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Abstract

We introduce polynomials counting nowhere-zero chains in graphs – nonhomo-
geneous analogues of nowhere-zero flows. For a graph G, an Abelian group A, and
b : V (G) → A, let αG,b be a mapping from Λ(G) (a family of vertex sets of con-
nected subgraphs of G satisfying an additional condition) to {0, 1} such that for
each X ∈ Λ(G), αG,b(X) = 0 if and only if

∑
v∈X b(v) = 0. We prove that there

exists a polynomial function F (G,α; k) (α = αG,b) of k such that for any Abelian
group A′ of order k and each b′ : V (G)→ A′ satisfying αG,b′ = α, F (G,α; k) equals
the number of nowhere-zero A′-chains ϕ in G having boundaries equal to b′. In
particular F (G,α; k) is the flow polynomial of G if α(X) = 0 for each X ∈ Λ(G).
Finally we characterize α for which F (G,α; k) is nonzero and show that in this case
F (G,α; k) has the same degree as the flow polynomial of G.

Mathematics Subject Classifications: 05C31, 05C21, 05C15

1 Introduction

The graphs considered in this paper are finite and unoriented. Multiple edges and loops
are allowed. If G is a graph, then V (G) and E(G) denote the sets of vertices and edges
of G, respectively. With each edge of G there are associated two distinct arcs (see [10]).
Arcs on distinct edges are distinct. If an arc on an edge is denoted by x the other is
denoted by x−1. If the ends of an edge e of G are vertices u and v, one of the arcs on e
is said to be directed from u to v and the other one is directed from v to u. Let D(G)
denote the set of arcs on G. If v ∈ V (G) (X ⊆ V (G)), then the set of arcs of G directed
out from v (resp. X) is denoted by ωG(v) (resp. ωG(X)).
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If G is a graph and A is an Abelian group, then a nowhere-zero A-chain in G is a
mapping ϕ from D(G) to A \ {0} such that ϕ(x−1) = −ϕ(x) for every x ∈ D(G). By the
boundary of ϕ we mean the mapping ∂ϕ from V (G) to A such that ∂ϕ(v) =

∑
x∈ωG(v) ϕ(x)

for every v ∈ V (G). By an easy computation (see [10, Proposition 2.1]) we can check that
for any X ⊆ V (G), ∑

v∈X

∂ϕ(v) =
∑

x∈ωG(X)

ϕ(x). (1)

In particular, if |ωG(X)| = 0 then
∑

v∈X ∂ϕ(v) = 0 and if |ωG(X)| = 1 then
∑

v∈X ∂ϕ(v) 6=
0. If ∂ϕ(v) = 0 for every v ∈ V (G), then we call ϕ a nowhere-zero A-flow.

Nowhere-zero flows in graphs have been introduced by Tutte [15] as dual concept to
graph coloring problems. It is well known that a planar graph is k-colorable if and only
if its dual admits a nowhere-zero A-flow for any Abelian group of order k.

This paper is motivated by the facts that nowhere-zero flows are often studied in the
framework of nowhere-zero chains (see cf. [8, 9, 12, 13]) and that the number of nowhere-
zero A-flows in a graph is evaluated by a polynomial function of |A|, the flow polynomial
(see cf. [1, 2, 3, 4, 7, 14]). Notice that flow polynomials are studied in framework of other
combinatorial invariants, in particular the Tutte and characteristic polynomials – topics
having applications not only in combinatorics, but also in coding theory, geometry, knot
theory and physics (see [6, 5, 16, 17]).

It is natural to ask whether there exist polynomial functions of |A| that generalize flow
polynomials and count nowhere-zero A-chains in graphs (but we are not aware whether
this question appeared somewhere in the literature). If a graph consists from an isolated
vertex v and a loop, then the number of nowhere-zero A-chains ϕ satisfying ∂ϕ(v) = bv,
bv ∈ A, is either |A|− 1 (if bv = 0), or 0 (if bv 6= 0). With respect to similar arguments we
need to consider so called “{0, 1}-assignings” of certain sets of vertices and in the main
result (Theorem 1) we show that the number of nowhere zero A-chains with boundaries
corresponding to an assigning is evaluated by a polynomial function of |A| that we call
an assigning polynomial. As a consequence we can guarantee existence of group-valued
chains if there exist chains with the same assigning and having values from a group of the
same cardinality (Corollary 2). In the third section we decompose assigning polynomials
and characterize assignings corresponding to nonzero polynomials. In the last section we
present several examples and remarks about the topic.

2 Assigning polynomials

In this section we introduce the polynomial counting nowhere-zero chains in graphs.
For a graph G, let c(G) denote the number of components of G and m(G) = |E(G)|−

|V (G)|+ c(G). Denote by Λ(G) the family of X ⊆ V (G) such that G[X] (the subgraph of
G induced by X) is either a component of G or G[X] is connected and c(G−X) = c(G).
Notice that ∅ ∈ Λ(G). By an assigning of G we mean any mapping α from Λ(G) to
{0, 1}. We write α ≡ 0 if α(X) = 0 for each X ∈ Λ(G).
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Let b : V (G)→ A. By αG,b we denote the assigning of G such that for each X ∈ Λ(G),
αG,b(X) = 0 if

∑
v∈X b(v) = 0 and αG,b(X) = 1 otherwise. We also say that α = αG,b is G-

admissible. Let ΦG(b) denote the set of nowhere-zero A-chains inG satisfying ∂ϕ(v) = b(v)
for each v ∈ V (G). If ΦG(b) 6= ∅, b is called G-proper and α = αG,b is called a G-proper
assigning of G. Clearly, each G-proper assigning is G-admissible, but not vice versa (more
details are presented in the last section and Theorem 4).

For any edge e of G, G/e and G−e denote the graph arising from G after contracting
and deleting e, respectively. Let e ∈ E(G) have ends v1, v2. Denote by v/e the vertex
of G/e arising from v1 and v2 after contracting e. For each X ∈ Λ(G/e) denote by
Xe = (X \ {v/e})∪{v1, v2} if v/e ∈ X and Xe = X otherwise. Clearly, X ∈ Λ(G/e) if and
only if Xe ∈ Λ(G). Thus for any assigning α of G we can define α/e to be the assigning
of G/e such that α/e(X) = α(Xe) for each X ∈ Λ(G/e). Moreover Λ(G−e) ⊆ Λ(G).
Thus for any assigning α of G we can define α−e to be the assigning of G−e such that
α−e(X) = α(X) for each X ∈ Λ(G−e). Clearly if e is a loop (i.e, v1 = v2), then
v/e = v1 = v2, Λ(G) = Λ(G/e) = Λ(G−e), and α = α/e = α−e.

Theorem 1. Suppose that α is a G-admissible assigning of a graph G. Then there exists
a polynomial function F (G,α; k) of k such that F (G,α; k) = |ΦG(b)| for every Abelian
group A of order k and every mapping b : V (G)→ A satisfying αG,b = α. F (G,α; k) has
degree m(G) if α is G-proper and F (G,α; k) = 0 otherwise. In the case E(G) = ∅ we
have F (G,α; k) = 1 if α is G-proper and F (G,α; k) = 0 if α is not G-proper. Furthermore
for any edge e of G, α/e and α−e are (G/e)- and (G−e)-admissible, respectively, and

F (G,α; k) = (k − 1)F (G− e, α−e; k), if e is a loop,
F (G,α; k) = F (G/e, α/e; k)− F (G−e, α−e; k), otherwise.

(2)

Proof. We use induction by |E(G)|. If |E(G)| = 0, then m(G) = 0, Λ(G) contains all
subsets of V (G) of cardinality at most 1, and α is G-proper if and only if α ≡ 0. Clearly,
for any Abelian group A, there exist (|A|−1)m(G) = 1 nowhere-zero A-chains ϕ in G. Thus
F (G,α; k) = (k − 1)m(G) = 1 if α ≡ 0 and F (G,α; k) = 0 otherwise, and the statement
holds true in this case.

The induction step is trivial if e is a loop of G (as pointed out before, α = α/e = α−e
and Λ(G) = Λ(G/e) = Λ(G−e) in this case).

Let e be an edge of G having different ends v1 and v2. Since α is G-admissible, there
exist an Abelian group A and b : V (G) → A such that α = αG,b. Then α−e = αG−e,b
and α/e = αG/e,b̄ where b̄ : V (G/e) → A is defined so that b̄(v/e) = b(v1) + b(v2) and

b̄(v) = b(v) if v 6= v/e, v ∈ V (G/e). Thus α/e and α−e are (G/e)- and (G−e)-admissible,
respectively.

Each ϕ ∈ ΦG/e(b̄) can be considered as a nowhere-zero A-chain ϕ′ in G−e (considering
D(G/e) and D(G−e) to be identical). Applying (1) for ϕ and ϕ′, we get that ∂ϕ′(v1) =
b(v1) + a and ∂ϕ′(v2) = b(v2)− a where a ∈ A. Then either ϕ′ ∈ ΦG−e(b) (if a = 0), or ϕ′

can be extended into a unique nowhere-zero A-chain ϕ′ ∈ ΦG(b) (if a 6= 0). Thus

|ΦG/e(b̄)| = |ΦG(b)|+ |ΦG−e(b)|. (3)
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Let α be G-proper. Then by (3) also α/e is (G/e)-proper. By induction hypothesis and
(3), |ΦG(b′)| = F (G/e, α/e; k)−F (G−e, α−e; k) for any b′ : V (G)→ A′, |A′| = k, satisfying
α = αG,b′ (no matter whether α−e is (G−e)-proper or not). Thus |ΦG(b′)| = FG,α(k)
where FG,α(k) equals F (G/e, α/e; k) − F (G−e, α−e; k). If e is not a bridge in G, then
m(G) = m(G/e) = m(G−e) + 1 whence FG,α(k) has degree m(G). Let e be a bridge
in G. Then m(G) = m(G/e) = m(G−e). Let H be the component of G containing e
and H1, H2 be the components of H − e. Using (1) and the fact that α is G-proper
we have α(V (H)) = 0 and α(V (H1)) = α(V (H2)) = 1, whence by definition of α−e,
α−e(V (H1)) = α−e(V (H2)) = 1. Therefore by (1), α−e is not (G−e)-proper and by the
induction hypothesis, F (G − e, α−e; k) = 0. Thus FG,α(k) = F (G/e, α/e; k) have degree
m(G) = m(G−e).

If α is not G-proper, then by induction hypothesis and (3), we have F (G/e, α/e; k) =
F (G−e, α−e; k), whence F (G,α; k) = F (G/e, α/e; k)− F (G−e, α−e; k) = 0.

F (G,α; k) is called an α-assigning polynomial of G.

Corollary 2. Suppose that G is a graph, A, A′ are Abelian groups of the same order and
mappings b : V (G)→ A, b′ : V (G)→ A′ satisfy αG,b = αG,b′. Then |ΦG(b)| = |ΦG(b′)|.

Proof. By Theorem 1, |ΦG(b)| = F (G,α; k) = |ΦG(b′)| where α = αG,b = αG,b′ and
k = |A| = |A′|.

Corollary 2 generalizes the well known property of nowhere-zero flows, namely that
the number of nowhere-zero A-flows in a graph does not depend on the structure of A
but only on |A|.

The situation in Theorem 1 and Corollary 2 could be much simpler if we replace Λ(G)
by the powerset of V (G). But in the last section we present an example of b, b′ : V (G)→ A
such that αG,b equals αG,b′ if these are considered as mappings form Λ(G), but the equality
does not hold if αG,b and αG,b′ are considered as mappings from 2V (G). Thus we get
|ΦG(b)| = |ΦG(b′)| by Corollary 2, which is not possible if we consider 2V (G) instead of
Λ(G). For this reason we need to consider Λ(G) as small as possible, but, in the same
time, Λ(G) must be sufficiently rich so that we are able to prove Theorem 1. Thus we
choose a few technical definition of Λ(G).

3 Properties of assigning polynomials

In this section we present a decomposition formula for assigning polynomials. Using the
formula we characterize assignings corresponding to nonzero polynomials.

Suppose that α is a G-admissible assigning of a graph G. Then there exists an Abelian
group A and b : V (G) → A such that αG,b = α. By a b-extension α̃G,b (simply an
extension α̃) of α we mean a mapping from 2V (G) to {0, 1} such that for each X ⊆ V (G),
α̃G,b(X) = α̃(X) = 0 if and only if

∑
v∈X b(v) = 0. (In the following section we present

an example when αG,b = αG,b′ and α̃G,b 6= α̃G,b′ , i.e., α does not need to have a unique
extension.)
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If Y ⊆ E(G) and graph G − Y has cY components GY,1, . . . , GY,cY , then δ(Y, α̃) is
defined so that

δ(Y, α̃) =

{
1 if α̃(GY,1) = · · · = α̃(GY,cY ) = 0,
0 otherwise.

(4)

Let < be a linear ordering of E(G). We say that Y ⊆ E(G) is <-compatible if for each
circuit C of G, C∩Y 6= {min(C)} (considering circuits as edge sets of 2-regular connected
subgraphs of G). Denote by E(G,<) the set of all <-compatible subsets of E(G). Clearly,
no <-compatible set contains a loop (a circuit consisting of a single edge).

Theorem 3. Suppose that α is a G-admissible assigning of a graph G, α̃ is an extension
of α, and let < be a linear ordering of E(G). Then

F (G,α; k) =
∑

Y ∈E(G,<)

δ(Y, α̃)(−1)|Y |(k − 1)m(G−Y ). (5)

Proof. We prove (5) applying induction on |E(G) \ LG| where LG denotes the set of
loops of G. If E(G) = LG, then m(G) = |E(G)| and ∅ is the unique <-compatible
subset of E(G). Furthermore, δ(∅, α̃) = 1 if α ≡ 0 and δ(∅, α̃) = 0 otherwise. Thus
F (G,α; k) = δ(∅, α̃)(k − 1)m(G) as claimed.

If E(G) 6= LG, choose e = max(E(G) \ LG) and define E+ = {Y ∈ E(G,<); e /∈ Y },
E− = {Y ∈ E(G,<); e ∈ Y }.

Let Y ∈ E(G/e,<) and C be a circuit in G. If e is a chord of C, then from C arise two
circuits C ′1, C ′2 in G/e and Y ∩ C ′i 6= {min(C ′i)}, i = 1, 2, min(C) ∈ {min(C ′1),min(C ′2)},
whence Y ∩C 6= {min(C)}. If e is not a chord of C, then from C arise just one circuit C ′

in G/e and Y ∩ C ′ 6= {min(C ′)}, min(C) = min(C ′), whence Y ∩ C 6= {min(C)}. Thus
Y ∈ E(G,<) and e /∈ Y , i.e., E(G/e,<) ⊆ E+.

Let Y ∈ E+ and C be a circuit in G/e. Then C indicates just one circuit Ce in G
(where either C = Ce, or Ce = C ∪ {e}). Since Y ∩ Ce 6= {min(Ce)} and e /∈ Y , we have
Y ∩ C 6= {min(C)}. Thus E+ ⊆ E(G/e,<) and E+ = E(G/e,<).

If Y ∈ E(G − e,<), then for each circuit C in G − e, Y ∩ C = (Y ∪ {e}) ∩ C 6=
{min(C)}. Furthermore, for each circuit C ′ in G containing e we have e ∈ (Y ∪{e})∩C ′,
whence (Y ∪ {e}) ∩ C ′ 6= {min(C ′)} (because by the choice of e, e 6= min(C ′)). Thus
E(G− e,<) ⊆ {Y ′ \ {e};Y ′ ∈ E−}.

If Y ′ ∈ E−, then for each circuit C in G−e, (Y ′ \ {e}) ∩ C = Y ′ ∩ C 6= {min(C)},
whence E(G−e,<) = {Y ′ \ {e};Y ′ ∈ E−}.

Suppose that α̃/e and α̃−e arise from α̃ in a similar way as α/e and α−e arise from α,
respectively. Clearly, α̃/e and α̃−e are extensions of α/e and α−e, respectively (since α̃ is
an extension of α).

It is an easy exercise to check that if Y ∈ E(G/e,<) = E+, then m((G/e)−Y ) =
m(G−Y ) (since e /∈ LG) and δ(Y, α̃/e) = δ(Y, α̃). Furthermore if Y ∈ E(G−e,<) =
{Y ′ \ {e};Y ′ ∈ E−}, then (G−e)−Y = G−(Y ∪{e}) whence δ(Y, α̃−e) = δ(Y ∪{e}, α̃).
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Thus by (2) and the induction hypothesis,

F (G,α; k) = F (G/e, α/e; k)− F (G−e, α−e; k) =∑
Y ∈E(G/e,<)

δ(Y, α̃/e)(−1)|Y |(k − 1)m((G/e)−Y ) −

∑
Y ∈E(G−e,<)

δ(Y, α̃−e)(−1)|Y |(k − 1)m((G−e)−Y ) =

∑
Y ∈E+

δ(Y, α̃)(−1)|Y |(k−1)m(G−Y ) −∑
Y ′∈E−

δ(Y ′, α̃)(−1)|Y
′\{e}|(k−1)m(G−Y ′) =∑

Y ∈E(G,<)

δ(Y, α̃)(−1)|Y |(k − 1)m(G−Y ),

concluding the proof.

Notice that the summands from the right hand side of (5) can differ depending on the
choice of α̃ and <, but their sum is always F (G,α; k).

Theorem 4. A G-admissible assigning α of a graph G is G-proper if and only if

(a) for each component H of G, α(V (H)) = 0,

(b) for each bridge e, the components H1, H2 of G − e containing the ends of e satisfy
α(V (H1)) = α(V (H2)) = 1.

Proof. Necessity follows directly from (1). To prove sufficiency, assume that (a) and (b)
hold true. Let Y ⊆ E(G) and BG denote the set of bridges of G. Then m(G − Y ) is
smaller than m(G) if Y \ BG 6= ∅ and by (b), δ(Y, α̃) = 0 if BG ∩ Y 6= ∅. Thus for each
linear ordering < of E(G) and each nonempty Y ∈ E(G,<), we have either δ(Y, α̃) = 0,
or m(G − Y ) is smaller than m(G). Clearly, ∅ ∈ E(G,<) and by (a), δ∅,α̃ = 1. Thus
the right hand side of (5) is a sum of powers of (k − 1) such that exactly one of them
(corresponding to Y = ∅) has the maximal possible degree m(G). Hence F (G,α; k) 6= 0
and α is G-proper.

We show that if α ≡ 0, then F (G,α; k) is the flow polynomial of graphs (see cf.
[1, 2, 3, 14]).

Corollary 5. For any graph G, there exists a polynomial F (G; k) such that F (G; k) is
equal to the number of nowhere-zero A-flows for any Abelian group A of order k. Fur-
thermore, F (G; k) has degree m(G) if G is bridgeless, F (G; k) = 0 if G has a bridge, and
for any edge e of G,

F (G; k) = (k − 1)F (G−e; k), if e is a loop,
F (G; k) = F (G/e; k)− F (G−e; k), otherwise.
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Proof. Clearly, α ≡ 0 is G-admissible and by Theorem 4, it is G-proper if and only if G
is bridgeless. Thus the statement follows from Theorem 1 after setting α ≡ 0.

If α ≡ 0, then α = αG,b where b(v) = 0 for each v ∈ V (G), thus also α̃ ≡ 0 (i.e.,
α̃(X) = 0 for each X ⊆ V (G)). Then by (4), δ(Y, α̃) = 1 for each Y ∈ E(G,<), whence

F (G; k) =
∑

Y ∈E(G,<)

(−1)|Y |(k − 1)m(G−Y ). (6)

An alternative proof of this formula follows also from [11, Theorem 2].
Notice that formula (5) evaluates F (G,α; k) as a sum of polynomials that form a

subset of summands from the right hand side of (6) (that evaluates F (G; k)). As pointed
out in the proof of Theorem 4, for each G-proper assigning α, the degree of F (G,α; k) is
determined by the summand (k − 1)m(G) (corresponding to ∅ ∈ E(G,<)).

4 Concluding remarks

In this section we present several examples and remarks.

Example 1. Let H = K2, V (H) = {v1, v2}, E(H) = {e}. Then Λ(H) = 2V (H). Suppose
that α is an assigning of H such that α({v2}) = 1 and α(X) = 0 for all X ∈ Λ(H) = 2V (H),
X 6= {v2}. It is easy to check that α is not H-admissible, α−e is H-admissible but
not H-proper, α/e is H-proper, F (H−e, α−e; k) = 0, and F (H/e, α/e; k) = 1. If we
set F (H,α; k) = 0, then (2) is not valid any more. Thus it is necessary to formulate
Theorem 1 for G-admissible assignings.

Example 2. Consider b[i] : V (H) → Z2, i = 1, . . . , 3, such that b[1](v1) = b[1](v2) = 1,
b[2](v1) = b[2](v2) = 0, b[3](v1) = 1, b[3](v2) = 0. Thus α[i] = αH,b[i] are H-admissible for

i = 1, . . . , 3. By Theorem 4, α[1] and α
[1]
/e are H- and (H/e)-proper, respectively, α

[1]
−e is

not (H−e)-proper, F (H,α[1]; k) = F (H/e, α
[1]
/e ; k) = 1, and F (H−e, α[1]

−e; k) = 0. On the

other hand α[2] is not H-proper, α
[2]
/e and α

[2]
−e are (H/e)- and (H−e)-proper, respectively,

F (H/e, α
[2]
/e ; k) = F (H−e, α[2]

−e; k) = 1 and F (H,α[2]; k) = 0. Finally α[3], α
[3]
/e , and α

[3]
−e

are not H-, (H/e)-, and (H−e)-proper, respectively, and F (H,α[3]; k) = F (H/e, α
[3]
/e ; k) =

F (H−e, α[3]
−e; k) = 0.

We need α̃ only to define δ(Y, α̃). For this reason, it would suffice to define α̃ as
mappings from the family Λc(G) of vertex sets of connected subgraphs of G. Clearly,
Λ(G) ⊆ Λc(G) ⊆ 2V (G). Notice that Theorem 1 remains valid if we consider α as mappings
from Λc(G) or 2V (G), but then we get weaker versions of Theorem 1.

Example 3. Let G = K4,1, u be the vertex of degree 4, u1, . . . , u4 be the vertices of degree
1, and b, b′ : V (G) → Z5 so that b(u1) = b(u2) = 1, b(u3) = b(u4) = 4, b′(u1) = · · · =
b′(u3) = 1, b′(u4) = 2, and b(u) = b′(u) = 0. Then Λ(G) consists of ∅, V (G), {ui}, and
V (G)\{ui} (i = 1, . . . , 4), and αG,b = αG,b′ . Furthermore, X = {u1, u4, u} ∈ Λc(G)\Λ(G)
and 0 =

∑
v∈X b(v) 6=

∑
v∈X b

′(v). Thus by Theorem 1 we have |ΦG(b)| = |ΦG(b′)|, but
we cannot apply this implication if we consider α as mappings from Λc(G) in Theorem 1.
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Example 4. Let C be a circuit of order 6 with consecutive vertices v1, . . . , v6 and b, b′ :
V (C) → Z5 so that b(v1) = · · · = b(v3) = 1, b(v4) = · · · = b(v6) = 4, b′(v2) = 2,
b′(v5) = 3, and b′(vi) = b(vi) for i ∈ {1, 3, 4, 6}. We can check that αC,b = αC,b′ , but
0 = b(v1) + b(v5) 6= b′(v1) + b′(v5). Thus αC,b = αC,b′ and α̃C,b 6= α̃C,b′ . By Theorem 1 we
have |ΦG(b)| = |ΦG(b′)|, but we cannot apply this implication if we consider α as mappings
from 2V (G) in Theorem 1. In fact we can check that for each X ∈ Λc(G),

∑
v∈X b(v) = 0 if

and only if
∑

v∈X b
′(v) = 0. Thus we get |ΦG(b)| = |ΦG(b′)| if we consider α as mappings

from Λc(G) in Theorem 1.

In the following example we show that assumption αG,b = αG,b′ cannot be deleted from
Corollary 2. In fact we show that F (G,α; k) can differ from F (G,α′; k) if α(X) 6= α′(X)
for a unique X ∈ Λ(G) (which, furthermore, has cardinality > 1).

Example 5. Let C be a circuit of order 6 with consecutive vertices v1, . . . , v6 and b, b′′ :
V (C) → Z5 such that b(v1) = · · · = b(v3) = 1, b(v4) = · · · = b(v6) = 4, b′′(v3) = 3,
b′′(v4) = 2, and b′′(vi) = b(vi) for i ∈ {1, 2, 5, 6}. Now αC,b 6= αC,b′′ because X =
{v1, v2, v3} ∈ Λ(C) but

∑3
i=1 b

′′(vi) = 0 6=
∑3

i=1 b(vi) (it is easy to check that X and
V (C) \X are the unique elements of Λ(C) such that αC,b(X) 6= αC,b′′(X)). Let xi denote
the arc directed from vi to vi+1 (considering the indices mod 6). Let ϕ ∈ ΦC(b). If ϕ(x1) =
2, then we can check that (ϕ(x1), . . . , ϕ(x6)) = (2, 3, 4, 3, 2, 1) and ϕ(x1) cannot equal 3
(resp. 4, or 1) because then ϕ(x3) (resp. ϕ(x2), or ϕ(x6)) equals 0. Thus |ΦC(b)| = 1.
Similarly if ϕ′′ ∈ ΦC(b′′) and ϕ′′(x1) = 2 (resp. ϕ′′(x1) = 3), then (ϕ′′(x1), . . . , ϕ′′(x6)) =
(2, 3, 1, 3, 2, 1) (resp. (ϕ′′(x1), . . . , ϕ′′(x6)) = (3, 4, 2, 4, 3, 2))) and ϕ′′(x1) cannot equal 4
(resp. 1), because then ϕ′′(x2) (resp. ϕ′′(x6)) equals 0. Hence |ΦC(b′′)| = 2, i.e., |ΦC(b)| 6=
|ΦC(b′′)|. On the other hand considering b′ as defined in Example 4, we have proved that
αG,b = αG,b′ and |ΦC(b)| = |ΦC(b′)|.

By a leaf of a forest T we mean any vertex of degree 1 or 0. For each component H of
F , denote by `(H) the set of leaves of H. By L(T ) we mean the partition {`(H)} of `(T )
where H runs through the set of components of T . If e is an edge of H, then H−e consists
of two subtrees H1, H2 of H, and denote by L(e) the partition {`(H1)∩`(H), `(H2)∩`(H)}
of `(H) (notice that `(H1), `(H2) ⊆ `(H) and L(e) = {`(H1), `(H2)} if e is not incident
with a vertex of degree 2).

Assume that G is a graph where V (G) = {v1, . . . , vn} has cardinality n > 1 and let
T be a forest having n leaves v′1, . . . , v

′
n. For i = 1, . . . , n, identify vi with v′i into a new

vertex v′′i . Denote the resulting graph by GT . Let A be an Abelian group. We say that a
nowhere-zero A-chain ϕ in G is a nowhere-zero (A, T )-chain if

∑
v∈X ∂ϕ(v) = 0 for each

X ∈ L(T ) and
∑

v∈Y ∂ϕ(v) 6= 0 for each edge e of T and Y ∈ L(e). It is easy to check that
if ϕ is a nowhere-zero A-flow in GT then the restriction ψ of ϕ into D(G) is a nowhere-zero
(A, T )-chain in G and if ψ is a nowhere-zero (A, T )-chain in G then it can be extended into
a unique nowhere-zero A-flow in GT . Thus there is a one-to-one correspondence between
the sets of nowhere-zero A-flows in GT and nowhere-zero (A, T )-chains in G. Therefore
the flow polynomial F (GT ; k) of GT counts the number of nowhere-zero (A, T )-chains in
G for k = |A|.

For an Abelian group A we say that b : V (G) → A is an (A, T )-mapping on V (G) if∑
v∈X b(v) = 0 for each X ∈ L(T ) and

∑
v∈Y b(v) 6= 0 for each edge e of T and Y ∈ L(e).
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Then ϕ is a nowhere-zero (A, T )-chain in G if and only if ∂ϕ is an (A, T )-mapping on
V (G).

Consider b, b′′ as defined in Example 5. Then |ΦC(b)| 6= |ΦC(b′′)|. We can check that
b and b′′ are (Z5, T )-mappings where L(T ) = {{v′1, v′6}, {v′2, v′5}, {v′3, v′4}} (T consists of
three copies of K2). This example shows that the notion of (A, T )-mapping does not have
an analogous application as presented in Corollary 2.

Suppose that T is a forest such that exactly one component of T is isomorphic either
with K2, or with K1,3, and all other components are isolated vertices. It is easy to check
that for each (A, T )-mapping b on V (G) we have F (G,αG,b; k) = F (GT ; k). But in general
we do not know whether for any assigning α of a graph G, the polynomial F (G,α; k) can
be evaluated by polynomials F (GT ; k) for some forests T .
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