a perfect collection of circuits of M , then each circuit C ′ of M contained in
∪C ′ satisfies C ′ ∈ clN(C ′).

Let I denote the collection of sets X ⊆ E(M) for which there exists a collection C ′ of
|X| − rM(X) circuits of M |X so that C ′ is independent in N . Then I is the collection of
independent sets of a matroid MN which is a rank-r(N) lift of M . Moreover, the function
rMN defined, for all X ⊆ E(M), by

rMN (X) = rM(X) + rN({C : C is a circuit of M |X})

is the rank function of MN .

Proof. We first use (10∗) to relate subsets of E(M) with perfect collections of circuits.

Claim 11. Let X ⊆ E(M), and let C ′ be a perfect collection of |X| − rM(X) circuits of
M |X. Then C(M |X) ⊆ clN(C ′). Moreover, if X ∈ I, then C ′ is independent in N .

Proof. We have | ∪ C ′| − rM(∪C ′) = |C ′| = |X| − rM(X), where the first equality holds
because C ′ is perfect. If there is a circuit C of M |X that is not contained in ∪C ′, then
C ′ ∪ {C} is a collection of greater than |X| − rM(X) circuits of M |X such that none
is contained in the union of the others, a contradiction. Thus, each circuit of M |X
is contained in ∪C ′. Then (10∗) implies that C(M |X) ⊆ clN(C ′). In particular, this
implies that rN(C(M |X)) 6 rN(C ′). Now suppose that X ∈ I. By the definition of I,
we know that rN(C(M |X)) > |X| − rM(X). Then rN(C ′) > |X| − rM(X), and since
|X| − rM(X) = |C ′|, this implies that rN(C ′) > |C ′|, so C ′ is independent in N .

We now show that I is the collection of independent sets of a matroid on E(M).
Clearly ∅ ∈ I, since ∅ is independent in N . Let Y be a nonempty set in I, let e ∈ Y ,
and let X = Y − {e}. We will show that X ∈ I. If e /∈ clM(X), then |X| − rM(X) =
|Y | − rM(Y ), and M |X and M |Y have the same circuits. Since Y ∈ I, this implies that
X ∈ I, so we may assume that e ∈ clM(X). Let B be a basis of M |X, and, for each
e′ ∈ Y −B, let Ce′ denote the unique circuit of M |(B∪{e′}). Let C ′ = {Ce′ : e′ ∈ Y −B}.
Then, by Lemma 9 applied to M |Y , C ′ is a perfect collection of |Y | − rM(Y ) circuits of
M |Y , and, by 11, C ′ is independent in N . Then C ′ − {Ce} is a collection of |X| − rM(X)
circuits of M |X which is independent in N , so X ∈ I.

We now show that I satisfies the augmentation property.

Claim 12. Let I1 and I2 be sets in I so that |I1| < |I2|. Then there is some e ∈ I2 − I1

so that I1 ∪ {e} ∈ I.

the electronic journal of combinatorics 29(1) (2022), #P1.6 7



Proof. Suppose that there is no element e ∈ I2−I1 so that I1∪{e} ∈ I. We first show that
I2 ⊆ clM(I1). If not, then let e ∈ I2−clM(I1). Since |I1∪{e}|−rM(I1∪{e}) = |I1|−rM(I1),
and C(M |(I1∪{e})) = C(M |I1), we have I1∪{e} ∈ I, a contradiction. Thus, I2 ⊆ clM(I1),
and so |I2| − rM(I2) > |I1| − rM(I1).

Let B be a basis of M |I1. For each e ∈ (I1∪I2)−B, let Ce denote the unique circuit of
M |(B∪{e}). Let C1 = {Ce : e ∈ I1−B}, and let C2 = {Ce : e ∈ I2−I1}. Then, by Lemma
9 applied to M |I1 and M |(I1 ∪ I2), C1 is a perfect collection of |I1| − rM(I1) circuits of
M |I1, and C1∪C2 is a perfect collection of |I1∪I2|−rM(I1∪I2) circuits of M |(I1∪I2). Then
11 with (X, C ′) = (I1, C1) implies that C(M |I1) ⊆ clN(C1), and that C1 is independent in
N . Also, 11 with (X, C ′) = (I1 ∪ I2, C1 ∪ C2) implies that C(M |I2) ⊆ clN(C1 ∪ C2).

Since C1 is independent in N , we have rN(C1 ∪ C2) = rN(C1), or else there is some
e ∈ I2 − I1 so that I1 ∪ {e} ∈ I, by the definitions of I and C2. But then

rN(C(M |I2)) 6 rN(C1 ∪ C2) 6 |C1| = |I1| − rM(I1) < |I2| − rM(I2),

which contradicts that I2 ∈ I.

We now know that I is the collection of independent sets of a matroid MN on E(M).
Next we compute the rank function of MN . Let X ⊆ E(M), and let B be a basis
of M |X. For each e ∈ X − B, let Ce denote the unique circuit of M |(B ∪ {e}). Let
C ′ = {Ce : e ∈ X − B}. Then by Lemma 9 applied to M |X, C ′ is a perfect collection of
|X|−rM(X) circuits of M |X, so 11 implies that rN(C ′) = rN(C(M |X)). Let C ′′ be a subset
of C ′ so that |C ′′| = rN(C ′) = rN(C(M |X)). Then |B ∪ (∪C ′′)| − rM(B ∪ (∪C ′′)) = |C ′′|,
by the definition of C ′. Since C ′′ is independent in N , this implies that B ∪ (∪C ′′) is
independent in MN , by the definition of I. Therefore,

rMN (X) > |B ∪ (∪C ′′)| = |B|+ |C ′′| = rM(X) + rN(C(M |X)).

We now show that the reverse inequality holds. Let I be a basis of MN |X, and let
C ′ be a collection of |I| − rM(I) circuits of M |I so that C ′ is independent in N . Then
|I| − rM(I) 6 rN(C(M |I)), and so

rMN (X) = |I| 6 rM(I) + rN(C(M |I)) 6 rM(X) + rN(C(M |X)),

since I ⊆ X. From the rank function of MN , it is easy to see that r(MN) = r(M)+r(N).
Finally, we show that each circuit of MN is a union of circuits of M ; this implies

that MN is a lift of M (see [8, Prop. 7.3.6]). Let Y be a circuit of MN . If Y has an
element e not in any circuit of M |Y , then from the rank function of MN it follows that
rMN (Y −{e}) < rMN (Y ), since C(M |(Y −{e})) = C(M |Y ). But then Y is not a circuit of
MN . Thus, each element of Y is in a circuit of M |Y , so Y is a union of circuits of M .

4 The Construction for Zj
p-Labeled Graphs

In this section we prove Theorem 3. Let j > 2 be an integer, and let p be a prime. Recall

that each cycle C of K
Zj
p

n has a set φ(C) ⊆ Zjp of values of simple closed walks around C,
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and that C is balanced if and only if φ(C) contains the identity element of Zjp. It is not
hard to see that the set φ(C) is closed under inverses, since taking the reverse of a simple
closed walk results in the inverse group element in Zjp. Also, since Zjp is abelian, any two
simple closed walks around C with the same cyclic ordering have the same value in Zjp,
so |φ(C)| 6 2.

For each proper divisor i of j, the group (Zip)j/i is isomorphic to Zjp, and is the additive

group of the vector space GF(pi)j/i. Thus, there is a natural map fi from Zjp to the vector

space GF(pi)j/i. This can be extended to a natural map f ′i from Zjp to the ground set of
the projective geometry PG((j/i)− 1, pi).

For each unbalanced cycle C of K
Zj
p

n , the set φ(C) has size two and is closed under
inverses; thus, both elements of Zjp in φ(C) map to the same element of PG((j/i)− 1, pi)

under f ′i . Therefore, the map gi from the set of unbalanced cycles of K
Zj
p

n to E(PG((j/i)−
1, pi)) defined by gi(C) = f ′i(α) for some α ∈ φ(C) is well-defined. Since each projection
(or lift) of PG((j/i) − 1, pi) has the same ground set as PG((j/i) − 1, pi), we can use gi

to define a matroid on the set of cycles of K
Zj
p

n using any projection of PG((j/i)− 1, pi).
The following definition makes this idea precise.

Definition 13. Let n > 3 and j > 2 be integers, and let p be a prime. Let i be a positive
divisor of j, and let K be a projection of PG((j/i)− 1, pi). We define N = N(n, j, p,K)

to be the matroid on the set of cycles of K
Zj
p

n for which each set C of unbalanced cycles
satisfies

rN(C) = rK({gi(C) : C ∈ C}),
and each balanced cycle is a loop of N .

If K = PG((j/i)− 1, pi), then rN(C) is simply the rank in the vector space GF(pi)j/i

of the set of vectors associated with the cycles in C by the map fi. Also, if K is a
projection of PG((j/i) − 1, pi), then the map gi shows that N(n, j, p,K) is a projection
of N(n, j, p,PG((j/i)− 1, pi)).

In order to apply Theorem 2 with M = M(K
Zj
p

n ) and N = N(n, j, p,K), we must show
that N satisfies (2∗). The following lemma shows that we need only consider the case in
which K is actually a projective geometry.

Proposition 14. Let M be a matroid. If N is a matroid on C(M) that satisfies (2∗),
then every projection of N also satisfies (2∗).

Proof. Let N ′ be a projection of N . Let C ′ be a perfect collection of circuits of M , and let
C be a circuit of M so that C ⊆ ∪C ′. Then C ∈ clN(C ′), by (2∗). Since N ′ is a projection
of N , we have clN(C ′) ⊆ clN ′(C ′) (see [8, Prop. 7.3.6]). Thus, C ∈ clN ′(C ′), as desired.

We now show that the matroidN = N(n, j, p,K) on the circuits ofM(K
Zj
p

n ) satisfies (2∗).

Proposition 15. Let n > 3 and j > 2 be integers, and let p be a prime. Let i be a
positive divisor of j, and let N = N(n, j, p,PG((j/i)− 1, pi)). If C ′ is a perfect collection

of circuits of M(K
Zj
p

n ) and C is a circuit of M(K
Zj
p

n ) contained in ∪C ′, then C ∈ clN(C ′).
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Proof. We write G = K
Zj
p

n , for convenience. Let |C ′| be minimal so that the claim is false;
then |C ′| > 2. Let C be a circuit of M(G) contained in ∪C ′. We freely use the fact that
each subset of C ′ is also a perfect collection of circuits of M(G). This implies that for
each cycle C ′ ∈ C ′, there is at least one edge in C ′ ∩ C that is not in any other cycle in
C ′. Let X be a transversal of these edges of ∪C ′; note that X ⊆ C. Then

|(∪C ′)−X| = | ∪ C ′| − |X| = rM(G)(∪C ′) + |C ′| − |X| = rM(G)(∪C ′),

since C ′ is perfect, so T = (∪C ′) − X is the edge-set of a spanning forest of the graph
G[∪C ′]. By the minimality of |C ′| and the fact that G[C] is connected, this forest is in
fact a tree. We use the tree T to define two cycles.

Claim 16. There are cycles C1, C2 contained in ∪C ′ which form a theta graph with C,
such that C1, C2 ∈ clN(C ′).

Proof. Let v1, v2 be distinct vertices of G[C], and let P be the unique path in T from v1

to v2. Let v′1 be the first vertex of P in C other than v1, and let P ′ be the segment of P
from v1 to v′1. Then P ′ is a path with both ends in C which is internally vertex-disjoint
from C, so G[C ∪ P ′] is a theta graph.

Let P1, P
′, P2 denote the three internally vertex-disjoint paths of the theta graph

G[C ∪ P ′] from v1 to v′1. Then P1 and P2 each contain an element of X; if Pi and X are
disjoint, then G[P3−i ∪P ′] is a circuit of the tree T . Let e1 ∈ P1 ∩X and let e2 ∈ P2 ∩X,
and for each i ∈ {1, 2} let C ′i denote the circuit in C ′ that contains ei.

For each i ∈ {1, 2} let Ci = Pi ∪ P ′; then Ci is a cycle that does not contain e3−i.
Since C ′ is perfect, no element of C ′2 − (∪C ′) is in a cycle of G[(∪C ′) − {e2}]; otherwise
| ∪ C ′| − rM(G)(∪C ′) > |C ′|. Since C1 does not contain e2 and C1 is a cycle, it follows that
C1 ⊆ ∪(C ′ − {C ′2}). Similarly, C2 ⊆ ∪(C ′ − {C ′1}). So by the minimality of |C ′|, we have
C2 ∈ clN(C ′ − {C ′1}) and C1 ∈ clN(C ′ − {C ′2}), and thus C1, C2 ∈ clN(C ′).

We now use the definition of N .

Claim 17. C ∈ clN({C1, C2}).

Proof. Assume without loss of generality that the edges of P ′ and P1 are oriented from v1

to v′1, and the edges of P2 are oriented from v′1 to v1. Let α1 and α′ denote the values in
Zjp of the walks from v1 to v′1 on P1 and P ′, respectively, and let α2 denote the value of the
walk from v′1 to v1 on P2. Then α1 +α2 ∈ φ(C), while α1−α′ ∈ φ(C1) and α′+α2 ∈ φ(C2).
By the definition of N = N(n, j, p,PG((j/i) − 1, pi)), this implies that {C,C1, C2} is a
circuit of N , and so the claim holds.

Claims 16 and 17 combine to show that C ∈ clN({C ′}).

By Proposition 15, we may use Theorem 2 to define the matroid M(K
Zj
p

n )N(n,j,p,K) for
each prime p, each integer j > 2, each positive divisor i of j, each integer n > 3, and each

projection K of PG((j/i)− 1, pi). This matroid is a rank-r(K) lift of M(K
Zj
p

n ). We now
prove Theorem 3.
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Proof of Theorem 3. By Proposition 15, the matroid N(n, j, p,PG(j − 1, p)) on the set

of cycles of K
Zj
p

n satisfies (2∗). Also, by Definition 13, a cycle of K
Zj
p

n is a loop of
N(n, j, p,PG(j − 1, p)) if and only if it is balanced. Let K be the (j − i)-th truncation
of PG(j − 1, p). Then K is a projection of PG(j − 1, p), and each X ⊆ E(PG(j − 1, p))
satisfies rK(X) = min(rPG(j−1,p)(X), i). Since K is a projection of PG(j − 1, p), the
map g1 shows that N(n, j, p,K) is a projection of N(n, j, p,PG(j − 1, p)). Then since
N(n, j, p,PG(j − 1, p)) satisfies (2∗), Proposition 14 with N = N(n, j, p,PG(j − 1, p))
implies that N(n, j, p,K) also satisfies (2∗). Also, each element e of PG(j − 1, p) satisfies
rK({e}) = min(rPG(j−1,p)({e}), i) = 1, so K is loopless. Since K is loopless, by Definition

13, a cycle of K
Zj
p

n is a loop of N(n, j, p,K) if and only if it is balanced. By Theorem 2,

this implies that a cycle of K
Zj
p

n is a circuit of M = M(K
Zj
p

n )N(n,j,p,K) if and only if it is

balanced. Since r(K) = i, the matroid M(K
Zj
p

n )N(n,j,p,K) is a rank-i lift of M(K
Zj
p

n ). Thus,

the theorem holds with M = M(K
Zj
p

n )N(n,j,p,K).

To prove Theorem 3, we used the construction of Theorem 2. Conversely, we conjecture

that every lift of M(K
Zj
p

n ) that has each balanced cycle of K
Zj
p

n as a circuit arises from this
construction.

Conjecture 18. Let n > 3 and j > 2 be integers, let p be a prime, and let M be a lift

of M(K
Zj
p

n ) so that each balanced cycle of K
Zj
p

n is a circuit of M . Then there is a positive

divisor i of j and a projection K of PG((j/i)− 1, pi) so that M ∼= M(K
Zj
p

n )N(n,j,p,K).

This may be easier to prove in the case that no unbalanced cycle of K
Zj
p

n is a circuit
of M .

5 Other Abelian Groups

In this section we prove Theorem 4. For each finite group Γ and integer n > 3, we define
Mn,Γ to be the class of lifts M of M(KΓ

n ) for which a cycle of KΓ
n is a circuit of M if

and only if it is a balanced cycle of KΓ
n . These are the lifts of M(KΓ

n ) that respect the Γ-
labeling. Note that each matroid inMn,Γ is simple, since each 2-element cycle of M(KΓ

n )
is unbalanced. Also, if Γ is the trivial group, then Mn,Γ is empty, so we will restrict our
attention to nontrivial groups.

For each nontrivial finite group Γ and integer n > 3, the classMn,Γ certainly contains
the rank-1 lift LG(n,Γ). Theorem 4 says that if Γ is a nontrivial finite abelian group that
is not isomorphic to Zjp for some prime p and integer j > 2, then Mn,Γ contains only
LG(n,Γ), up to isomorphism. To prove this, we will use three lemmas, which each apply
to arbitrary finite groups.

The first lemma uses local information about the balanced cycles of KΓ
n . For each

element α ∈ Γ, we write Eα for {({i, j}, α) : 1 6 i < j 6 n}; these are the edges of KΓ
n

labeled by α. More generally, for each set A ⊆ Γ, we write EA for {({i, j}, α) : 1 6 i <
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j 6 n and α ∈ A}. For convenience, for each α ∈ Γ and 1 6 i < j 6 n, we write αij for
the edge ({i, j}, α).

Lemma 19. Let n > 3 be an integer, let Γ be a finite group with identity ε, and let
M ∈ Mn,Γ. Then each non-identity element α ∈ Γ satisfies rM(E{α,ε}) = n, and Eα ∩
clM(Eε) = ∅.

Proof. Clearly Eε spans M(KΓ
n ), since each element of M(KΓ

n ) is parallel to an element
in Eε. Let B = {α12} ∪ Eε. For each 3 6 j 6 n, the cycle {α12, ε2j, α1j} is balanced,
and is thus a circuit of M , since M ∈ Mn,Γ. Since {α12, ε2j, α1j} is a circuit of M for all
3 6 j 6 n, it follows that α1j ∈ clM(B) for each 2 6 j 6 n. For all 2 6 i < j 6 n, the
cycle {ε1i, αij, α1j} is balanced, and is thus a circuit of M ; this implies that αij ∈ clM(B).
Thus, Eα ⊆ clM(B), so rM(E{α,ε}) 6 r(M(KΓ

n )) + 1 = n.
We now show that Eα ∩ clM(Eε) = ∅; this implies that rM(E{α,ε}) = n. If α12 ∈

clM(Eε), then by the previous paragraph we have Eα ⊆ clM(Eε). Since M is a lift of
M(KΓ

n ) and M |Eε = M(KΓ
n )|Eε, this implies that M |(E{α,ε}) = M(KΓ

n )|(E{α,ε}). But M
is simple and M(KΓ

n )|(E{α,ε}) is not, so this is a contradiction. Thus, α12 /∈ clM(Eε). The
same argument applies to each element of Eα, so Eα ∩ clM(Eε) = ∅.

The next lemma uses a more global argument.

Lemma 20. Let n > 3 be an integer, let Γ be a finite group with identity ε, and let
M ∈ Mn,Γ. Let A be a subset of Γ, and let 〈A〉 be the subgroup of Γ generated by A.
Then E〈A〉 ⊆ clM(EA∪{ε}).

Proof. Let ◦ be the (multiplicative) group operation of Γ. We write B = EA∪{ε} for
convenience. Let α, β ∈ Γ so that Eα ∪Eβ ⊆ clM(B). We will show that Eα−1 ⊆ clM(B),
and that Eα◦β ⊆ clM(B); then each element γ ∈ Γ generated by A satisfies Eγ ⊆ clM(B),
and so E〈A〉 ⊆ clM(B). We freely use the fact that each balanced cycle of KΓ

n is a circuit
of M , since M ∈Mn,Γ.

Since {α−1
12 , α23, ε13} is a circuit of M and α23, ε13 ∈ clM(B), we have α−1

12 ∈ clM(B).
Then, since {α−1

12 , ε2j, α
−1
1j } is a circuit of M and α−1

12 , ε2j ∈ clM(B), we have α−1
1j ∈ clM(B)

for each 2 6 j 6 n. Finally, since {α1i, α
−1
ij , ε1j} is a circuit of M and α1i, ε1j ∈ clM(B),

we have α−1
ij ∈ clM(B) for all 2 6 i < j 6 n, and thus Eα−1 ⊆ clM(B).

We now show that Eα◦β ⊆ clM(B). Since {(α ◦ β)12, β
−1
23 , α13} is a circuit of M and

β−1
23 , α13 ∈ clM(B), we have (α ◦ β)12 ∈ clM(B). Since {β−1

12 , α
−1
2j , (α ◦ β)1j} is a circuit of

M and β−1
12 , α

−1
2j ∈ clM(B), we have (α ◦ β)1j ∈ clM(B) for each 2 6 j 6 n. Finally, since

{α−1
1i , (α ◦ β)ij, β1j} is a circuit of M and α−1

1i , β1j ∈ clM(B), we have (α ◦ β)ij ∈ clM(B)
for all 2 6 i < j 6 n. Thus Eα◦β ⊆ clM(B).

The following lemma defines an equivalence relation on the non-identity elements of
Γ. Its proof follows without difficulty from Lemmas 19 and 20.

Lemma 21. Let n > 3 be an integer, let Γ be a finite group with identity ε, and let
M ∈Mn,Γ. For α, β ∈ Γ− {ε}, write α ∼ β if rM(E{α,β,ε}) = n. Then
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(i) ∼ is an equivalence relation,

(ii) each equivalence class A of ∼ satisfies rM(EA∪{ε}) = n, and

(iii) for each equivalence class A of ∼, the set A ∪ {ε} is a subgroup of Γ.

We now prove the following restatement of Theorem 4.

Theorem 22. Let n > 3 be an integer, let Γ be a finite abelian group, and let M ∈Mn,Γ.
If r(M)− r(M(KΓ

n )) > 1, then there is a prime p and an integer j > 2 so that Γ ∼= Zjp.

Proof. Let ◦ be the (multiplicative) group operation of Γ, and let ε denote the identity
element of Γ. For α, β ∈ Γ − {ε}, we write α ∼ β if rM(E{α,β,ε}) = n; then ∼ is an
equivalence relation by Lemma 21(i). Let A denote the set of equivalence classes under
∼; by hypothesis and Lemma 21(ii) we have |A| > 2. By Lemma 20, this implies that Γ
is not cyclic.

We first use the fact that Γ is abelian.

Claim 23. Let α, β ∈ Γ− {ε}. If there is a prime that divides the order of α but not the
order of β, then α ∼ β.

Proof. By hypothesis, there are elements α′, β′ ∈ Γ with distinct prime orders so that α
generates α′, and β generates β′. Then α′ ∼ α, and β′ ∼ β, by Lemma 20. Since α′ and
β′ have distinct prime orders and Γ is abelian, the subgroup of Γ generated by {α′, β′}
is cyclic. Thus, Lemma 20 implies that α′ ∼ β′. Since ∼ is an equivalence relation, this
implies that α ∼ β.

We now find the prime p.

Claim 24. There is a prime p so that each element of Γ has order p.

Proof. By 23, for any two elements of Γ in different equivalence classes, there is a prime
p so that each has order equal to a power of p. Since there are at least two equivalence
classes of ∼, this implies that each element of Γ has order equal to a power of p.

Now, let α be an element of order p. We will show that each element in a different
equivalence class has order p. Since there are at least two equivalence classes, this implies
that each element of Γ has order p. Let β be in a different equivalence class than α, and
suppose that the order of β is not p. Then the subgroup of Γ generated by {α, β} is
isomorphic to Zp ⊕ Zpj for some j > 2. The elements (0, 1) and (0, p) are in a common
cyclic subgroup, as are the elements (1, 1) and (0, p). By Lemma 20, this implies that
(0, 1) ∼ (0, p) ∼ (1, 1), so (0, 1) ∼ (1, 1). But the set {(0, 1), (1, 1)} generates Zp ⊕ Zpj ,
so by Lemma 21(iii), all elements of the subgroup generated by {α, β} are equivalent. In
particular, α ∼ β, a contradiction.

Since Γ is abelian and not cyclic, 24 implies that Γ ∼= Zjp for some j > 2.

We conjecture that Theorem 22 can be extended to all finite groups.
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Conjecture 25. Let n > 3 be an integer, let Γ be a finite group, and let M ∈ Mn,Γ. If
r(M)− r(M(KΓ

n )) > 1, then there is a prime p and an integer j > 2 so that Γ ∼= Zjp.

We expect that Lemmas 19-21 would all be useful for proving this conjecture. Indeed,
Lemma 21 implies that if M ∈Mn,Γ and r(M)− r(M(KΓ

n )) > 1, then Γ has a nontrivial
decomposition into subgroups with pairwise trivial intersection. This decomposition is a
partition of Γ, and the classification of finite groups that admit a nontrivial partition was
completed by Baer, Kegel, and Suzuki [1, 6, 10]. While Lemma 21 and this classification
make partial progress towards Conjecture 25, it is unclear how to proceed for non-abelian
groups with a nontrivial partition.

6 Examples

Now that we have applied Theorem 2 to group-labeled graphs, we consider other appli-
cations. Given a matroid M , it is unclear when there exists a matroid N of rank at least
three on the set of circuits of M that satisfies (10∗) (or equivalently, (2∗)). A rank-1
matroid N on the circuits of M can be constructed from any linear class C of circuits of
M , by taking C to be precisely the set of loops of N . Also, the rank-2 uniform matroid on
the set of circuits of M trivially satisfies (10∗), because the collection C ′ is always span-
ning in N . In this case, the matroid MN can also be obtained from applying Brylawski’s
construction (Theorem 1) to M with the empty linear class, and then again applying the
construction with the empty linear class. The following proposition shows that, for any
matroid M of corank at least three, there exists a rank-3 matroid N on the set of circuits
of M that satisfies (10∗).

Proposition 26. Let M be a matroid of corank at least three, and let I be the collection
of sets of circuits of M so that C ∈ I if and only if |C| 6 3 and each C ′ ⊆ C satisfies
|C ′| 6 | ∪ C ′| − rM(∪C ′). Then I is the collection of independent sets of a rank-3 matroid
N on the set of circuits of M , and N satisfies (10∗).

Proof. Clearly ∅ ∈ I and I is closed under taking subsets. Note that each 2-element set
{C1, C2} of circuits of M is in I, because |C1 ∪ C| − rM(C1 ∪ C) > 2 since M |(C1 ∪ C)
contains distinct circuits. Let C1 and C2 be sets in I so that |C1| < |C2|. Assume that
there is no circuit C ∈ C2 for which C1 ∪ {C} ∈ I. Since each 2-element set of circuits is
in I, we may assume that |C1| = 2 and |C2| = 3.

Let C ∈ C2 − C1. Then each 2-element subset of C1 ∪ {C} is in I. Thus,

2 6 | ∪ C1| − rM(∪C1) 6 | ∪ (C1 ∪ {C})| − rM(∪(C1 ∪ {C})) < 3,

where the first inequality holds because C1 ∈ I, and the third holds because C1∪{C} /∈ I
and each subset is in I. So equality holds throughout, which implies that C ⊆ ∪C1. The
same reasoning applies to each circuit in C2 − C1, and so ∪C2 ⊆ ∪C1. But then

| ∪ C2| − rM(∪C2) 6 | ∪ C1| − rM(∪C1) = 2,
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so C2 /∈ I, a contradiction. Thus, I is the collection of independent sets of a matroid
N of rank at most three. Since M has corank at least three, it contains three circuits
C1, C2, C3 such that none is contained in the union of the other two; then {C1, C2, C3} ∈ I,
so r(N) = 3.

We now show that N satisfies (10∗). Let C ′ be a perfect collection of circuits of M ,
and let C /∈ C ′ be a circuit of M contained in ∪C ′. We may assume that rN(C ′) = 2, or
else (10∗) trivially holds since r(N) = 3. Since no circuit in C ′ is contained in the union
of the others, this implies that |C ′| = 2. Since C ⊆ ∪C ′, we have

| ∪ (C ′ ∪ {C})| − rM(∪(C ′ ∪ {C})) = | ∪ C ′| − rM(∪C ′) = |C ′| < |C ′ ∪ {C}|,

and so C ′ ∪ {C} /∈ I. Then rN(C ′ ∪ {C}) = rN(C ′), and so C ∈ clN(C ′), as desired.

For representable matroids we can do much better, using the derived matroid of
Longyear [7] and Oxley and Wang [9]. Let M be an F-representable matroid with
ground set E = {e1, e2, . . . , em} for some field F, and fix an F-representation A of M
with column vectors ϕ(e1), ϕ(e2), . . . , ϕ(em). For each circuit C of M , there is a vector
cC = (c1, c2, . . . , cm) in Fm such that

∑m
i=1 ciϕ(ei) = 0 and ci 6= 0 if and only if ei ∈ C;

this vector is unique up to multiplying by a nonzero scalar. Let A′ denote the matrix over
F with columns indexed by the circuits of M so that the column vector of each circuit
C is cC . Then M(A′) is the derived matroid of the representation A of M . Oxley and
Wang show that the rank of the derived matroid of any representation of M is r(M∗)
[9, Prop. 9.2.2]. In addition, they show that the derived matroid of any representation
of U1,n is M(Kn) [9, Lemma 2.5], because each pair of elements in [n] forms a circuit of
U1,n. Note that r(M(Kn)) = n− 1 = r∗(U1,n). We show that the derived matroid of any
representation of a matroid M satisfies (10∗).

Proposition 27. Let M be matroid representable over a field F, and let N be the derived
matroid of a representation A of M . Then N satisfies (10∗), and MN is the free matroid
on E(M).

Proof. Let C ′ be a perfect collection of circuits of M . Since each circuit in C ′ has an
element that is not in any other circuit in C ′, the set C ′ is independent in N . Let N ′

denote the derived matroid of the matrix A[(∪C ′)]; then N ′ is a restriction of N , and

r(N ′) = r((M |(∪C ′))∗) = | ∪ C ′| − rM(∪C ′) = |C ′|,

where the last equality holds because C ′ is perfect. Since C ′ is independent in N , this
implies that C ′ is a basis of N ′. Thus, each circuit C of M contained in ∪C ′ satisfies
C ∈ clN(C ′), and so N satisfies (10∗). Since r(N) = r(M∗), Theorem 10 shows that
r(MN) = r(M) + r(M∗) = |M |, so MN is a free matroid.

For example, the derived matroid M(Kn) of any representation of U1,n satisfies (10∗),
and U

M(Kn)
1,n is the free matroid on [n] because r(U

M(Kn)
1,n ) = r(U1,n) + r(M(Kn)) = n.

Given one matroid N on the circuits of M that satisfies (10∗), we can construct many
more, using Proposition 14. If M is representable, then Propositions 27 and 14 show that,

the electronic journal of combinatorics 29(1) (2022), #P1.6 15



for each integer 1 6 k < r∗(M), there are many rank-k matroids on the circuits of M that
satisfy (10∗). This proves Theorem 5. However, if N and N ′ are two different matroids
on the circuits of M , it may be the case that MN = MN ′ . For example, a matroid M
representable over a field F other than GF(2) or GF(3) may have several non-isomorphic
derived matroids, depending on the representation [9, Theorem 2.6], and these all lead to
the free matroid, by Proposition 27.

7 The Converse

Theorem 1 states that every elementary lift of a given matroid M arises from a linear
class of circuits of M . More generally, the following restatement of Conjecture 6 states
that every lift of M arises from the construction of Theorem 10.

Conjecture 28. Let M be a matroid. For every lift K of M , there is a matroid N on
the circuits of M so that N satisfies (10∗), and K ∼= MN .

This is certainly true if r(M) = 0; then the set of circuits of M is precisely E(M),
and we can take N = K. It is also true if M has corank at most two, by Theorem 1 and
the fact that the rank-2 uniform matroid on the circuits of M satisfies (10∗). It is tedious
but not difficult to check that it is true for certain small matroids of corank three, such
as U1,4 or U2,5. However, Conjecture 28 seems difficult to prove even for the very basic
class of rank-1 uniform matroids.

In general, if there exists a matroid N so that MN is the free matroid on E(M),
then Proposition 14 shows that Theorem 10 can be used to construct a potentially huge
number of lifts of M , and this provides some evidence that Conjecture 28 is true for M . In
particular, the constructions of the previous section provide evidence that this conjecture
is true for representable matroids and matroids of corank three.

One way to prove Conjecture 28 would be to explicitly construct the matroid N , given
K and M . We make the following conjecture in this direction:

Conjecture 29. Let M be a matroid, and let K be a lift of M . Let I be the collection
of subsets C ′ of C(M) for which there is no matroid K ′ such that

• K ′ is a projection of K and a lift of M ,

• each set in C ′ is a circuit of K ′, and

• r(K)− r(K ′) < |C ′|.

Then I is the collection of independent sets of a matroid N on C(M), and K ∼= MN .

If K is the free matroid on E(M), then K ′ is only required to be a lift of M , since
every matroid on E(M) is a projection of the free matroid on E(M). Conjecture 29 may
be easier to prove in this special case.
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8 The Dual Construction

All of the previous results about lifts of a matroid M give rise to results about projections
of M∗. For a set E and a set X of subsets of E, we write ∩X for ∩X∈XX. Given a
matroid K, we write H(K) for the set of hyperplanes of K. We say that a collection
H′ of hyperplanes of K is perfect if rK(∩H′) = r(K) − |H′|, and no hyperplane in H′
contains the intersection of the others. It is easy to check that H′ is a perfect collection of
hyperplanes of K if and only if {E−H : H ∈ H′} is a perfect collection of circuits of K∗.
The following is a restatement of Theorem 8. We omit the proof, as it is a straightforward
application of duality.

Theorem 30. Let K be a matroid, and let N be a matroid on the set of hyperplanes of
K so that

(30∗) if H′ is a perfect collection of hyperplanes of K, and H is a hyperplane of K that
contains ∩H′, then H ∈ clN(H′).

Then the function rKN
defined, for all X ⊆ E(K), by

rKN
(X) = rK(X)− r(N) + rN({H ∈ H(K) : X ⊆ H})

is the rank function of a rank-r(N) projection KN of K.

Theorem 7 states that every elementary projection of a given matroid K arises from a
linear subclass of hyperplanes of K. More generally, we conjecture that every projection
of K arises from the construction of Theorem 30; this is dual to Conjecture 28. We close
by stating the dual of Conjecture 29.

Conjecture 31. Let K be a matroid, and let M be a projection of K. Let I denote the
collection of subsets H′ of H(K) for which there is no matroid K ′ such that

• K ′ is a projection of K and a lift of M ,

• each set in H′ is a hyperplane of K ′, and

• r(K ′)− r(M) < |H′|.

Then I is the collection of independent sets of a matroid N on H(K), and M ∼= KN .
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